
 2004 Microchip Technology Inc. DS51281D

MPLAB® IDE

QUICK START GUIDE

Note the following details of the code protection feature on Microchip devices:

• Microchip products meet the specification contained in their particular Microchip Data Sheet.

• Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the

intended manner and under normal conditions.

• There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our

knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data

Sheets. Most likely, the person doing so is engaged in theft of intellectual property.

• Microchip is willing to work with the customer who is concerned about the integrity of their code.

• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not

mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our

products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts

allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.
Information contained in this publication regarding device

applications and the like is provided only for your convenience

and may be superseded by updates. It is your responsibility to

ensure that your application meets with your specifications.

MICROCHIP MAKES NO REPRESENTATIONS OR WAR-

RANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED,

WRITTEN OR ORAL, STATUTORY OR OTHERWISE,

RELATED TO THE INFORMATION, INCLUDING BUT NOT

LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE,

MERCHANTABILITY OR FITNESS FOR PURPOSE.

Microchip disclaims all liability arising from this information and

its use. Use of Microchip’s products as critical components in

life support systems is not authorized except with express

written approval by Microchip. No licenses are conveyed,

implicitly or otherwise, under any Microchip intellectual property

rights.
DS51281D-page ii
Trademarks

The Microchip name and logo, the Microchip logo, Accuron,

dsPIC, KEELOQ, microID, MPLAB, PIC, PICmicro, PICSTART,

PRO MATE, PowerSmart, rfPIC, and SmartShunt are

registered trademarks of Microchip Technology Incorporated

in the U.S.A. and other countries.

AmpLab, FilterLab, Migratable Memory, MXDEV, MXLAB,

PICMASTER, SEEVAL, SmartSensor and The Embedded

Control Solutions Company are registered trademarks of

Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, dsPICDEM,

dsPICDEM.net, dsPICworks, ECAN, ECONOMONITOR,

FanSense, FlexROM, fuzzyLAB, In-Circuit Serial

Programming, ICSP, ICEPIC, MPASM, MPLIB, MPLINK,

MPSIM, PICkit, PICDEM, PICDEM.net, PICLAB, PICtail,

PowerCal, PowerInfo, PowerMate, PowerTool, rfLAB,

rfPICDEM, Select Mode, Smart Serial, SmartTel and Total

Endurance are trademarks of Microchip Technology

Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated

in the U.S.A.

All other trademarks mentioned herein are property of their

respective companies.

© 2004, Microchip Technology Incorporated, Printed in the

U.S.A., All Rights Reserved.

 Printed on recycled paper. 11/12/04
 2004 Microchip Technology Inc.

Microchip received ISO/TS-16949:2002 quality system certification for
its worldwide headquarters, design and wafer fabrication facilities in
Chandler and Tempe, Arizona and Mountain View, California in
October 2003. The Company’s quality system processes and
procedures are for its PICmicro® 8-bit MCUs, KEELOQ® code hopping
devices, Serial EEPROMs, microperipherals, nonvolatile memory and
analog products. In addition, Microchip’s quality system for the design
and manufacture of development systems is ISO 9001:2000 certified.

MPLAB® IDE
QUICK START GUIDE

Table of Contents
Chapter 1. What is MPLAB® IDE?

1.1 An Overview of Embedded Systems .. 1

1.2 The Development Cycle ... 6

1.3 Project Manager ... 7

1.4 Language Tools .. 8

1.5 Target Debugging ... 9

1.6 Device Programming .. 10

1.7 Components of MPLAB IDE ... 10

1.8 MPLAB IDE Documentation ... 11

1.9 MPLAB IDE On-line Help ... 11

1.10 MPLAB IDE Updates and Version Numbering ... 14

Chapter 2. Getting Started with MPLAB IDE: A Basic Tutorial

2.1 Introduction ... 15

2.2 MPLAB IDE Features and Installation .. 16

2.3 Tutorial Overview ... 18

2.4 Select Device ... 19

2.5 Create Project .. 21

2.6 Select Language Tools ... 22

2.7 Put Files in Project ... 23

2.8 Build the Project ... 26

2.9 Create Code ... 27

2.10 Build the Project Again ... 30

2.11 Test Code with Simulator ... 31

2.12 Tutorial Summary ... 37

Worldwide Sales and Service .. 40
 2004 Microchip Technology Inc. DS51281D-page iii

MPLAB® IDE Quick Start Guide
NOTES:
DS51281D-page iv  2004 Microchip Technology Inc.

MPLAB® IDE
QUICK START GUIDE

Chapter 1. What is MPLAB® IDE?
1.1 AN OVERVIEW OF EMBEDDED SYSTEMS

MPLAB IDE is a software program that runs on a PC to develop applications for

Microchip microcontrollers. It is called an Integrated Development Environment, or IDE,

because it provides a single integrated “environment” to develop code for embedded

microcontrollers. Experienced embedded systems designers may want to skip ahead

to Section 1.7 “Components of MPLAB IDE”. It is also recommended that

Section 1.9 “MPLAB IDE On-line Help” and Section 1.10 “MPLAB IDE Updates

and Version Numbering” be reviewed. The rest of this chapter briefly explains

embedded systems development and how MPLAB IDE is used.

1.1.1 Description of an “Embedded System”

An embedded system is typically a design making use of the power of a small

microcontroller, like the Microchip PICmicro® MCU or dsPIC® Digital Signal Controller

(DSCs). These microcontrollers combine a microprocessor unit (like the CPU in a

desktop PC) with some additional circuits called “peripherals”, plus some additional

circuits on the same chip to make a small control module requiring few other external

devices. This single device can then be embedded into other electronic and

mechanical devices for low-cost digital control.

1.1.2 Differences Between an Embedded Controller and a PC

The main difference between an embedded controller and a PC is that the embedded

controller is dedicated to one specific task or set of tasks. A PC is designed to run many

different types of programs and to connect to many different external devices. An

embedded controller has a single program and, as a result, can be made cheaply to

include just enough computing power and hardware to perform that dedicated task. A PC

has a relatively expensive generalized central processing unit (CPU) at its heart with

many other external devices (memory, disk drives, video controllers, network interface

circuits, etc.). An embedded system has a low-cost microcontroller unit (MCU) for its

intelligence, with many peripheral circuits on the same chip, and with relatively few

external devices. Often, an embedded system is an invisible part, or sub-module of

another product, such as a cordless drill, refrigerator or garage door opener. The

controller in these products does a tiny portion of the function of the whole device. The

controller adds low-cost intelligence to some of the critical sub-systems in these devices.

An example of an embedded system is a smoke detector. It’s function is to evaluate

signals from a sensor and sound an alarm if the signals indicate the presence of smoke.

