
Phys. 428, Lecture 6 



Mid-Term & Weekly questions 

•  Since we are behind in the material, there will be no midterm  
•  Instead the final project will be subdivided into graded stages 



Class Project 
•  Pick: 

–  An imaging modality covered in class (x-ray, mammography, gamma camera imaging, 
CT, PET, SPECT) 

–  A pathology/disease (+ optional linked treatment) 
•  Answer 4 questions: 

–  What is the biology of the imaging? 
–  What is the physics of the imaging? 
–  What are competing imaging (and non-imaging) methods, and what are the trade-offs? 
–  What is the relative cost effectiveness? 
 

•  1+ page outline  Tuesday May 10  (20%) 
(title, imaging modality, disease/treatment, some references relevant to project and each of the 4 
questions) 

•  Background summary  Tuesday May 17  (15%) 
(2+ page outline, all references with capsule summaries) 

•  Rough draft  Tuesday May 24  (15%) 
(introduction, starts for all 4 questions, summary discussion) 

•  Final version  Tuesday June 7  (50%) 
–  Minimum 10 pages not counting references (11 pt Arial font, 1.5 inch margins, 2x line spacing) 
–  Be sure to cite all references, figures, and claims of fact) 



Discussion of Questions from Last Lecture 
•  Are all contrast agents metabolized and excreted in from the body, or do 

any last in the body for a significant period of time? 

–  Currently used iodinated agents are cleared almost completely by glomerular 
filtration. With reduced renal function, there is vicarious excretion primarily in 
bile and through the bowel. Circulatory half life is 1–2 hours, assuming normal 
renal function. 

•  What are the way(s) to minimize the Beam Hardening effect? 
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•  [ what is ] the difference between the indirect action and direct action? 
Also, why is the direct action repairable and indirect not? 

Water based correction 



Bushberg et al. The Essential Physics of Medical Imaging. 2002 

Effects of ionizing radiation 

Deterministic effects: tissue damage 
Stochastic effects: risk of cancer 
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Impulse Response 
•  Linear, shift-invariant (LSI) systems are the most useful 
•  First we start by looking at the response of a system using a point source 

at location (ξ,η) as an input 

•  The output h() depends on location of the point source (ξ,η) and location 
in the image (x,y), so it is a 4-D function 

•  Since the input is an impulse, the output is called the impulse response 
function, or the point spread function (PSF)  - why? 

input  fξη (x, y) ! δ (x − ξ, y −η)

output  gξη (x, y) ! h(x, y;ξ,η)

point 
object 

x
y



Impulse Response of Linear Shift Invariant Systems 

•  For LSI systems 
 
•  So the PSF is  

•  Through something called the superposition integral, we can show that 

•  And for LSI systems, this simplifies to: 

•  The last integral is a convolution integral, and can be written as 

 S f (x − x0 , y − y0 )[ ] = g(x − x0 , y − y0 )

 S δ (x − x0 , y − y0 )[ ] = h(x − x0 , y − y0 )

g(x, y) = f (ξ,η)h(x, y;ξ,η)dξ dη
−∞

∞

∫−∞

∞

∫

g(x, y) = f (x, y)∗h(x, y)   (or f (x, y)∗∗h(x, y))

g(x, y) = f (ξ,η)h(ξ − x,η − y)dξ dη
−∞

∞

∫−∞

∞

∫



Review of convolution 

•  Illustration of  h(x) = f (x)∗ g(x) = f (u)g(x − u)du
−∞

∞

∫

original functions 

g(x-u), reversed and shifted to x 

curve = product of f(u)g(x-u) 

area  = integral of f(u)g(x-u) 
 = value of h() at x 

x 

x 



Properties of LSI Systems 

•  The convolution integral has the basic properties of  
1.  Linearity (definition of a LSI system) 
2.  Shift invariance (ditto) 

3.  Associativity 

4.  Commutativity 

g(x, y) = h2 (x, y)∗ h1(x, y)∗ f (x, y)[ ]
= h2 (x, y)∗h1(x, y)[ ]∗ f (x, y)

h1(x, y)∗h2 (x, y) = h2 (x, y)∗h1(x, y)

Equivalent 
arrangements 



Combined LSI Systems 

•  Parallel systems have property of 
5.  Distributivity 

  
g(x, y) = h1(x, y)∗ f (x, y) + h2 (x, y)∗ f (x, y)

= h1(x, y) + h2 (x, y)[ ]∗ f (x, y)



Summary of advantages of Linear Shift Invariant Systems 

•  For LSI systems we have 
 

•  Treating imaging systems as LSI significantly simplifies analysis 
•  In many cases of practical value, non-LSI systems can be approximated 

as LSI 
•  Allows use of Fourier transform methods that accelerate computation 

g(x, y) = f (ξ,η)h(ξ − x,η − y)dξ dη
−∞

∞

∫−∞

∞

∫
= f (x, y)∗∗h(x, y)

h(x,y)f (x, y) g(x, y)

object system image 



2D Fourier Transforms 



Fourier Transforms 

•  Recall from the sifting property (with a change of variables) 

