
Physics 335

Lab 6 - PIC Lab 2: Microcontroller based PWM

By now you’ve had a little introduction to the PIC both in class and in lab, and hopefully you’re
becoming a little more familiar with the architecture and coding of this chip. We’ll use a couple of
simple functions of the chip and these should remind you of earlier times when we’ve used similar
techniques with discrete chips.

Today, we’ll start using some on-board counters on the chips. To make it a little more challenging
and show some of the utility of the microcontroller itself, we’ll use these on-chip counters in a
special way that’s very useful. We’ll use the built in functionality to make a simple microcontroller
PWM-based waveform generator.

An Introduction to Pulse Width Modulation

Pulse Width Modulation (PWM) has become a very important technique throughout electronics
as a method for controlling high power equipment efficiently. It’s used for lighting control dimming
circuits, switching power supplies and “Uninterruptible Power Supplies” (UPS’s), motor and servo
control, and countless other applications that used to be the domain of high power (and heavy)
linear power supplies and controls.

Pulse Width Modulation is just what it sounds like: using a technique to change the width (in
time) of a digital pulse. As you’re well aware now, the digital world is composed entirely of ones
and zeros—on and off. A digital waveform is often said to have a “period” (the time it takes for
the signal to repeat itself) and a “duty cycle”, which is defined as

Duty Cycle =
Time of signal high

Period
× 100 (1)

The duty cycle is usually expressed as a percent of the period. The following ’scope grabs show some
examples of pulse width modulated signals. The left shows two waveforms with the same frequency
but different duty cycles. The other shows the the same duty cycle but different frequencies.
(Remember: frequency = 1/period)

A microcontroller makes it easy to do this and to vary the frequency or duty cycle on the fly as
needed for a given load or other circuit conditions.
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6-1 Port-based PWM

As a reminder of some of your programming from last week, lets do a simple exercise and
make a pulse width controller with our PIC. For starters we’ll do it the simplest way we can:
just turn on a digital output line to high, wait an appropriate period, then set it to low. Then
do it again; as they say on the shampoo bottle: “Lather, rinse, repeat.”

So here’s your first task, hopefully a pretty simple one: Make a pulse-width-modulated signal

with 30% duty cycle at 1kHz.

(A) Microcontroller Clocking

Before you can do this, you need to think about about how fast our little microcontroller
works. Fortunately, as we’ve said, it’s a simple controller and that makes our life (relatively)
easy.

We glossed over this fact in the last lab, but our little processor needs a clock that tells it
when to execute. MicroChip was nice to us and the newer versions of these chips have an
on-board clock, so all we need to do is figure out how to use it (previously, and as you found
in other lab exercises, we needed to supply a clock signal from the outside world. Now, a few
configuration bits, set correctly, are all that’s needed.)

The microcontroller clocking is controlled by a number of special function registers. (The
oscillator configuration is discussed in Section 4 of the PIC16F87/88 Datasheet.) Two of
them concern us most:

CONFIG1 The configuration registers CONFIG1 and CONFIG2 control how the microcontroller
responds when it is first powered-on or reset by other events. These registers are not the
same as the usual SFRs in the sense that they do not reside in the data memory space
but are instead in program memory. Another odd aspect of them is that they are at
program addresses 2007h and 2008h, which are both above the normal program memory
address space (0000h to 1FFFh). They are only accessible during programming of the
PIC, and because they are in program memory, they are 14 bits wide (like opcodes)
rather than 8 bits wide.

OSCCON This register is a “normal” special function register, located in data memory at
address 8Fh. It is used to set and control the oscillator configuration after the micro-
controller is up and running.

Your first task will be to set the configuration register CONFIG1 so that the oscillator signal
(divided by four) is made available on one of the device pins. Then you will set the control
register OSCCON to choose a different clock frequency.
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The part of CONFIG1 that concerns us are the “Oscillator Selection Bits”, a.k.a. FOSC<2:0>

which are bits 0, 1, and (curiously) 4. They are denoted FOSC0, FOSC1 and FOSC2, respectively.
Shown below is a map of CONFIG1 and what the FOSC<2:0> bits do.

The configuration bits are set using the lines at the top of our assembly language source file.
Note the following line:

__config _CONFIG1, _FOSC_INTOSCIO & _WDT_OFF & _LVP_OFF &

_PWRTE_OFF & _BODEN_ON & _LVP_OFF & _CPD_OFF &

_WRT_PROTECT_OFF & _CCP1_RB0 & _CP_OFF

Note also that the above is one long line in the source file, not broken into three lines as shown
above. If you examine the labels in the line, you will be able to correlate what they are with
what bits are set in CONFIG1. What the above long line does is to make a “bitwise-AND”
of all of the numbers associated with the labels (equates in the p16F88.inc file, for example,
STATUS EQU H’0003’). The result of this bitwise-AND is a bit pattern that is passed to
CONFIG1.