A small program in the smoke detector either runs in an infinite loop, sampling the

signal from the smoke sensor, or lies dormant in a low-power “sleep” mode, being

awakened by a signal from the sensor. The program then sounds the alarm. The

program would possibly have a few other functions, such as a user test function, and

a low battery alert. While a PC with a sensor and audio output could be programmed

to do the same function, it would not be a cost-effective solution (nor would it run on a

nine-volt battery, unattended for years!) Embedded designs use inexpensive

microcontrollers to put intelligence into the everyday things in our environment, such

as smoke detectors, cameras, cell phones, appliances, automobiles, smart cards and

security systems.
 2004 Microchip Technology Inc. DS51281D-page 1

MPLAB® IDE Quick Start Guide
1.1.3 Components of a Microcontroller

The PICmicro MCU has program memory for the firmware, or coded instructions, to run

a program. It also has “file register” memory for storage of variables that the program

will need for computation or temporary storage. It also has a number of peripheral

device circuits on the same chip. Some peripheral devices are called I/O ports. I/O

ports are pins on the microcontroller that can be driven high or low to send signals, blink

lights, drive speakers – just about anything that can be sent through a wire. Often these

pins are bidirectional and can also be configured as inputs allowing the program to

respond to an external switch, sensor or to communicate with some external device.

FIGURE 1-1: PICmicro® MCU DATA SHEET - BLOCK DIAGRAM (EXCERPT)

In order to design such a system, it must be decided which peripherals are needed for

an application. Analog to Digital converters allow microcontrollers to connect to

sensors and receive changing voltage levels. Serial communication peripherals, allow

you to stream communications over a few wires to another microcontroller, to a local

network or to the internet. Peripherals on the PICmicro MCU called “timers” accurately

measure signal events and generate and capture communications signals, produce

precise waveforms, even automatically reset the microcontroller if it gets “hung” or lost

due to a power glitch or hardware malfunction. Other peripherals detect if the external

power is dipping below dangerous levels so the microcontroller can store critical

information and safely shut down before power is completely lost.

PORTA

PORTB

PORTC

RA4/T0CKI
RA5/AN4/LVDIN

RB0/INT0

RC0/T1OSO/T13CKI
RC1/T1OSI/CCP2
RC2/CCP1

RC3/SCK/SCL
RC4/SDI/SDA

RC5/SDO
RC6/TX1/CK1
RC7/RX1/DT1

RA3/AN3/VREF+

RA2/AN2/VREF-

RA1/AN1

RA0/AN0

RB1/INT1

Data Latch

Data RAM

Address Latch

Address<12>

12

Bank0, FBSR FSR0

FSR1

FSR2

Inc/Dec
LogicDecode

4 12 4

PCH PCL

PCLATH

8

31 Level Stack

Program Counter

Address Latch

Program

Data Latch

21

21

16

Table Pointer<21>
21

8

Data Bus<8>

Table Latch

8

IR

12

ROM Latch

RB2/INT2
RB3/INT3

PCLATU

PCU

RA6

RB4/KBI0
RB5/KBI1/PGM
RB6/KBI2/PGC
RB7/KBI3/PGD

Memory

Inc/Dec Logic
DS51281D-page 2  2004 Microchip Technology Inc.

What is MPLAB® IDE?
The peripherals and the amount of memory an application needs to run a program

largely determines which PICmicro MCU to use. Other factors might include the power

consumed by the microcontroller and its “form factor,” i.e., the size and characteristics

of the physical package that must reside on the target design.

FIGURE 1-2: PICmicro DEVICE PACKAGE

1.1.4 Implementing an Embedded System Design with MPLAB IDE

A development system for embedded controllers is a system of programs running on a

desktop PC to help write, edit, debug and program code – the intelligence of embedded

systems applications – into a microcontroller. MPLAB IDE, runs on a PC and contains

all the components needed to design and deploy embedded systems applications.

The typical tasks for developing an embedded controller application are:

1. Create the high level design. From the features and performance desired, decide

which PICmicro or dsPIC device is best suited to the application, then design the

associated hardware circuitry. After determining which peripherals and pins

control the hardware, write the firmware – the software that will control the

hardware aspects of the embedded application. A language tool such as an

assembler, which is directly translatable into machine code, or a compiler that

allows a more natural language for creating programs should be used to write

and edit code. Assemblers and compilers help make the code understandable,

allowing function labels to identify code routines with variables that have names

associated with their use, and with constructs that help organize the code in a

maintainable structure.

FIGURE 1-3: PICmicro MCU DATA SHEET - TIMING (EXCERPT)

c

2
1

n

DD1

B

p

#leads=n1

E1

E

A2

A1

A

L

CH x 45°

β
φ

α

(F)

Q3Q2Q1Q4Q3Q2

OSC1

Internal

SCS
(OSCCON<0>)

Program
PC + 2PC

Q1

T1OSI

Q4 Q1

PC + 4

Q1

TSCS

Clock

Counter

System

Q2 Q3 Q4 Q1

TDLY

TT1P

TOSC

21 3 4 5 6 7 8
 2004 Microchip Technology Inc. DS51281D-page 3

MPLAB® IDE Quick Start Guide
FIGURE 1-4: PICmicro MCU DATA SHEET - INSTRUCTIONS (EXCERPT)

2. Compile, assemble and link the software using the assembler and/or compiler

and linker to convert your code into “ones and zeroes” – machine code for the

PICmicro MCU’s. This machine code will eventually become the firmware (the

code programmed into the microcontroller).

3. Test your code. Usually a complex program does not work exactly the way

imagined, and “bugs” need to be removed from the design to get proper results.

The debugger allows you to see the “ones and zeroes” execute, related to the

source code you wrote, with the symbols and function names from your program.

Debugging allows you to experiment with your code to see the value of variables

at various points in the program, and to do “what if” checks, changing variable

values and stepping through routines.

4. “Burn” the code into a microcontroller and verify that it executes correctly in the

finished application.

Of course, each of these steps can be quite complex. The important thing is to

concentrate on the details of your own design, while relying upon MPLAB IDE and its

components to get through each step without continuously encountering new learning

curves.
DS51281D-page 4  2004 Microchip Technology Inc.

What is MPLAB® IDE?
Step 1 is driven by the designer, although MPLAB IDE can help in modeling circuits and

code so that crucial design decisions can be made.

MPLAB IDE really helps with steps 2 through 5. Its Programmer’s Editor helps write

correct code with the language tools of choice. The editor is aware of the assembler

and compiler programming constructs and automatically “color-keys” the source code

to help ensure it is syntactically correct. The Project Manager enables you to organize

the various files used in your application: source files, processor description header

files and library files. When the code is built, you can control how rigorously code will

be optimized for size or speed by the compiler and where individual variables and

program data will be programmed into the device. You can also specify a “memory

model” in order to make the best use of the microcontroller’s memory for your

application. If the language tools run into errors when building the application, the

offending line is shown and can be “double-clicked” to go to the corresponding source

file for immediate editing. After editing, press the “build” button to try again. Often this

write-compile-fix loop is done many times for complex code, as the sub-sections are

written and tested. MPLAB IDE goes through this loop with maximum speed, allowing

you to get on to the next step.

Once the code builds with no errors, it needs to be tested. MPLAB IDE has components

called “debuggers” and free software simulators for all PICmicro and dsPIC devices to

help test the code. Even if the hardware is not yet finished, you can begin testing the

code with the simulator, a software program that simulates the execution of the

microcontroller. The simulator can accept a simulated input (stimulus), in order to

model how the firmware responds to external signals. The simulator can measure code

execution time, single-step through code to watch variables and peripherals, and trace

the code to generate a detailed record of how the program ran.

