Phys. 428, Lecture 5:

LEC	CTURE	DATE	INSTRUCTOR	TOPIC			
	1	March 29	PK	Overview: Imaging equation, inverse problem			
	2	April 5	PK	2D-LSI imaging systems, X-ray physics: formation and interaction			
	3	April 12	WH	X-ray detection and imaging systems			
	4	April 19	WH	X-ray computed tomography (CT) systems			
	5	April 26	WH	X-ray CT part 2. Contrast Agents			
	6	May 3	PK	Image reconstruction and image quality			
	7	May 10	PK	Nuclear decay schemes and isotopes			
	8	May 17	PK	Gamma cameras: components and systems			
	9	May 24	PK	Tomography in molecular imaging: SPECT scanners			
	10	May 31	PK	Positron emission tomography (PET) and hybrid PET/CT scanners			

- Plans for the mid-term and final exam will be communicated later this week.
- Your assignment will be emailed this evening. It will include asking two questions about today's lecture. Please email assignments as a PDF to Dr. Kinahan (kinahan@uw.edu) by next Monday, 6:30pm.
- Please include "Phys 428 Lecture 5 Question" in the subject line.

Clinical PET/CT Tour

- Observer approval form.
- Meet at North entrance of UW Med Cafeteria (Plaza Cafe)
- Arrive between 11:50:00 and 12:00:00. Please do not be late. I can not come and get you if you are late.
- You will be met and be brought up to the clinic by:

Projector Algorithm assignment

 Matlab is free through UW IT to all students who use it to complete class assignments: <u>https://itconnect.uw.edu/wares/uware/matlab/</u>

Example of Psueduo Code:

- For a given scanner angle, "n":
 - \rightarrow Determine focal spot coordinate
 - →Determine the coordinate and projection angle of each detector element
 - →For each detector element, "m":
 - Compute the intersection coordinate with each of the grid line (i=vertical grid-line index, and j=horizonal grid-line index) that are between the start and end coordinates (X-ray tube focal spot and detector element).

$$x_{i} = x_{0} + (x_{m} - x_{0})^{*}(y_{i} - y_{0})/(y_{m} - y_{0})$$

$$y_{i} = y_{0} + (y_{m} - y_{0})^{*}(x_{i} - x_{0})/(x_{m} - x_{0})$$

By similar triangles, we can show $(y_i-y_0)/(y_m-y_0) = (x_i-x_0)/(x_m-x_0) = t$ Where "t" is a single parameter that we can use to sort the intersection points in ordery that they occu

sort the intersection points in ordery that they occur along the line integral. Thus:

 $x=x_0 + a^{t}t$, and $y=y_0 + b^{t}t$

- Solve for "t" for each grid intersection point
- Order the points using "t".
- Determine cord length through each grid square intersected.
- Using your voxelized attenuation object, sum up the product of the attenuation times times the cord length through each intersected voxel. *This is our line integral of the attenuation!*

Repeat for each detector and each scanner angle Note: this example ignores detector and focal spot width

Discussion of Questions from Last Lecture

- What is difference between Radon transform and FBP?
 - The inverse Radon transform is in essence back projection. However, the inverser Radon transform does necessarily include filtering (but it can).
- How often are Hounsfield units used in the clinic?
 - Almost always.
- How often are Hounsfield units used in the clinic?
 - Almost always.
- Is the area where the flash of scintillator light comes from limited by the grid?
 - The grid limits scatter, not optical light. The scintillator is usually segmented.
- How is beam hardening due to metal object accounted for?
 - Beam hardening might be addressed iteratively. Get a first estimate, then model the beam hardening.
 - Artifacts (shadows and streaks) due to isolated metal objects might similarly be addressed.

