
Physics 335

Lab 7 - PIC Lab 3: Timing put to work—A sonic ranger device

This week, we’ll work some more with our PIC and the on-chip counters. This time, we’ll have
you do a bit more of the coding itself and give you only a basic outline of what you need to do.
The rest is up to you. Along the way, you’ll use the pic’s on-board counters and basic arithmetic
functions.

Hardware

We’ll use a simple sonic ranger, a device that sends out a short burst of ultrasonic pulses and then
waits for the time for an echo of the pulse to be received. If you know the speed of sound, you
can determine the distance between the sonic ranger and the object from which the reflected from.
You may have used a similar device in introductory physics to measure the position of a small cart
on a track. There are lots of uses for sonic rangers beyond the physics lab. For example, one could
use one to measure distances between a car and other object (like concrete walls or other cars) to
make a “backup safety measurement device” for a car.

If the time between the outgoing pulse and the received echo is ∆t, and the speed of sound is vs,
the distance d would be given by

d =
vs∆t

2
. (1)

The factor of 2 comes in because the sound has to travel to and then back from the object being
measured.

Question: The speed of sound in dry air at 20◦C is 343 m/s. If the farthest distance that the
sonic ranger can detect is about 400 cm, what would be the longest measurable echo time ∆tmax?

The device we will use is pretty trivial and works well with our PicDemo boards. The device has
only 4 pins—and two of those are for power. A picture is shown below.

A complete data sheet is included with this write up at the end. Briefly, to use the device, a
measurement is initiated by a positive going pulse on the trigger line. A short time later, the Echo
line goes high and gives a pulse proportional to the distance between the sonic ranger and the
nearest echo-able object.

7-1 Setting up the Sonic Ranger

We’ll develop our project in steps. The first job is to simply get the sonic ranger wired up
and pulsing.

The sonic ranger should be plugged into the white breadboard along the edge closest to the
edge of the PicDem board, with the small cylinders facing outward, away from the board. If
you hold the board so that you can read PICDEM LAB, the best place to put the ranger is in

1



the lower right corner of the white breadboard. (You will need the rest of the breadboard for
the digital displays.)

Wire up the sonic ranger as follows:

• First, don’t forget power. Pull Vdd2 to the Vdd bus on the black rails and Vss to the
Vss bus. Then wire Vcc sonic ranger power to the Vdd bus and Gnd to the Vss bus.

• Use RA0 (pin 17) as an output on the PIC. This should be connected to the Trig pin on
the sonic ranger.

• Use RA1 (pin 18) as an input on the PIC. This should be connected to the Echo pin on
the sonic ranger.

Make your wiring as clean and neat as possible. Use color coding, e.g., black and red for
power, other colors for signals. Use the pliers to insert wires cleanly and without damage.

7-2 Trigger the sonic ranger

Download the template file SonicRanger_template.asm from the course website. This file
contains a skeleton of code, along with the usual configuration settings. Also grab the
p16f88.inc file that you use in all of your projects. Save these files somewhere convenient.

Then create a new project with the usual settings: a standalone project, using the PIC16F88,
powered from the PICkit3 programmer. Attach the template file and the “include” file to the
usual spots on the project tree.

Now, open up the template file and have a look. Scroll down to where you see ; Microcontroller

initialization. You will see a sequence of labels (SetOSC, SetIO, SetTimer, etc.). There
are also many areas with instructions that are commented out—these will be used later.

Your first task will be to code the following sections:

SetOSC Use the oscillator control registers to select a 4MHz internal oscillator to run the
PIC.

SetIO Use the PORTA and TRISA registers to set up PORTA<0> as an output and PORTA<1> as
an input. Also, since you will need them later, set up all bits of PORTB as outputs.

Pulse Write code here that sets PORTA<0> HI, waits 10–15 microseconds, and then sets
PORTA<0> LO.

Delay Write code here that will waste time for about 60 milliseconds. Note where this code
is called from.

After you code this up, test it, and confirm that you see a short pulse appear on the RA0 pin
every 60 ms or so.

Then hook up another scope probe and look at the Echo line. You should see a much longer
pulse whose length will vary when you move your hand toward and away from the front of
the sonic ranger. You should see something like the following:

2



Remember, it’s a sonic pulse, so it will not be perfectly collimated coming out of the ranger.
It will work better for hard “echoey” objects with flat surfaces (a book or cardboard or the
flat of your hand) than soft, roundish sound-absorbing objects (a wad of Kleenex or a pillow
for your pet hamster). Make sure there is nothing between the ranger and what you want it
to “see.”

Verify that you have the sonic ranger creating an appropriate echo pulse before proceeding,
or you’ll get nowhere from here on.

7-3 Using a counter to time the pulse

Next, you will need to configure your counter. You will have have to configure it in such a
way that it counts sufficiently accurately for a two decimal place display by the end of the lab.
This is just a range of 0 to 99, so an 8 bit counter is plenty (it goes to 255), but you’ll still need
to configure the counter so that it uses those bits well. You don’t want to count too slowly,
which will give poor resolution, or to quickly, lest you overflow. The two parameters that
control the counting rate are the oscillator frequency and the timer prescaler. We recommend
using the Timer0 module because it has a wide range of prescaler settings: you can prescale
by any factor of 2 between 1:1 and 1:256.

The counter rate will determine the length units that your ranger will use. If you want your
readout to measure in centimeters, for example, the time between successive counts should
be the time it takes sound to travel two centimeters (i.e., there and back). Work this out,
and then select the prescaler setting which will give the frequency closest to the inverse of
this time interval.