Once the hardware is in a prototype stage, a hardware debugger, such as MPLAB ICE

or MPLAB ICD 2 can be used. These debuggers run the code in real time on your

actual application. The MPLAB ICE physically replaces the microcontroller in the target

using a high-speed probe to give you full control over the hardware in your design. The

MPLAB ICD 2 uses special circuitry built into many Microchip MCUs with Flash

program memory and can “see into” the target microcontrollers program and data

memory. The MPLAB ICD 2 can stop and start program execution, allowing you to test

the code with the microcontroller in place on the application.

After the application is running correctly, you can program a microcontroller with one of

Microchip’s device programmers, such as PICSTART Plus or MPLAB PM3. These

programmers verify that the finished code will run as designed. MPLAB IDE supports

most PICmicro MCUs and every dsPIC Digital Signal Controller.
 2004 Microchip Technology Inc. DS51281D-page 5

MPLAB® IDE Quick Start Guide
1.2 THE DEVELOPMENT CYCLE

The process for writing an application is often described as a development cycle - as it

is rare that all the steps from design to implementation can be done flawlessly the first

time. More often code is written, tested and then modified in order to produce an

application that performs correctly. The Integrated Development Environment allows

the embedded systems design engineer to progress through this cycle without the

distraction of switching among an array of tools. By using MPLAB IDE, all the functions

are integrated, allowing the engineer to concentrate on completing the application

without the interruption of separate tools and different modes of operation.

FIGURE 1-5: THE DESIGN CYCLE

The IDE is a “wrapper” that coordinates all the tools from a single graphical user

interface – usually automatically. For instance, once code is written, it can be converted

to executable instructions and downloaded into a microcontroller to see how it works.

In this process multiple tools are needed: an editor to write the code, a project manager

to organize files and settings, a compiler or assembler to convert the source code to

machine code and some sort of hardware or software that either connects to a target

microcontroller or simulates the operation of a microcontroller.

Download Code to
Debugger

Analyze/Debug
Code

Compile/Assemble/
Link Code

Edit/Create/Design
Source Code
DS51281D-page 6  2004 Microchip Technology Inc.

What is MPLAB® IDE?
1.3 PROJECT MANAGER

The project manager organizes the files to be edited and other associated files so they

can be sent to the language tools for assembly or compilation, and ultimately to a linker.

The linker has the task of placing the object code fragments from the assembler,

compiler and libraries into the proper memory areas of the embedded controller, and

ensure that the modules function with each other (or are “linked”). This entire operation

from assembly and compilation through the link process is called a project “build”. From

the MPLAB project manager, properties of the language tools can be invoked

differently for each file, if desired, and a build process integrates all of the language

tools operations.

FIGURE 1-6: MPLAB PROJECT MANAGER

The source files are text files that are written conforming to the rules of the assembler

or compiler. The assembler and compiler convert them into intermediate modules

machine code and placeholders for references to functions and data storage. The

linker resolves these placeholders and combines all the modules into a file of

executable machine code. The linker also produces a debug file which allows MPLAB

IDE to relate the executing machine codes back to the source files.

A text editor is used to write the code. It is not a normal text editor, but an editor

specifically designed for writing code for Microchip MCUs. It recognizes the constructs

in the text and uses color coding to identify various elements, such as instruction

mnemonics, C language constructs and comments. The editor supports operations

commonly used in writing source code, such as finding matching braces in C,

commenting and un-commenting out blocks of code, finding text in multiple files and

adding special bookmarks. After the code is written, the editor works with the other

tools to display code execution in the debugger. Breakpoints can be set in the editor,

and the values of variables can be inspected by hovering the mouse pointer over the

variable name. Names of variables can be dragged from source text windows and then

dropped into a watch window.

MPLAB
Project
Manager

Individual
Build

Options

Linker
Script

Linker

Debug
File

Executable
File

Assembler Compiler

Source
Files

Object
File

Libraries
 2004 Microchip Technology Inc. DS51281D-page 7

MPLAB® IDE Quick Start Guide
1.4 LANGUAGE TOOLS

Language tools are programs such as cross-assemblers and cross-compilers. Most

people are familiar with language tools that run on a PC such as Visual Basic or C

compilers. When using language tools for embedded systems, a “cross-assembler” or

“cross-compiler” is used. These tools differ from typical compilers in that they run on a

PC but produce code to run on another microprocessor, hence they “cross-compile”

code for a microcontroller that uses an entirely different set of instructions from the PC.

The language tools also produce a debug file that MPLAB IDE uses to correlate the

machine instructions and memory locations with the source code. This bit of integration

allows the MPLAB editor to set breakpoints, allows watch windows to view variable

contents, and lets you single step through the source code, watching the application

execute.

Embedded system language tools also differ somewhat for compilers that run and

execute on a PC in that they must be very space conscious. The smaller the code

produced, the better, because that allows the smallest possible memory for the target,

thereby reducing cost. This means that techniques to optimize and enhance the code

using machine specific knowledge are desirable. The size of programs for PC’s

typically extends into the megabytes for moderately complex programs. The size of

simple embedded systems programs may be as small as a thousand bytes or less. A

medium size embedded system might need 32K or 64K of code for relatively complex

functions. Some embedded systems use megabytes of storage for large tables, user

text messages or data logging.

FIGURE 1-7: A COMPILER CONVERTS SOURCE CODE INTO

MACHINE INSTRUCTIONS

int m
ain(void)

{

counter =

 1 ;

TRISB = 0 ;

while (in

put1 = 0)

{

PORTB = count ;

counter++ ;

}

}

Compiler

011
0111

1

10001010

11
0011

01

10100001

0011
0011

010111
01

0011
0001

111
00101
DS51281D-page 8  2004 Microchip Technology Inc.

What is MPLAB® IDE?
1.5 TARGET DEBUGGING

In a development environment, the execution of the code is tested on a debugger. The

debugger can be a software program that simulates the operation of the microcontroller

for testing or it can be special instrumentation to analyze the program as it executes in

the application.

Simulators are built into MPLAB IDE so a program can be tested without any additional

hardware. A simulator is a software debugger, and the debugger functions for the

simulator are almost identical to the hardware debuggers, allowing a new tool to be

learned with ease. Usually a simulator runs somewhat slower than an actual

microcontroller, since the CPU in the PC is being used to simulate the operations of the

microcontroller. In the case of MPLAB IDE, there are many simulators for each of the

PICmicro and the dsPIC processors.

There are two types of hardware that can be used with MPLAB IDE: programmers and

hardware debuggers. A programmer simply transfers the machine code from the PC

into the internal memory of the target microcontroller. The microcontroller can then be

plugged into the application and, hopefully, it will run as designed.

Usually, however, the code does not function exactly as anticipated, and the engineer

is tasked with reviewing the code and its operation in the application to determine how

to modify the original source code to make it execute as desired. This process is called

debugging. As noted previously, the simulator can be used to test how the code will

operate, but once a microcontroller is programmed with the firmware, many things

outside the scope of the simulator come into play. Using just a programmer, the code

could be changed, reprogrammed into the microcontroller and plugged into the target

for retest, but this could be a long, laborious cycle if the code is complex, and it is

difficult to understand exactly what is going wrong in the hardware.

This is where a hardware debugger is useful. Hardware debuggers can be in-circuit

emulators, which use specialized hardware in place of the actual target microcontroller,

or they can be in-circuit debuggers, which use microcontrollers that have special

built-in debugging features. A hardware debugger, like a simulator, allows the engineer

to inspect variables at various points in the code, single-step to follow instructions as

the hardware interacts with its specialized circuitry.