Start up the MPLABX IDE as you did before. Create a new project, set the correct processor,
allow it to be powered by the PICkit3, etc., just like you did in the previous lab. Grab both
the p16f88.inc and PIC16F88 template1.asm files and install them in the usual spots on
the tree.

Now open up the template .asm file and have a look at the top lines.

See the label FOSC INTOSCIO? That sets the FOSC<2:0> bits to 100, and thus it selects
the internal oscillator and sets the output pin RA6/OSC2/CLKO (pin 15 on the chip) to
be a regular I/O pin. But we want to look at the clock. So in your source file replace
FOSC INTOSCIO with FOSC INTOSCCLK. Be sure to type it exactly as shown. This will set
FOSC<2:0> to 101, and this will allow the clock signal to appear on pin 15 of the device.

Now, go ahead and compile the file and let it “run” on the PIC. (For example, you can run
it under “debug mode.”) It won’t “do” anything at all, since there are no instructions other
than one GOTO. But it will initialize the PIC, and importantly, turn on the CLKO pin.
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Connect a ’scope probe up to the pin and look at the output. You should see a square wave
oscillating happily away.

• What is the frequency?

• When the PIC turns on, the register OSCCON contains 00h. Based on the information in
the Datasheet, what should the frequency of the clock be?

• How are the measured and expected clock frequency related?

Next, you should write some code to change the OSCCON, and see what happens. Figure out
what bit pattern will make the internal oscillator run at 1 MHz. Then code in a couple of MOV
instructions to load this register and watch what happens on pin 15. Below is information on
OSCCON.

The oscillator frequency is selected using bits <6:4> of the OSCCON register. So to select a
250 kHz clock, we’d need OSCCON to look something like x010xxxx (showing the set and reset
bits corresponding to the correct frequency mask). But be careful, although you might think
it might, the following code will not quite set the processor to use a 250 kHz clock.

MOVLW b’00100000’

MOVWF OSCCON

You need a bit more. (What? Hint: what is the address of OSCCON?)

If you are feeling energetic, you may want to write a loop that changes OSCCON to different
settings and then delays for a moment so that you can see the new frequency register on the
’scope. Note, however, that your delay loop will also be affected by the oscillator frequency!

4



(B) Software-based PWM

Now you should be ready to tackle the problem. Here is a rough outline:

(a) Initialize the on-board oscillator so that it’s fast enough for the task at hand.

(b) Initialize PORTB<0> as an output pin.

(c) By using bit set (BSF) or move functions, turn the port bit ON.

(d) Waste an appropriate amount of time.

(e) Use an appropriate function to turn the port bit OFF.

(f) Waste an appropriate amount of time.

(g) Go back to (c) and repeat.

The hard part of the above is to decide how to waste the appropriate amounts of time. To
figure this out, you need to know the following: How many clock cycles does one iteration of
your delay loop take? How many clock cycles should the time ON and the time OFF take?
Based on this, how many iterations of the delay loop should occur for each part of the cycle?

Your lab report should include these calculations.

A couple of pointers before you go forth and code: First, when you need your processor to
“waste some time” you can use NOP operations. Second, remember that each loop count
variable must be between 0 and 255. If you want larger numbers, you will need to figure out
how to “hook two variables together.” (Hint: nested loop.) Finally, look at the instruction
list to see how many instruction cycles each instruction takes. Most need only 1 cycle, but
any that change the program counter require 2 cycles.

Now that you have done a little bit of coding, you should start using named variables and
equates to make your programs clearer and easier to manage. The following example shows
how to replace the literals and memory (also called “file”) addresses with names. It is the
same delay loop code used in the last lab—it just looks different.

MaxCount EQU H’0A’ ; Equates are good for defining literals

CBLOCK H’20’ ; A CBLOCK defines a sequential region

L1Var ; L1Var is in location H’20’

L2Var ; L2Var is in location H’21’

ENDC ; ENDC ends the definition block

; Begin Delay Loop

Delay MOVLW MaxCount ; Notice how above declarations

MOVWF L1Var ; are used here

Loop1 MOVLW MaxCount

MOVWF L2Var

Loop2 DECFSZ L2Var

GOTO Loop2

DECFSZ L1Var

GOTO Loop1

; End Delay Loop
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More information and examples are given in the MPASM User’s Guide, on the course website.