Discussion of Questions from Last Lecture

- How does CT detector material affect performance?
 - A lot of progress has been made with CT detectors. Older detectors were very inefficient at stopping photons and had lower signal to noise.
- What are beta and gamma for the helical CT acquistion?
 - They are the projection index and the detector index, respectively.
- As photons go through matter they usually lose energy by different interaction mechanisms; however, in beam hardening it is stated that 'mean energy increases with depth'. Would you please further explain this?
 - Lower energy photons are more likely to be absorbed than higher energy ones.
- How does the computational engine 'know' which Hounsfield value (compact bone, water, lungs, etc) to apply to any particular voxel – doesn't this require anatomical knowledge of the image??
 - The system response is calibrated quarterly using phantoms with know attenuation values.

Discussion of Questions from Last Lecture

- Are all contrast agents generally toxic? Are some intrinsically 'safer' than others?
 - Many are toxic, but in trace amounts, they can be tolerated. Barium and lodine are two common CT contrast agents:
 - Barium carbonate is relatively insoluble in water, it is toxic to humans because it is soluble in the gastrointestinal tract.
 - Many grams of iodine can cause acute iodine poisoning, with symptoms including burning of the mouth, throat, and stomach, fever, nausea, vomiting, diarrhea, a weak pulse, cyanosis, and coma.
 - We will talk more on contrast agents later in this lecture.

CT Radiation Dose and Technique

X-ray radiation dose

From Lecture 3

- Loss of photon energy means some is being transferred to tissue
- Basic concepts:
 - Exposure: number of ion pairs produced in a specific volume of air by radiation
 - Units are coulombs per kilogram of air (C/kg)
 - Useful in medical imaging is the roentgen (R) 2.58 × 10−4 C/kg
 - Can easily be measured with an ionization chamber
 - Absorbed dose: amount of absorbed energy per mass
 - Note this a implicity a concentration, not a total
 - Units are J/kg, with a special unit of gray (Gy)
 - Useful in medical imaging is the rad, which is the absorption of 100 ergs per gram of material
 - 1 roentgen of yields one 1 rad of absorbed dose in soft tissue
 - Equivalent dose: Takes into account type of radiation for tissue T
 - $w_R = 1$ for photons, 2 for protons, 20 for nuclear fragments
 - $H_T = \sum_R w_R D_{T,R}$ - Effective dose: Takes into account cumulative effect over all tissues
 - meant to compare relative risks between different procedures
 - wildly inaccurate
 - Units are also J/kg, with a special unit of sievert (Sv)
 - 1 Gy give 1 Sv for x-rays in soft tissue

$$E = \sum_{T} w_{T} H_{T}$$

X-ray radiation dose (continued)

Projection ImageComputed TomographyProjection: Uniform over 2D collimated region and exponentially attenuatedCT: Dose is rotationally symmetric over plane and falls off axially

Effects of ionizing radiation

Bushberg et al. The Essential Physics of Medical Imaging. 2002

NCRP Report 160 (2009) for 2006 data

TABLE 4.6—Effective doses and collective effective doses for CT.							
Categories	Number of Scans (millions)ScansEffectionScans (millions)(%)Scans		Effective Dose per Scan (mSv)	Collective Effective Dose (person-Sv)	Collective Effective Dose (%)		
Head ^a	19.0	28.4	2	38,044	8.7		
Chest	10.6	15.9	7	74,326	17.0		
Abdomen/pelvis	21.2	31.7	10	212,538	48.6		
Extremity	3.5	5.2	0.1	515	0.1		
CT angiography: heart	2.3	3.4	20	46,000	10.5		
CT angiography: head	2.0	3.0	5	10,000	2.3		
Spine	4.1	6.2	10	41,369	9.5		
Interventional	2.3	3.4	0.1	230	0.05		
Whole-body screening	0.2	0.3	10	2,000	0.5		
Calcium scoring	0.5	0.8	2	1,000	0.2		
Cardiac ^b	0.3	0.5	20	6,000	1.4		
Virtual colonography	0.2	0.3	10	2,000	0.5		
Miscellaneous	0.7	1.1	5 3,500		0.8		
Total ^c	67.0			437,523			
2006 U.S. population $E_{ m US}$ from CT				300 million 1.46 mSv			

^aHead: Includes brain and head and neck.