After you determine your counter and prescaler values, you will be ready to code these
sections; some may have only two or three lines:

SetTimer If using the Timer0 module, you will need to set the appropriate bits in OPTION_REG.

EchoWait and Clear Make a tight loop that simply waits until PORTA<1> goes HI, at which
point the timer register (e.g., TMR0) is cleared.

EndEcho and Read Make another tight loop that simply waits until PORTA<1> goes LOW, at
which point the timer register is copied into W.

To see if this code is working, use the debugger to examine the contents of the variables
TimerCounts or bin at the end of each iteration of the MainLoop. (Use a “breakpoint.”) You

3



should see that the number is proportional to the distance between the ranger and whatever
is in front of it.

7-4 Add Displays

Locate the pair of HP Hex digit displays that are on the special socket, and plug them into
the white breadboard (you may have to push hard). Connect up the power to pins 7 (+5V)
and 6 (Gnd), and ground both the ENABLE* and BLANKING pins (4 and 5). Connect pins
RB0 through RB3 to the data lines on one display and RB4 through RB7 to the data pins on
the other display. As you did with the sonic ranger, make your wring neat so that you can
easily see the displays and have access to the PIC, etc., for troubleshooting.

A diagram of the HP display is given below.

A

B DC BL

1 2 3 4

8 6 57

V+

+5

IC visible here

GND EN

MSB

LSB

LED array

many
4

E

Latch

D Q decoder

HP Display Block Diagram

4

EN* BL (blank)

A,B,C,D
in

In the assembly language file, uncomment the sections marked CALL _bin2bcd and UpdateDisplay.
Also scroll down and uncomment all of the code under the labels UpdateDisplay and Overflow.

Then download the file bin2bcd.inc. This contains a routine that converts binary to binary-
coded-decimal (BCD). The code that does this conversion is shown on the next page. It is
am implementation of the so-called “double-dabble” algorithm.

To access this code in your program, put the bin2bcd.inc file into your project under “Source
Files” and uncomment the line that says #include bin2bcd.inc

4



; 8-bit binary to BCD conversion

; pete griffiths 2007

; http://picprojects.org.uk/projects/pictips.htm

;

; bin contains the binary value to convert.

; Conversion process destroys contents

; Result is in bcdH, bcdL on return.

; Call _bin2bcd to perform conversion.

_bin2bcd movlw d’5’

movwf counter

clrf bcdL

clrf bcdH

; we can save some execution time by not

; doing the ’test and add +3’code for the

; first two shifts

rlf bin,F

rlf bcdL,F

rlf bin,F

rlf bcdL,F

rlf bin,F

rlf bcdL,F

_repeat movfw bcdL

addlw 0x33

movwf temp

movfw bcdL

btfsc temp,3

addlw 0x03

btfsc temp,7

addlw 0x30

movwf bcdL

; we only need to do the test and add +3 for

; the low bcd variable since the

; largest binary value is 0xFF which is 255

; decimal so the high bcd byte variable will

; never be greater than 2.

rlf bin,F

rlf bcdL,F

rlf bcdH,F

decfsz counter,F

goto _repeat

return

5



7-5 Wrap it up

The full circuit diagram for the sonic ranger is shown below

Test it out. You should see the numbers indicate roughly the centimeter distance between an
object and the sonic ranger. When the object gets too far away, it should show OF, indicating
an overflow.

Include the following in your report:

• Your full assembly program.

• a calibration check: use a meter stick to compare the sonic ranger’s reported distance
and the actual distance to some object. You should try it at a couple of distances. If
you need to convert from “sonic ranger units” to centimeters, calculate a conversion
constant.

• A description of how the code for UpdateDisplay works. This can be included in the
comments inside your program. In particular, explain how the overflow checking and
display of OF works.

Prepared by J. Alferness and D. B. Pengra
PicLab3_Lab7_14.tex -- Updated 23 May 2014

6



HC-SR04 Ultrasonic Range Finder

Distance measurement range: 2cm - 400cm
Accuracy: 0.3cm

Features

Detect angle: 15 degree
Single +5V DC operation

Manual

Current comsuption: 15mA

Ø
Ø
Ø
Ø
Ø

How It Works

HC-SR04 consists of ultrasonic transmitter, receiver, and control circuits.
When trigged it sends out a series of 40KHz ultrasonic pulses and receives
echo from an object. The distance between the unit and the object is calculated
by measuring the traveling time of sound and output it as the width of a TTL pulse.

How To Use It

To measure distance you need to generate a
trig signal and drive it to the Trig Input pin. The
trig signal leve must meet TTL level requirements
(i.e. High level > 2.4V, low level < 0.8V) and its

width must be greater than 10us. At the same time
you need to monitor the Output pin by measuring
the pulse width of output signal. The detected
distance can be calculated by the formula below.

Distance = Pulse Width * Sound Speed
2

where the pulse width is in unit of second and sound speed is in unit of meter/second.
Normally sound speed is 340m/s under room temperature.

Fig. 1

Fig. 2

Fig.3

Fig. 4

Notes: 1. The width of trig signal must be greater than 10us
2. The repeat interval of trig signal should be greater than 60ms

to avoid interference between connective measurements.

Parameters Specification
Operating Voltage
Operating Current
Operating Frequency
Maximum Distance
Minimum Distance
Detect Angle
Resolution
Input Trig Signal
Output Signal
Weight
Dimension

Specifications

+5V DC

40KHz
15mA

400cm
2cm
15 degree
0.3cm
>10us TTL pulse
TTL pulse with width representing distance

45 x 20 x 15 mm

www. .comAccuDIY

Copyright 2011 AccuDIY.com All rights reserved