•  Expresses f(x,y) as a weighted combination of shifted basis functions, 
δ(x,y), also called the superposition principle  

•  An alternative and convenient set of basis functions are sinusoids, which 
bring in the concept of frequency 

•  Using the complex exponential function allows for compact notation, with 
u and v as the frequency variables 

f (x, y) = f (ξ,η)δ (ξ − x,η − y)
−∞

∞

∫ dξ
−∞

∞

∫ dη

e j2π (ux+vy) = cos 2π ux + vy( )⎡⎣ ⎤⎦ + j sin 2π ux + vy( )⎡⎣ ⎤⎦



Exponential and sinusoidal signals as basis functions 

•  Intensity images for s(x, y) = sin 2π u0x + v0y( )⎡⎣ ⎤⎦

x 

y 



Fourier Transforms 

•  Using this approach we write 

•  F(u,v) are the weights for each frequency, exp{ j2π(ux+vy)} are the basis 
functions 

•  It can be shown that using exp{ j2π(ux+vy)} we can readily calculate the 
needed weights by 

•  This is the 2D Fourier Transform of f(x,y), and the first equation is the 
inverse 2D Fourier Transform 

f (x, y) = F(u,v)e j2π (ux+vy)
−∞

∞

∫ du
−∞

∞

∫ dv

F(u,v) = f (x, y)e− j2π (ux+vy)
−∞

∞

∫ dx
−∞

∞

∫ dy



Fourier Transforms 

•  For even more compact notation we use 

•  Notes on the Fourier transform 
–  F(u,v) can be calculated if f(x,y) is continuous, or has a finite number of 

discontinuities, and is absolutely integrable 
–  (u,v) are the spatial frequencies 
–  F(u,v) is in general complex-valued, and is called the spectrum of f(x,y) 

•  As we will see, the Fourier transform allows consideration of an LSI 
system for each separate sinusoidal frequency 

 F(u,v) = F2D f (x, y){ },   and f (x, y) = F2D
-1 F(u,v){ }



Fourier Transform Example 

•  What is the Fourier transform of 

•  First note that it is separable 
•  So we compute 

 

rect(x, y) =
1, for x <1 / 2  and y <1 / 2
0, otherwise

⎧
⎨
⎩ x 

y 

rect(x,y) 

rect(x, y) = rect(x)rect(y)

 

F1D rect(x){ } = rect(x)e− j2πux
−∞

∞

∫ dx

= e− j2πux
−1/2

1/2

∫ dx = 1
j2πu

e− j2πux
−1/2

1/2

= 1
πu

e jπu − e− jπu

j2
= sin(πu)

πu
= sinc(u)F2D rect(x, y){ } = sinc(u,v)Thus 



Fourier Transform Example 

rect(x, y) sinc(u,v)

 F2D f (x, y){ }⇒ F(u,v)



Two Key Properties of the 2D Fourier Transform 

•  Linearity 

•  Scaling 

 F2D a1 f (x, y)+ a2g(x, y){ } = a1F(u,v)+ a2G(u,v)

 
F2D f (ax,by){ } = 1

ab
F u

a
, v
b

⎛
⎝⎜

⎞
⎠⎟



Signal localization in image versus frequency space 

Higher spatial frequencies 

more 
localized 

more 
localized 

less 
localized 

less 
localized 



Fourier Transforms and Convolution 

•  Very useful! 
•  Proof (1-D)  

 F2D f (x, y)∗ g(x, y){ } = F(u,v)G(u,v)

 

F f (x)∗ g(x){ } = f (x)∗ g(x)( )e− j2πux
−∞

∞

∫ dx

= f (
−∞

∞

∫ ξ)g(x − ξ)dξ
⎛

⎝⎜
⎞

⎠⎟
e− j2πux

−∞

∞

∫ dx = f (ξ)
−∞

∞

∫ g(x − ξ) e− j2πux dx
⎛

⎝⎜
⎞

⎠⎟−∞

∞

∫ dξ

= f (ξ)
−∞

∞

∫ F g(x − ξ){ }⎛

⎝⎜
⎞

⎠⎟−∞

∞

∫ dξ = f (ξ) e− j2πuξG(u)( )
−∞

∞

∫ dξ

= G(u) f (ξ)e− j2πuξ
−∞

∞

∫ dξ = F(u)G(u)



Fourier transform pairs 

•  Note the reciprocal symmetry in Fourier transform pairs 
–  often 2-D versions can be calculated from 1-D versions by seperability 
–  In general: a broad extent in one domain corresponds to a narrow extent in the other 

domain  



Summary of key properties of the Fourier Transform 



Transfer Functions 



Transfer Function for an LSI System 

•  Recall that for an LSI system 

•  We can define the Transfer Function as the 2D Fourier transform of 
the PSF 

•  In this case the LSI imaging system can be simply described by: 

•  or 

•  which provides a very powerful tool for understanding systems 

g(x, y) = f (x, y)∗h(x, y) = f (ξ,η)h(ξ − x,η − y)dξ dη
−∞

∞

∫−∞

∞

∫

f (x, y) g(x, y)