Debugging usually becomes urgent near the end of the projected design cycle. As

deadlines loom, getting the application to function as originally designed is the last step

before going into deployment of the product, and often has the most influence on

producing delays in getting a product out. That's where an integrated development

environment is most important. Doing fine “tweaks” to the code, recompiling,

downloading, testing – all require time. Using all tools within a single environment will

reduce the time around the “cycle.” These last steps, where critical bugs are worked

out are a test for the embedded systems designer. The right tool can save time. With

MPLAB IDE many tools can be selected, but they all will have a similar interface, and

the learning curve from simulator to low-cost in-circuit debugger to powerful in-circuit

emulator is small.
 2004 Microchip Technology Inc. DS51281D-page 9

MPLAB® IDE Quick Start Guide
1.6 DEVICE PROGRAMMING

After the application has been debugged and is running in the development

environment, it needs to be tested on its own. A device can be programmed with the

in-circuit debugger or a device programmer. MPLAB IDE can be set to the programmer

function, and the part can be “burned”. The target application can now be observed in

its nearly final state. Engineering prototype programmers allow quick prototypes to be

made and evaluated. Some applications can be programmed after the device is

soldered on the target PC board. Using In-Circuit Serial Programming™ (ICSP™), the

firmware can be programmed into the application at the time of manufacture, allowing

updated revisions to be programmed into an embedded application later in its life cycle.

Devices that support in-circuit debugging can even be plugged back into the MPLAB

ICD 2 after manufacturing for quality tests and development of next generation

firmware.

1.7 COMPONENTS OF MPLAB IDE

The MPLAB IDE has both built-in components and plug-in modules to configure the

system for a variety of software and hardware tools.

1.7.1 MPLAB IDE Built-In Components

The built-in components consist of:

• Project Manager

The project manager provides integration and communication between the IDE and the

language tools.

• Editor

The editor is a full-featured programmer's text editor that also serves as a window into

the debugger.

• Assembler/Linker and Language Tools

The assembler can be used standalone to assemble a single file, or can be used with

the linker to build a project from separate source files, libraries and recompiled objects.

The linker is responsible for positioning the compiled code into memory areas of the

target microcontroller.

• Debugger

The Microchip debugger allows breakpoints, single-stepping, watch windows and all

the features of a modern debugger for the MPLAB IDE. It works in conjunction with the

editor to reference information from the target being debugged back to the source

code.

• Execution Engines

There are software simulators in MPLAB IDE for all PICmicro and dsPIC devices.

These simulators use the PC to simulate the instructions and some peripheral functions

of the PICmicro and dsPIC devices. Optional in-circuit emulators and in-circuit

debuggers are also available to test code as it runs in the applications hardware.
DS51281D-page 10  2004 Microchip Technology Inc.

What is MPLAB® IDE?
1.7.2 Additional Optional Components for MPLAB IDE

Optional components can be purchased and added to the MPLAB IDE:

• Compiler Language Tools

MPLAB C17, MPLAB C18 and MPLAB C30 from Microchip provide fully integrated,

optimized code. Along with compilers from HI-TECH, IAR, microEngineering Labs,

CCS and Byte Craft, they are invoked by the MPLAB IDE project manager to compile

code that is automatically loaded into the target debugger for instant testing and

verification.

• Programmers

PICSTART Plus, PRO MATE II, MPLAB PM3 as well as MPLAB ICD 2 can program

code into target microcontrollers. MPLAB IDE offers full control over programming both

code and data, as well as the configuration bits to set the various operating modes of

the target microcontrollers

• In-Circuit Emulators

MPLAB ICE 2000 and MPLAB ICE 4000 are full-featured emulators for the PICmicro

and dsPIC devices. They connect to the PC via I/O ports and allow full control over the

operation of microcontroller in the target applications.

• In-Circuit Debugger

MPLAB ICD 2 provides an economic alternative to an emulator. By using some of the

on-chip resources, MPLAB ICD 2 can download code into a target microcontroller

inserted in the application, set breakpoints, single step and monitor registers and

variables.

1.8 MPLAB IDE DOCUMENTATION

The following documents are available to help you use MPLAB IDE:

• MPLAB IDE Quick Chart (DS51410)

• MPLAB IDE Quick Start Guide (DS51281)

• MPLAB IDE User’s Guide (DS51519)

Other documents exist for various Microchip software and hardware tools that work

with MPLAB IDE. Check the Microchip web site for downloadable pdf versions of all

these documents.
 2004 Microchip Technology Inc. DS51281D-page 11

MPLAB® IDE Quick Start Guide
1.9 MPLAB IDE ON-LINE HELP

Since MPLAB IDE is under a constant state of change (see Section 1.10 “MPLAB IDE

Updates and Version Numbering”) some details in this documentation may change.

Dialogs might not appear exactly as they do in this manual, menu lists may be in

different order, or may have new items. For this reason, the on-line help is the best

reference to the version of MPLAB IDE being used.

MPLAB IDE comes with extensive on-line help, which is constantly being updated. If

questions arise while using MPLAB IDE, be sure to check the on-line help for answers.

Most importantly, the on-line help lists any restrictions that might exist for a particular

tool in support of a particular device. Always try to review this section before working

with a new device/tool combination.

The Limitations tab in the Debugger>Settings dialog displays any restrictions the

simulator, emulator or in-circuit debugger might have, compared to the actual device

being simulated. General limitations are shown in the text area.

FIGURE 1-8: DEBUGGER>SETTINGS: LIMITATIONS TAB

Press the Details button to show specific limitations of the device being debugged.

From this display, help on general limitations related to the debugger can also be

accessed.

FIGURE 1-9: SIMULATOR LIMITATIONS DETAIL
DS51281D-page 12  2004 Microchip Technology Inc.

What is MPLAB® IDE?
From the main MPLAB IDE Help menu, select Help>Topics to get a list of help on

MPLAB IDE and all of its components.

FIGURE 1-10: MPLAB IDE HELP>TOPICS MENU

MPLAB IDE Help covers all aspects of MPLAB IDE and all of the Microchip tools. It can

be viewed in an outline, as an index and with a search utility for help on any MPLAB

IDE topic. It also directs users to other types of assistance, such as the Microchip

Update Notification system.

FIGURE 1-11: MPLAB IDE HELP DIALOG
 2004 Microchip Technology Inc. DS51281D-page 13

MPLAB® IDE Quick Start Guide
1.10 MPLAB IDE UPDATES AND VERSION NUMBERING

MPLAB IDE is an evolving program with thousands of users. Microchip is continually

designing new microcontrollers with new features. Many new MPLAB IDE features

come from customer requests and from internal usage. Continued new designs and the

release of new microcontrollers ensure that MPLAB IDE will continue to evolve.