^bCardiac: Procedures other than CT angiography of the heart.

^cTotal: The 62 million procedures for 2006 as listed in IMV (2006a) adjusted by category for procedures with two scans.

Statistical Radiation Dose Effects (>100 mSv)

FIGURE PS-4 In a lifetime, approximately 42 (solid circles) of 100 people will be diagnosed with cancer (calculated from Table 12-4 of this report). Calculations in this report suggest that approximately one cancer (star) per 100 people could result from a single exposure to 0.1 Sv of low-LET radiation above background.

BEIR VII - Phase 2 (2005)

LET = Linear Energy Transfer low-LET ~ non-heavy ion

Controversy over very low-dose effects (<10 mSv)

•The American Association of Physicists in Medicine (AAPM) 2011:

"... Risks of medical imaging at effective doses below 50 mSv for single procedures or 100 mSv for multiple procedures over short time periods are too low to be detectable and may be nonexistent. Predictions of hypothetical cancer incidence and deaths in patient populations exposed to such low doses are highly speculative and should be discouraged. ..."

Decreased radiation dose = Higher noise

Technique

From Lecture 4

- Technique refers to the factors that control image quality and patient radiation dose
- kVp (kV potential) energy distribution of X-ray photons (recall lower energy photons are absorbed more readily
- mA number of X-ray photons per second (controlled with tube current)
- s gantry rotation time in seconds
- mAs total number of photons (photons per second X seconds)
- pitch
- slice collimation
- filtration filters placed between tube and patient to adjust energy and/or attenuation (not discussed here)

From Lecture 4

Radiation dose versus kVp

 kVp not only controls the dose but also controls other factors such as image contrast, noise and x-ray beam penetration through patient

Parameter	80 kVp	120 kVp	140 kVp	
Image Contrast	<u>Best</u>	Intermediate	Poor	
Noise	Most	Average	<u>Least</u>	
Penetration	Least	Average	<u>Most</u>	

From Lecture 4

Effective Dose Comparison with Chest PA Exam

Procedures	Eff. Dose [mSv]	Equivalent no. of chest x-rays	Approx. period of background radiation	
Chest PA (one 2D projection)	0.02	1	3 days	
Pelvis	0.7	35	4 months	
Abdomen	1	50	6 months	
CT Chest	8	400	3.6 years	
CT Abdomen or Pelvis	10-20	500	4.5 years	

Typical Background Radiation - 3 mSv per year

Benefits of CT

- A diagnosis determined by CT scanning may eliminate the need for exploratory surgery and surgical biopsy
- CT scanning is painless, noninvasive, reliable, and accurate
- Images bone, soft tissue and blood vessels at the same time
- More accurate than conventional x-rays
- In emergency cases, can reveal internal injuries and bleeding quickly enough to help save lives

Contrast agents

Contrast / Contrast Agents / Tracers

- To image inside the body we need something to provide a signal (i.e. a difference or contrast) that we can measure
- Contrast can be *intrinsic* or *extrinsic*
 - Intrinsic: Already present, e.g. tissue density differences seen with x-ray imaging
 - Extrinsic: A <u>contrast agent</u> put into a patient (ingested, injected, etc.) to provide a signal. Acts as a signal amplification.
- Targeted contrast agents use different mechanisms (e.g. antibodies) to attach to specific objects or processes
- Needed amount of contrast agent is a critical parameter
 - Ideally, a contrast agent does not alter anything (i.e. a *tracer*)
 - Safety and toxicity are critical parameters