OK, go forth and code. When done, prove to your TA you’ve created the signal described:
hook your scope to the RB0/CCP1 pin (pin 6). Print out your program to include in your
report.

6-2 Using the PWM on-board peripheral

OK, so you’ve made a pulsing signal. So what? Well, it’s useful as is, but it may have occurred
to you that if you want to do anything more than just pulse that one output line you need
to work that into your code. For example, you may want your processor to interact with a
user in some way, say, to change the operating conditions in response to the user pressing a
button. All this takes processor time, but we’re using the processor timing to time our loop,
so we have to figure out how long each interaction will take and plan for it.

This can get very tricky and it’s clumsy to use, unless ALL you want to do is pulse the
line. Because PWM signals are useful in many contexts, the manufacturer has created a
“peripheral” specifically designed to handle PWM in a predictable and easier-to-code way.

The peripheral is called the Capture/Compare/PWM or CCP module. It works with another
on-board peripheral, a timer/counter module called TIMER2.

The block diagram of the CCP module when it is configured to do PWM is shown below.

The way it works is as follows. The CCP1 pin is enabled by setting TRISB<0> to 0 (“output”)
and by setting the appropriate bits in the CCP1CON register. This turns RB0 into CCP1—
same pin, different internal connection. The period of the waveform is put into the PR2

register associated with TIMER2. The duty cycle time is put into the CCPR1L register and
two bits of the CCP1CON register, CCP1CON<5:4>. The 8 bits from CCP1RL and the 2 bits from
CCP1CON<5:4> are concatenated to form a 10 bit word. When TIMER2 starts and runs, the
output latch is set (S) so that the output is HIGH, and at the same time, CCPR1L (extended
by 2 bits) is latched into CCPR1H (also extended). The register TMR2 is updated continuously,
and this feeds two digital comparators that check whether the number in TMR2 is greater than
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or equal to the numbers feeding into the other side of each comparator. When TMR2 (extended)
is greater than CCPR1H (extended), the comparator resets the latch (R) pulling the output
LOW (thus ending the “duty” part of the cycle). The timer continues to run until TMR2
matches PR2 which then sets the output latch (S) HIGH, clears TMR2 and latches in the next
duty cycle number from CCPR1L and CCP1CON<5:4>. Whew! That is a lot to keep track of,
no?

In order to make a particular PWM waveform, you need to solve a couple of equations, based
on what you want the frequency and duty cycle to be. These are

PWM Period = [(PR2) + 1] · 4 · TOSC · (TIMER2 prescale value) (2)

PWM Duty Cycle = (CCPR1L : CCP1CON < 5 : 4 >) · TOSC · (TIMER2 prescale value)(3)

The “TIMER2 Prescale value” comes from the TIMER2 module. Tosc is the period of the
oscillator itself (not the instruction cycle time). The clock driving TIMER2 is first sent into
a pair divide-by-4 counters that may be switched on according to 2 bits in the T2CON register.
Thus the actual timer frequency may be reduced by 4 or by 16.

Here are some relevant details about the relevant registers from the PIC datasheet. You
should read the sections of the datasheet about each of these registers thoroughly. As you’ve
learned, electronics can be very unforgiving of small mistakes, so it’s quite possible to have
a single bit misconfigured and have that completely change what you see. Your debugging
skills will be helpful here, if things don’t at first work out.

First, a summary of those registers you’ll need to configure for PWM
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Of these CCP1CON sets the configuration of the Capture, Compare, PWM register.

T2CON similarly sets configuration for the Timer2 Register, which is used for PWM function-
ality.
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Your next task is to use the on-board CCP and TIMER2 modules to create a PWM signal
with a frequency of (about) 2 kHz and 75% duty cycle.

Use the equations above to work out the values needed for PR2 and CCPR1L:CCP1CON<5:4>.
Show your work in your report.

Write code that carries out the following steps:

(a) Set the PWM period by writing to PR2.

(b) Set the PWM duty cycle time by writing to CCPR1L and CCP1CON<5:4>

(c) Enable the output of CCP1 by clearing TRISB<0>

(d) Set the TIMER2 prescale value and enable TIMER2 by writing to T2CON

(e) Enable and start PWM by writing to CCP1CON.

Remember: at each point, you need to ensure exactly what bit pattern must be sent (use the
information given above and the datasheet), and you must be sure you are indeed writing to
the correct data location—which bank is each register in?