MPLAB IDE is scheduled for a version update approximately every four months to add

new device support and new features. Additional “interim” releases are released in

between these major releases. The version numbering scheme for MPLAB IDE reflects

whether it is a major production release or an interim release. If the version number

ends in a zero, i.e., MPLAB IDE v6.50, v.6.60 or v7.00, this identifies a major production

release. If the version number ends with a digit other than zero, i.e., v6.41, v6.52 or

v7.55, this identifies an interim release. Interim releases are typically provided for early

adopters of new devices or components, for quick critical fixes or for previews of new

features. These interim releases are not as fully tested as the production releases, and

are therefore, not recommended for rigorous design use. It is advised that production

releases be used for development work, unless a new device or component is being

used or a particular problem has been fixed in an interim release that enables more

productive use of MPLAB IDE.

Each new release of the MPLAB IDE software has new features implemented,

incrementally, so the printed documentation inevitably will “lag” the on-line help. The

on-line help is the best source for any questions about MPLAB IDE.

To be notified of updates to MPLAB IDE and its components, subscribe to the

Development Tools section of the Customer Change Notification service on

www.microchip.com.
DS51281D-page 14  2004 Microchip Technology Inc.

MPLAB® IDE
QUICK START GUIDE

Chapter 2. Getting Started with MPLAB IDE: A Basic Tutorial
2.1 INTRODUCTION

MPLAB Integrated Development Environment (IDE) is a comprehensive editor, project

manager and design desktop for application development of embedded designs using

Microchip PICmicro and dsPIC microcontrollers.

The initial use of MPLAB IDE is covered here. How to make projects, edit code and test

an application will be the subject of a short tutorial. By going through the tutorial, the

basic concepts of the Project Manager, Editor and Debugger can be quickly learned.

The complete feature set of MPLAB IDE is covered in later chapters.

This section details the installation and uninstall of MPLAB IDE. It is followed by a

simple step-by-step tutorial that creates a project and explains the elementary debug

capabilities of MPLAB IDE. Someone unfamiliar with MPLAB IDE will get a basic

understanding of using the system to develop an application. No previous knowledge

is assumed, and comprehensive technical details of MPLAB IDE and its components

are omitted in order to present the basic framework for using MPLAB IDE.

These basic steps will be covered in the tutorial:

• MPLAB IDE Features and Installation

• Tutorial Overview

• Selecting the Device

• Creating the Project

• Setting Up Language Tools

• Naming the Project

• Creating Code

• Building the Project Again

• Testing Code with the Simulator

• Tutorial Summary
 2004 Microchip Technology Inc. DS51281D-page 15

MPLAB® IDE Quick Start Guide
2.2 MPLAB IDE FEATURES AND INSTALLATION

MPLAB IDE is a Windows® OS based Integrated Development Environment for the

PICmicro MCU families and the dsPIC Digital Signal Controllers. The MPLAB IDE

provides the ability to:

• Create and edit source code using the built-in editor.

• Assemble, compile and link source code.

• Debug the executable logic by watching program flow with the built-in simulator or

in real time with in-circuit emulators or in-circuit debuggers.

• Make timing measurements with the simulator or emulator.

• View variables in Watch windows.

• Program firmware into devices with device programmers (for details, consult the

user’s guide for the specific device programmer).

2.2.1 Install/Uninstall MPLAB IDE

To install MPLAB IDE on your system:

• If installing from a CD-ROM, place the disk into a CD drive. Follow the on-screen

menu to install MPLAB IDE. If no on-screen menu appears, use Windows

Explorer to find and execute the CD-ROM menu, menu.exe.

• If downloading MPLAB IDE from the Microchip web site (www.microchip.com),

locate the download (.zip) file, select the file and save it to the PC. Unzip the file

and execute the resulting file to install.

To uninstall MPLAB IDE:

• Select Start>Settings>Control Panel to open the Control Panel.

• Double-click on Add/Remove Programs. Find MPLAB IDE on the list and click on

it.

• Click Change/Remove to remove the program from your system.

Note: Selected third party tools are also supported by MPLAB IDE. Check the

release notes or readme files for details.

Note: For some Windows OS’s, administrative access is required in order to

install software on a PC.
DS51281D-page 16  2004 Microchip Technology Inc.

Getting Started with MPLAB IDE: A Basic Tutorial
2.2.2 Running MPLAB IDE

To start MPLAB IDE, double click on the icon installed on the desktop after installation

or select Start>Programs>Microchip MPLAB IDE vx.x>MPLAB IDE vx.x. A screen will

display the MPLAB IDE logo followed by the MPLAB IDE desktop (Figure 2-1).

FIGURE 2-1: MPLAB IDE DESKTOP
 2004 Microchip Technology Inc. DS51281D-page 17

MPLAB® IDE Quick Start Guide
2.3 TUTORIAL OVERVIEW

In order to create code that is executable by the target PICmicro MCU, source files

need to be put into a project. The code can then be built into executable code using

selected language tools (assemblers, compilers, linkers, etc.). In MPLAB IDE, the

project manager controls this process.

All projects will have these basic steps:

• Select Device

The capabilities of MPLAB IDE vary according to which device is selected. Device

selection should be completed before starting a project.

• Create Project

MPLAB Project Wizard will be used to Create a Project.

• Select Language Tools

In the Project Wizard the language tools will be selected. For this tutorial, the

built-in assembler and linker will be used. For other projects one of the Microchip

compilers or other third party tools might be selected.

• Put Files in Project

Two files will be put into the project, a template file and a linker script. Both of

these exist in sub-folders within the MPLAB IDE folder. Using these two files it is

easy to get started.

• Create Code

Some code will be added to the template file to send an incrementing value out an

I/O port.

• Build Project

The project will be built – causing the source files to be assembled and linked into

machine code that can run on the selected PICmicro MCU.

• Test Code with Simulator

Finally, the code will be tested with the simulator.

The Project Wizard will easily guide us through most of these steps.

Note: Some aspects of the user interface will change in future product releases

and the screen shots in this tutorial may not exactly match the appearance

of the MPLAB IDE desktop in later releases. New features will be added as

additional parts are released. None of the functions described in this tutorial

will be removed, but more features may be added.The on-line help is the

most up-to-date reference for the current version of MPLAB IDE.
DS51281D-page 18  2004 Microchip Technology Inc.

Getting Started with MPLAB IDE: A Basic Tutorial
2.4 SELECTING THE DEVICE

To show menu selections in this document, the menu item from the top row in MPLAB

IDE will be shown after the menu name like this MenuName>MenuItem. To choose the

Select Device entry in the Configure menu, it would be written as Configure>Select

Device.

Choose Configure>Select Device.

FIGURE 2-2: SELECTING THE DEVICE
 2004 Microchip Technology Inc. DS51281D-page 19

MPLAB® IDE Quick Start Guide
In the Device dialog, select the PIC18F452 from the list if it’s not already selected.

FIGURE 2-3: SELECT DEVICE DIALOG

The “lights” indicate which MPLAB IDE components support this device.

• A green light indicates full support.

• A yellow light indicates minimal support for an upcoming part that might not be

fully supported in this release by the particular MPLAB IDE component.

Components with a yellow light instead of a green light are often intended for early

adopters of new parts who need quick support and understand that some

operations or functions may not be available.

• A red light indicates no support for this device. Support may be forthcoming or

inappropriate for the tool, e.g., dsPIC devices cannot be supported on MPLAB

ICE 2000.
DS51281D-page 20  2004 Microchip Technology Inc.