Contrast / Contrast Agents / Tracers

Modality	Intrinsic (already present)	Extrinsic (added)			
Nuclear, SPECT, PET	None	Radioisotope-labeled tracers (radiotracers)			
x-ray, CT	Photon absorption by Compton scattering (density) and photoelectric absorption	lodine, barium to enhance photon absorption			
Ultrasound	Vibrational wave reflectance due to tissues differences	Micro-bubbles to enhance reflectance			
MRI	Radiofrequency (RF) signals generated by stimulated oscillating nuclear magnetic moments. RF signal depends on density and magnetic relaxation time differences in local microenviroment	chelated gadolinium and superparamagnetic iron oxide (SPIO) particles to alter magnetic relaxation times			
Optical tomography	Changes in scattering, absorption, polarization. Also time- or frequency- dependent modulation of amplitude, phase, or frequency	microspheres, absorbing dyes, plasmon-resonant or magnetomotive nanoparticles			

Intrinsic versus extrinsic contrast

- The differential attenuation of various tissues provides an <u>intrinsic</u> contrast, i.e. we don't need to inject anything into the patient
- Many medical questions, however, can be answered more readily if we could 'amplify' the potential difference we are looking for
- These differences could be structural, physiological, or biochemical properties
- With x-ray imaging we can amplify some properties by enhancing attenuation by using 'contrast agents', typically iodine (injected) or barium (ingested)
- These are a form of <u>extrinsic</u> contrast, i.e. something that needs to be added

Biomedical Imaging Systems

• To estimate an image of property of interest, e.g. $\mu(x,y)$, from the raw data, we have to solve the inverse problem

Imaging Systems + Contrast Agents

• The use of a contrast agent can amplify the signal of interest, e.g. μ for iodine is much higher than μ for tissue.

Interaction of X-rays in the Body

• At this point we have a beam of x-rays at different energies entering the body

 The attenuation of x-rays in the body depends on material and energy

CT Numbers or Hounsfield Units

- We can't solve the real inverse problem since we have a mix of densities of materials, each with different Compton and photoelectric attenuation factors at different energies, and a weighted energy spectrum
- The best we can do is to use an *ad hoc* image scaling
- The <u>CT number</u> for each pixel, (x,y) of the image is scaled to give us a fixed value for water (0) and air (-1000) according to:

$$CT(x, y) = 1000 \left[\frac{\mu(x, y) - \mu_{water}}{\mu_{water}} \right]$$

 μ(x, y) is the reconstructed attenuation coefficient for the voxel, μ_{water} is the attenuation coefficient of water and CT(x,y) is the CT number (using *Hounsfield units*) of the voxel values in the CT image

CT Numbers

Typical values in Hounsfield Units

Contrast Agents

- lodine- and barium-based contrast agents (very high Z) can be used to enhance small blood vessels and to show breakdowns in the vasculature
- Enhances contrast mechanisms in CT
- Typically iodine is injected for blood flow and barium swallowed for GI, air and water are sometimes used as well

CT scan without contrast showing 'apparent' density

CT scan with i.v. injection iodine-based contrast agent

iohexol (Omnipaque)

- Nonionic compounds with low osmolarity and large amount of tightly bound iodine are preferred
- Many are monomers (single benzene ring) that dissolve in water but do not dissociate

 Being nonionic there are fewer particles in solution, thus have low osmolarity (which is good)

iohexol

Contrast Agents - Iodine

- For intravenous use, iodine is always used
- There is a very small risk of serious medical complications in the kidney
- Example of an *intravenous pyelogram* used to look for damage to the urinary system, including the kidneys, ureters, and bladder