Look at the result on the RB0/CCP1 pin and confirm that it works. Show it to the TA. Print
out your (working) code to include in your report.

6-3 Using the PWM as an D/A converter

If you were to average the PWM signal over time, you would get a voltage that was propor-
tional to the duty cycle: 0% duty cycle would give 0 V, 100% duty cycle would give 5 V and
50% duty cycle would give 2.5 V. One can get an average by running the signal into a simple
RC low-pass filter; the capacitor charges up during the high part of the cycle and discharges
during the low part. If the RC time constant is longer (enough) than the PWM wave’s period,
the charging and discharging curves will quickly reach a steady-state value. This makes it
easy to use PWM as a “cheap” D/A converter.

Try this out: what value of RC would be between 10 and 50 times your PWM period? Figure
this out and select the parts to make such a low-pass filter. (Note: you will want to use
resistor values above 1k, or else the current draw from the PIC may become too large.)

Wire it up, connecting the input to the pin RB0/CCP1. Connect the scope to the output,
and have a look. Is the voltage what you expect?

Include a circuit diagram of your RC circuit and draw/explain what you see.

OK, now that you’ve done that, lets take it a step further. Let’s vary the duty cycle, and
thereby vary the output voltage. This is really kind of cute, because we’re using a single
digital line to create an arbitrarily shaped waveform.

The easiest type of varying output waveform to make would be a “sawtooth” wave: a ramp
that goes from low to high, and then starts over.
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Your code should do the following:

(a) Use a variable to hold a value for CCPR1L.

(b) Initialize the variable to 0.

(c) Write the variable to CCPR1L.

(d) Start the PWM waveform.

(e) Increment the variable by some amount.

(f) Write the variable to CCPR1L.

(g) Wait a sufficient time for the RC filter to settle.

(h) go back to step (e), and repeat.

Once your variable reached FFh (255), it will roll over to zero (or a low value, depending on
your increment size).

To make an arbitrarily shaped waveform, the value of CCPR1L must be varied in an arbitrary
way. One way to do this is to use a “look-up table” It works as follows:

(a) Set a series of RETLW statements in a named subroutine. the argument of RETLW a literal
that sits in W on return.

(b) Write the step number corresponding to which RETLW statement you want into W.

(c) Call the subroutine with the first instruction of the subroutine as: ADDWF PCL. This
causes the program counter to immediately jump forward W steps to the desired RETLW

statement.

(d) Whence the routine immediately returns from the subroutine with the desired value of
the duty cycle in W.

(e) Write the value to CCPR1L, and proceed as before.

(Note: in creating your code, you can use the DT directive in the assembler. This tells the
assembler to create a series of RETLW statements as a data table for just this purpose. See the
assembler documentation for more details.)

As an example, we used a look-up table to create this sine wave:
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This comes from the smear of overlain pulses show below:

It’s made by simply changing the pulse width modulation appropriately and filtering. Choos-
ing an RC filter is an example of an engineering compromise. In this case, a compromise
between speed and smoothing. If you choose a smaller time constant it may well respond
more quickly but at the expense of seeing more of the PWM coming through the filter, which
will give something like:

This is the essence of switched power supplies, which maintain a constant voltage by (very
quickly) switching on and off and varying the PWM to match the attached load. Obviously,
high load = high duty cycle and low load = low duty cycle. This is also the basis for most solid
state motor drive systems today. Just as PWM switching on a RC circuit gives a smoothed
voltage waveform (voltage across a capacitor changes slowly), PWM on a motor (an inductor)
gives a smoothed current waveform.
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The look-up table that makes this is given here:

Sinedata

ADDWF PCL, F ; Increment into table

RETLW .0 ; Dummy table value

RETLW .128 ; 0 degree, 2.5 volt

RETLW .148

RETLW .167

RETLW .185

RETLW .200

RETLW .213

RETLW .222

RETLW .228

RETLW .230 ; 90 degree, 4.5 volt

RETLW .228

RETLW .222

RETLW .213

RETLW .200

RETLW .185

RETLW .167

RETLW .148

RETLW .128 ; 180 degree, 2.5 volt

RETLW .108

RETLW .89

RETLW .71

RETLW .56

RETLW .43

RETLW .34

RETLW .28

RETLW .26 ; 270 degree, 0.5 volt

RETLW .28

RETLW .34

RETLW .43

RETLW .56

RETLW .71

RETLW .89

RETLW .109

OK, now time for you to try. As usual, include any code with your report.
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