Getting Started with MPLAB IDE: A Basic Tutorial
2.5 CREATING THE PROJECT

The next step is to create a project using the Project Wizard. A project is the way the

files are organized to be compiled and assembled. We will use a single assembly file

for this project and a linker script. Choose Project>Project Wizard.

From the Welcome dialog, click on Next> to advance.

The next dialog (Step One) allows you to select the device, which we’ve already done.

Make sure that it says PIC18F452. If it does not, select the PIC18F452 from the drop

down menu. Click Next>.

FIGURE 2-4: PROJECT WIZARD - SELECT DEVICE
 2004 Microchip Technology Inc. DS51281D-page 21

MPLAB® IDE Quick Start Guide
2.6 SETTING UP LANGUAGE TOOLS

Step Two of the Project Wizard sets up the language tools that are used with this

project. Select “Microchip MPASM Toolsuite” in the Active Toolsuite list box. Then

“MPASM” and “MPLINK” should be visible in the Toolsuite Contents box. Click on each

one to see its location. If MPLAB IDE was installed into the default directory, the

MPASM assembler executable will be:

C:\Program Files\MPLAB IDE\MCHIP_Tools\mpasmwin.exe

the MPLINK linker executable will be:

C:\Program Files\MPLAB IDE\MCHIP_Tools\mplink.exe

and the MPLIB librarian executable will be:

C:\Program Files\MPLAB IDE\MCHIP_Tools\mplib.exe

If these do not show up correctly, use the browse button to set them to the proper files

in the MPLAB IDE subfolders.

FIGURE 2-5: PROJECT WIZARD - SELECT LANGUAGE TOOLS

When you are finished, click Next>.
DS51281D-page 22  2004 Microchip Technology Inc.

Getting Started with MPLAB IDE: A Basic Tutorial
2.7 NAMING THE PROJECT

Step Three of the wizard allows you to name the project and put it into a folder. This

sample project will be called MyProject. Using the Browse button, place the project
in a folder named Projects32. Click Next>.

FIGURE 2-6: PROJECT WIZARD - NAME PROJECT
 2004 Microchip Technology Inc. DS51281D-page 23

MPLAB® IDE Quick Start Guide
2.8 ADDING FILES TO THE PROJECT

Step Four of the Project Wizard allows file selection for the project. A source file has

not yet been selected, so we will use an MPLAB IDE template file. The template files

are simple files that can be used to start a project. They have the essential sections for

any source file, and contain information that will help you write and organize your code.

These files are in the MPLAB IDE folder, which by default is in the Program Files
folder on the PC. There is one template file for each Microchip PICmicro and dsPIC

device.

Choose the file named f452tmpo.asm. If MPLAB IDE is installed in the default
location, the full path to the file will be:

C:\Program Files\MPLAB IDE\MCHIP_Tools\TEMPLATE\Object\f452tmpo.asm

FIGURE 2-7: PROJECT WIZARD - SELECT TEMPLATE FILE

Press Add>> to move the file name to the right panel, and click on the check box at the

start of the line with the file name to enable this file to be copied to our project directory.

Next, add the second file for our project, the linker script. There is a linker script for each

device. These files define the memory configuration and register names for the various

parts. The linker scripts are in the folder named LKR under the MCHIP_Tools folder.
Use the file named 18F452.lkr. The full path is:

C:\Program Files\MPLAB IDE\MCHIP_Tools\LKR\18F452.lkr

To copy this linker script into our project, click on the check box.

Note: There is also a linker script named 18F452i.lkr, for use with this device
when MPLAB ICD 2 is being used (hence the “i” in the name). That linker
script reserves areas in memory for MPLAB ICD 2. Since the simulator is

being used, we don’t need to use that linker script.
DS51281D-page 24  2004 Microchip Technology Inc.

Getting Started with MPLAB IDE: A Basic Tutorial
FIGURE 2-8: PROJECT WIZARD - SELECT LINKER SCRIPT

Make sure that your dialog looks like the picture above, with both check boxes

checked, then press Next> to finish the Project Wizard.

The final screen of the Project Wizard is a summary showing the selected device, the

toolsuite and the new project file name.

FIGURE 2-9: PROJECT WIZARD - SUMMARY
 2004 Microchip Technology Inc. DS51281D-page 25

MPLAB® IDE Quick Start Guide
After pressing the Finish button, review the Project Window on the MPLAB IDE

desktop. It should look like Figure 2-10. If the Project Window is not open, select

View>Project.

FIGURE 2-10: PROJECT WINDOW

2.9 BUILDING THE PROJECT

From the Project menu, we can assemble and link the current files. They don’t have

any of our code in them yet, but this assures that the project is set up correctly.

To build the project, select either:

• Project>Build All

• Right-click on the project name in the project window and select Build All

• Click the Build All icon on the Project toolbar. Hover the mouse over icons to see

pop-up text of what they represent.

The Output window shows the result of the build process. There should be no errors

on any step.

FIGURE 2-11: OUTPUT WINDOW

TIP: Files can be added and projects saved by using the right mouse button in

the project window. In case of error, files can be manually deleted by

selecting them and using the right mouse click menu.
DS51281D-page 26  2004 Microchip Technology Inc.

Getting Started with MPLAB IDE: A Basic Tutorial
2.10 CREATING CODE

Open the template file in the project by double clicking on its name in the Project

Window, or by selecting it with the cursor and using the right mouse button to bring up

the context menu:

FIGURE 2-12: PROJECT CONTEXT MENU (RIGHT MOUSE CLICK)

The file has some comments at the beginning, and this area can be used as a standard

comment information header for the file. For now you’ll leave this as it is, but if this were

a real project, you could put information about your design here.

FIGURE 2-13: TEMPLATE FILE

Scroll down to the bottom of the file.

Note: Line numbers are shown here. Line numbers may be toggled on/off by

right-clicking in the editor window, selecting Properties, and then

checking/unchecking “Line Numbers” on the Editor tab of the Editor

Options dialog.
 2004 Microchip Technology Inc. DS51281D-page 27

MPLAB® IDE Quick Start Guide
The code in the first part of the file is for more advanced functions such as setting up

interrupts and configuration bits in a final application. These details can be ignored at

this point with focus on writing the code. The new code will be placed in the file at the

point after the symbol Main is defined.

FIGURE 2-14: TEMPLATE FILE - MAIN

When any source file is opened, you are automatically in the editor. Type in this code:

Main:

clr f WREG
movwf PORTC; clear PORTC
movwf TRISC; configure PORTC as all outputs

Init
clrf COUNT

IncCount
incf COUNT
movf COUNT,W
movwf PORTC; display COUNT on PORTC

callDelay
goto IncCount; infinite loop

Delay
movlw 0x40; set outer delay loop
movwf DVAR2

Delay0
movlw 0xFF
movwf DVAR; set inner delay loop

Delay1
decfsz DVAR
goto Delay1

decfsz DVAR2
goto Delay0
return
DS51281D-page 28  2004 Microchip Technology Inc.

Getting Started with MPLAB IDE: A Basic Tutorial
The template file should now look like Figure 2-15.

FIGURE 2-15: TEMPLATE FILE - ADD CODE

In this bit of code, we used three variables named COUNT, DVAR and DVAR2. These
variables need to be defined in the template file in the UDATA section for uninitialized
data. There are already three variables in this section of the template file, ours can be

added at the end using the same format. Each variable is an 8-bit variable, so they only

need to reserve 1 byte each.