Different Iodinated contrast agents

Appendix A–Contrast Media Specifications

Product	Chemical Structure	Anion	Cation	% Salt Concentration	% lodine Concentration	lodine+ (mgl/ml)	Viscosity+ 25° C (cps)	Viscosity+ 37° C (cps)	Osmolality {mOsm/kg H ₂ O}
INTRAVASCULAR									
Omnipaque®									
140 (GE Healthcare)	lohexol	Nonionic	Nonionic	None	14	140	2.3*	1.5	322
Conray™ 30 (Covidien)	lonic	lothalamate	Meglumine	30	14.1	141	2	1.5	600
Ultravist® 150 (Bayer HealthCare)	lopromide	Nonionic	Nonionic	<0.1	15	150	2.3*	1.5	328
Optiray™ 160 (Covidien)	loversol 34%	Nonionic	Nonionic	None	16	160	2.7	1.9	355
Isovue®-200 (Bracco)	lopamidol 40.8%	Nonionic	Nonionic	None	20	200	3.3*	2.0	413
Conray™ 43 (Covidien)	Ionic	lothalamate	Meglumine	43	20.2	202	3	2	1000

6 of about 35 currently available

Contrast Agents - Barium

- Barium has a high Z = 56, strongly attenuating
- Pure barium is highly toxic
- As barium sulfate BaSO₄ it is a white crystalline solid that is odorless and insoluble in water (i.e. safe)

Projection images

section through a 3D CT image

Contrast Agents - Barium

- Example of an combined use of barium and air
- The colon is clearly seen
- The white areas are barium (contrast) and the black regions are air

Contrast Agents - Energy dependence

- Reducing energy of photons increases difference in attenuation between contrast agent and tissues
 - and increases difference in attenuation between different tissues
- Reducing energy of photons also increases noise, since fewer photons are transmitted through tissue

Dynamic contrast enhanced CT

C: 5 min delay A: 'Arterial' B: 'Venous' ANON752 University of Washington C12 EX: ANON735 DoB: Se-206 Ex:Feb17 2010 I:1444 Im: 168 2cm EXP Ph0% A 154 A 154 A 154 University of Washington Q ANON7 Axial Volum X:735 University of Wasl e:203 : 144.4 1: 188 Se:204 I: 144.4 Im: 188 DoB: Ex:Feb 17 2010 Ex:Feb 17 201 0.6/ kv 120 mA 0 Sos/HE 55.0mm/rot 0.6mm 1.375:1/0.6sp Titt: 0.0 09:26:16 AM W = 400 L = 40 0.6/ kv 120 mA 0 Rot 0.50s/HE 55,0mm/rot 0.6mm 1.375:1/0.530 Tilt: 0.0 09:30:13 AM W = 400 L = 40 kv 120 mA 0 Rot 0.50s /HE 55.0mm/rot 0.6mm 1.375:1 /0.6sp it: 0.0 09:25:51 AM V = 400 L = 40 P 208 P 208 P 208 Enhancement (HU) 250 Liver Distribution and Aorta 200amount of contrast 150agent enhancement varies with time B 100-С 50-**|----|**----100 120 140 160 180 200 80 300 0 20 40 60 Time (sec) Infusion

Nanoparticle-based iodine contrast agent

- CT contrast agents with a high iodine 'payload' avoid injection of a large volume
- Research-only compounds so far

 Nanoparticles having sizes larger than c.a. 5.5 nm (hydrodynamic size) could prohibit rapid renal excretion Filtered-Backprojection Reconstruction

Filtered Back Projection Image of Anthro-like object 1 projection

500

100

200

Sinogram

300

400

-15

500

Filtered Back Projection Image of Anthro-like object 2 projections

Sinogram

Filtered Back Projection Image of Anthro-like object <u>3 projections</u>

Sinogram

Image

Filtered Back Projection Image of Anthro-like object <u>6 projections</u>

Filtered Back Projection Image of Anthro-like object 9 projections

Filtered Back Projection Image of Anthro-like object 18 projections

Sinogram

Filtered Back Projection Image of Anthro-like object 45 projections

Sinogram

Filtered Back Projection Image of Anthro-like object 90 projections

Sinogram

Image

Filtered Back Projection Image of Anthro-like object 360 projections

Sinogram

NON-Filtered Back Projection Image of Anthro-like object projections

Image

Filtered Back Projection Image of Anthro-like object Difference of 360 and 180 projections