FIGURE 2-16: TEMPLATE FILE - ADD VARIABLES

Add
these
three
lines
 2004 Microchip Technology Inc. DS51281D-page 29

MPLAB® IDE Quick Start Guide
2.11 BUILDING THE PROJECT AGAIN

Select Project>Build All to assemble and link the code. If the code assembled with no

errors, the Output Window will look like Figure 2-17.

FIGURE 2-17: BUILD OUTPUT WINDOW

If these do not assemble and link successfully, check the following items and then build

the project again:

• Check the spelling and format of the code entered in the editor window. Make sure

the new variables and the special function registers, TRISC and PORTC, are in

upper case. If the assembler reported errors in the Output window, double click on

the error and MPLAB IDE will open the corresponding line in the source code with

a green arrow in the left margin of the source code window.

• Check that the correct assembler (MPASM assembler) and linker for PICmicro

devices is being used. Select Project>Set Language Tool Locations. Click on the

plus boxes to expand the Microchip MPASM toolsuite and its executables. Click

MPASM Assembler (mpasmwin.exe) and review their location in the display. If
the location is correct, click Cancel. If it is not, change it and then click OK. The

default search paths can be empty.

Upon a successful build, the output file generated by the language tool will be loaded.

This file contains the object code that can be programmed into a PICmicro MCU and

debugging information so that source code can be debugged and source variables can

be viewed symbolically in Watch windows.

Note: The real power of projects is evident when there are many files to be

compiled/assembled and linked to form the final executable application –

as in a real application. Projects keep track of all of this. Build options can

be set for each file that access other features of the language tools, such

as report outputs and compiler optimizations.
DS51281D-page 30  2004 Microchip Technology Inc.

Getting Started with MPLAB IDE: A Basic Tutorial
2.12 TESTING CODE WITH THE SIMULATOR

In order to test the code, software or hardware is needed that will execute the PICmicro

instructions. A debug execution tool is a hardware or software tool that is used to

inspect code as it executes a program (in this case cnt452.asm). Hardware tools
such as MPLAB ICE or MPLAB ICD 2 can execute code in real devices. If hardware is

not available, the MPLAB simulator can be used to test the code. For this tutorial use

MPLAB SIM simulator.

The simulator is a software program that runs on the PC to simulate the instructions of

the PICmicro MCU. It does not run in “real time,” since the simulator program is

dependent upon the speed of the PC, the complexity of the code, overhead from the

operating system and how many other tasks are running. However, the simulator

accurately measures the time it would take to execute the code if it were operating in

real time in an application.

Select the simulator as the debug execution tool. This is done from the

Debugger>Select Tool pull down menu. After selecting MPLAB SIM, the following

changes should be seen (see corresponding numbers in Figure 2-18).

FIGURE 2-18: MPLAB IDE DESKTOP WITH MPLAB SIM AS DEBUGGER

Note: Other debug execution tools include MPLAB ICE 2000, MPLAB ICE 4000

and MPLAB ICD 2. These are optional hardware tools to test code on the

application PC board. Most of the MPLAB IDE debugging operations are

the same as the simulator, but unlike the simulator, these tools allow the

target PICmicro MCU to run at full speed in the actual target application.

The status bar on the bottom of the MPLAB IDE window should change to “MPLAB

SIM”.

Additional menu items should now appear in the Debugger menu.

Additional toolbar icons should appear in the Debug Tool Bar.

TIP: Position the mouse cursor over a toolbar button to see a brief description of the

button’s function.

1

2

3

3

2

1

 2004 Microchip Technology Inc. DS51281D-page 31

MPLAB® IDE Quick Start Guide
Next, select Debugger>Reset and a green arrow shows where the program will begin.

This was part of the template file. The first instruction in memory jumps to the label

called Main, where your code was inserted. This instruction jumps over the
PIC18XXXX vector areas in lower memory.

FIGURE 2-19: DEBUG>RESET

To single step through the application program, select Debugger>Step Into. This will

execute the currently indicated line of code and move the arrow to the next line of code

to be executed.

There are shortcuts for these commonly used functions in the Debug Tool Bar.

TABLE 2-1: DEBUG SHORT CUT ICONS

Debugger Menu Toolbar Buttons Hot Key

Run F9

Halt F5

Animate

Step Into F7

Step Over F8

Step Out Of

Reset F6

TIP: Click on the appropriate icon on the toolbar or use the hot key shown next

to the menu item. This is usually the best method for repeated stepping.
DS51281D-page 32  2004 Microchip Technology Inc.

Getting Started with MPLAB IDE: A Basic Tutorial
Next, press the Step Into icon or select Debugger>Step Into to single step to the code

at Main.

FIGURE 2-20: DEBUG>STEP INTO

In order to see if the code is operating as intended, sending incrementing values out

PORTC, watch the values being sent to PORTC. Select View>Watch to bring up an

empty Watch Window. There are two pull downs on the top of the Watch Window. The

one on the left labeled “Add SFR” can be used to add the Special Function Register,

PORTC, into the watch. Select PORTC from the list and then click Add SFR to add it to
the window.

FIGURE 2-21: WATCH - SELECT PORTC
 2004 Microchip Technology Inc. DS51281D-page 33

MPLAB® IDE Quick Start Guide
The pull down on the right, allows symbols to be added from the program. Use this pull

down to add the COUNT variable into the Watch Window. Select COUNT from the list and
then click Add Symbol to add it to the window.

FIGURE 2-22: WATCH - SELECT VARIABLE “COUNT”

The watch window should now show the address, value and name of the two registers.

At this point in the program, they will both be zero.

FIGURE 2-23: WATCH - RESET VALUES

Note: Items can also be added to the watch window by either dragging them from

the SFR, File Register or Editor window or clicking directly in the window

under symbol name and typing in the item.
DS51281D-page 34  2004 Microchip Technology Inc.

Getting Started with MPLAB IDE: A Basic Tutorial
You could continue single stepping through the code, but instead, set a breakpoint just

before the first value is sent out to PORTC. To set a breakpoint, put the cursor on the
line and click the right mouse button.

FIGURE 2-24: DEBUG CONTEXT MENU (RIGHT MOUSE CLICK ON LINE)

Select Set Breakpoint from the context menu. A red “B” will show on the line. (You can
also double-click on a line to add a breakpoint.)

FIGURE 2-25: EDITOR WINDOW - SET BREAKPOINT

Select Debugger>Run to run the application. A text message “Running…” will briefly

appear on the status bar before the application halts at this first breakpoint.
 2004 Microchip Technology Inc. DS51281D-page 35

MPLAB® IDE Quick Start Guide
The watch window should now show that the variable COUNT was incremented by one,
but since the breakpoint is at the line before the move to PORTC executes, PORTC still
has a value of zero.

FIGURE 2-26: WATCH - AT BREAKPOINT

Press the Run icon to execute the code until it hits this point again. The Watch Window

should now show both values incremented by one.

FIGURE 2-27: WATCH - NEXT BREAKPOINT

This would seem to indicate that the program is working as designed. You can single

step through the code, or run the code more times to verify that it is executing properly.

If you single step into the delay loop, you will get stuck executing thousands of steps

until reaching the end. To exit out of the delay loop, use Debugger>Step Out.

If you are interested in calculating your delay time, the data book could be used to

determine how long each instruction would take in your delay loop and you would come

up with a pretty accurate number. You can also use the MPLAB StopWatch to measure

the delay. Your main interest should be the time each new value of COUNT is being

displayed. If you set your breakpoint as was initially done, on the instruction that moves

COUNT to PORTC, you can run to the next breakpoint at the same place to measure

the time.
DS51281D-page 36  2004 Microchip Technology Inc.

Getting Started with MPLAB IDE: A Basic Tutorial
Use Debugger>StopWatch to bring up the StopWatch dialog. Make sure that a single

breakpoint is set at the movwf COUNT instruction, and then press Debug>Reset and
then Debug>Run to halt at the movwf COUNT instruction. With the default processor

frequency of 4 MHz, the StopWatch should show that it took 8 microseconds to reach

the first breakpoint.

FIGURE 2-28: STOPWATCH - AT FIRST BREAKPOINT

Execute Run again to go around the loop once, and note that the StopWatch shows

that it took about 49 milliseconds. To change this, you can change the values in the

delay loop.

FIGURE 2-29: STOPWATCH - AFTER DELAY

2.13 TUTORIAL SUMMARY

By completing this tutorial, you have performed the major steps for creating, building

and testing a simple project. Tasks completed include:

Selecting the device - the PIC18F452.

Using the Project Wizard to create a project, and using the wizard to:

• select the MPLAB IDE built in MPASM assembler and MPLINK linker language

tools,

• add files for the project: a template file for the device selected and a linker script to

build it properly.

Writing some simple code to send a changing value out an I/O port.

Building the project.

And finally, testing the code with the simulator.

These are the essential steps for getting started with MPLAB IDE. You are now ready

to continue exploring the capabilities of MPLAB IDE.
 2004 Microchip Technology Inc. DS51281D-page 37

MPLAB® IDE Quick Start Guide
NOTES:
DS51281D-page 38  2004 Microchip Technology Inc.

Getting Started with MPLAB IDE: A Basic Tutorial
NOTES:
 2004 Microchip Technology Inc. DS51281D-page 39

DS51281D-page 40  2004 Microchip Technology Inc.

AMERICAS
Corporate Office
2355 West Chandler Blvd.

Chandler, AZ 85224-6199

Tel: 480-792-7200

Fax: 480-792-7277

Technical Support:

http://support.microchip.com

Web Address:

www.microchip.com

Atlanta
Alpharetta, GA

Tel: 770-640-0034

Fax: 770-640-0307

Boston
Westford, MA

Tel: 978-692-3848

Fax: 978-692-3821

Chicago
Itasca, IL

Tel: 630-285-0071

Fax: 630-285-0075

Dallas
Addison, TX

Tel: 972-818-7423

Fax: 972-818-2924

Detroit
Farmington Hills, MI

Tel: 248-538-2250

Fax: 248-538-2260

Kokomo
Kokomo, IN

Tel: 765-864-8360

Fax: 765-864-8387

Los Angeles

Mission Viejo, CA

Tel: 949-462-9523

Fax: 949-462-9608

San Jose

Mountain View, CA

Tel: 650-215-1444

Fax: 650-961-0286

Toronto
Mississauga, Ontario,

Canada

Tel: 905-673-0699

Fax: 905-673-6509

ASIA/PACIFIC
Australia - Sydney
Tel: 61-2-9868-6733

Fax: 61-2-9868-6755

China - Beijing
Tel: 86-10-8528-2100

Fax: 86-10-8528-2104

China - Chengdu

Tel: 86-28-8676-6200

Fax: 86-28-8676-6599

China - Fuzhou

Tel: 86-591-8750-3506

Fax: 86-591-8750-3521

China - Hong Kong SAR

Tel: 852-2401-1200

Fax: 852-2401-3431

China - Shanghai
Tel: 86-21-5407-5533

Fax: 86-21-5407-5066

China - Shenyang

Tel: 86-24-2334-2829

Fax: 86-24-2334-2393

China - Shenzhen

Tel: 86-755-8203-2660

Fax: 86-755-8203-1760

China - Shunde

Tel: 86-757-2839-5507

Fax: 86-757-2839-5571

China - Qingdao

Tel: 86-532-502-7355

Fax: 86-532-502-7205

ASIA/PACIFIC

India - Bangalore
Tel: 91-80-2229-0061

Fax: 91-80-2229-0062

India - New Delhi

Tel: 91-11-5160-8631

Fax: 91-11-5160-8632

Japan - Kanagawa

Tel: 81-45-471- 6166

Fax: 81-45-471-6122

Korea - Seoul
Tel: 82-2-554-7200

Fax: 82-2-558-5932 or

82-2-558-5934

Singapore
Tel: 65-6334-8870

Fax: 65-6334-8850

Taiwan - Kaohsiung
Tel: 886-7-536-4818

Fax: 886-7-536-4803

Taiwan - Taipei
Tel: 886-2-2500-6610

Fax: 886-2-2508-0102

Taiwan - Hsinchu

Tel: 886-3-572-9526

Fax: 886-3-572-6459

EUROPE

Austria - Weis

Tel: 43-7242-2244-399

Fax: 43-7242-2244-393

Denmark - Ballerup
Tel: 45-4420-9895

Fax: 45-4420-9910

France - Massy
Tel: 33-1-69-53-63-20

Fax: 33-1-69-30-90-79

Germany - Ismaning
Tel: 49-89-627-144-0

Fax: 49-89-627-144-44

Italy - Milan
Tel: 39-0331-742611

Fax: 39-0331-466781

Netherlands - Drunen

Tel: 31-416-690399

Fax: 31-416-690340

England - Berkshire
Tel: 44-118-921-5869

Fax: 44-118-921-5820

WORLDWIDE SALES AND SERVICE

10/20/04

	Chapter 1. What is MPLAB® IDE?
	1.1 An Overview of Embedded Systems
	1.1.1 Description of an “Embedded System”
	1.1.2 Differences Between an Embedded Controller and a PC
	1.1.3 Components of a Microcontroller
	1.1.4 Implementing an Embedded System Design with MPLAB IDE

	1.2 The Development Cycle
	1.3 Project Manager
	1.4 Language Tools
	1.5 Target Debugging
	1.6 Device Programming
	1.7 Components of MPLAB IDE
	1.7.1 MPLAB IDE Built-In Components
	1.7.2 Additional Optional Components for MPLAB IDE

	1.8 MPLAB IDE Documentation
	1.9 MPLAB IDE On-line Help
	1.10 MPLAB IDE Updates and Version Numbering

	Chapter 2. Getting Started with MPLAB IDE: A Basic Tutorial
	2.1 Introduction
	2.2 MPLAB IDE Features and Installation
	2.2.1 Install/Uninstall MPLAB IDE
	2.2.2 Running MPLAB IDE

	2.3 Tutorial Overview
	2.4 Selecting the Device
	2.5 Creating the Project
	2.6 Setting Up Language Tools
	2.7 Naming the Project
	2.8 Adding Files to the Project
	2.9 Building the Project
	2.10 Creating Code
	2.11 Building the Project Again
	2.12 Testing Code with the Simulator
	2.13 Tutorial Summary

	Worldwide Sales and Service