 H (u,v) = h(ξ,η)e j2π (uξ+vη )dξ dη
−∞

∞

∫−∞

∞

∫ = F2D h(x, y){ }

 g(x, y) = f (x, y)∗h(x, y) = F2D
−1 F(u,v)H (u,v){ }

G(u,v) = F(u,v)H (u,v)

 S



Illustration of transfer function 

2-D 
FT 

H (u,v) = ae−πa
2 (u2 +v2 )

Inverse 2-
D FT 

f (x, y)

F(u,v)

g(x, y)

G(u,v)
a1 a2 > 

a1

h(x,y)f (x, y) g(x, y)



2D Image Reconstruction from X-ray 
Transforms 



Mathematical Model 

•  Many imaging systems acquire line-integral data of the object 
being scanned (or data that can be approximated as line-
integrals) often called a line of response 

g(l,θ ) = f (x(s), y(s))ds
−∞

∞

∫

The integral is along a line 
L(l,θ ) = (x, y) x cosθ + ysinθ = l{ }
With rotated coordinates (l,s) 
x(s) = l cosθ − ssinθ
y(s) = l sinθ + scosθ

s
The imaging 
equation 



Example 

•  Consider the unit disk with radius R

•  By geometry 

f (x, y) = 1 x2 + y2 ≤ R
0 otherwise

⎧
⎨
⎪

⎩⎪

g(l,θ ) = f (x(s), y(s))ds
−∞

∞

∫
= 1ds

− R2 −l2

R2 −l2

∫ = 2 ds
0

R2 −l2

∫

= 2 R2 − l2 l ≤ R
0 otherwise

⎧
⎨
⎪

⎩⎪

RR2 −l2

Check: g(l = 0,θ ) = 2R,    ∀θ

g(l,θ )



One-dimensional projections 

xr

xr

y

x

yr

φ

xr

φ

(xo,yo)

sine wave traced out
by a point at (xo,yo)

Sinogram: s(xr,φ)

Projection: p(xr,φ)

single projection

Object: f(x,y)

g(xR ,φ) = dyR f (x, y)
−∞

∞

∫
xR
yR
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⎥

To specify the orientation of 
the line integrals, two 
parameters are needed, and 
sets of parallel lines are 
grouped into projections.

The projections are typically 
further grouped into 
sinograms.

g(xR ,φ)



Sinograms 

•  We can represent the projection data g(l,�), as a 2-D image, which is called a 
sinogram 

•  Each row is a projection at a fixed angle �, with an intensity of g(l,�� 
•  A point in the object projects to a sine wave in the sinogram 

l

q

object sinogram 

scanner FOV 



More complex sinogram example 

�

l �

x

y

l

s



Imaging equation, Inverse Problem, and Image 
reconstruction 
•  Our generic imaging system acquires projections, which can 

be grouped into a sinogram 

•  The above is an imaging equation 

•  This is an inverse problem: given g(l,θ), what is f(x,y)? 

•  In medical imaging this is called image reconstruction 

g(l,θ ) = f (x(s), y(s))ds
−∞

∞

∫



Back-projection (or Backprojection) 

•  First idea - try the adjoint operation to the x-ray transform to see if it gives 
us the inverse operation (adjoint ~ reverse) 

•  If the initial operation is integration along a line (2-D to 1-D), then the 
'opposite' operation is to spread values back along a line (1-D to 2-D) 

•  This is called backprojection 

alternative mode of calculation 



Backprojection does not work 
Original object sinogram 

θ

backprojection of g(l,θ) along angle θ$

image matrix 

backprojection for all θ



Backprojection Reconstruction 

•  Backprojection leads to a 1/r low-pass filter, so 
backprojected images are very blurry, and are typically 
unusable 

•  Examples 
–  illustration for a small source 

–  for a more realistic object 

Shepp-Logan 
head phantom 

3 6 many 
# of projections 

object 



Projection-Slice Theorem 



Projection-Slice Theorem 
•  The simplest way to understand 2-D image reconstruction, 

and a good way to start understanding 3-D image 
reconstruction. 

θ

θ2D FT

1D FT

Equivalent

Object: f(x,y)

Projection:g(l,θ ) = f (x, y)ds
−∞

∞

∫

Imaging

l

G(ρ,θ )

F(u,v)

ρ

u

v

ρ
σ



Backprojection Revisited 

•  By a corollary of the projection-slice theorem, backprojection is equivalent 
to placing the Fourier transformed values into an array representing 
F(u,v), as shown 

g(l,θ )
l

2D FT

x

y

θ$
u

v

F(u,v)b(x, y)



This is why backprojection does not work 
Original object sinogram 

θ

backprojection of g(l,θ) along angle θ

image matrix 

backprojection for all θ

b(x, y) = f (x, y)∗h(x, y)

= f (x, y)∗ 1
r

= f (x, y)∗ 1
x2 + y2



Backprojection Reconstruction 

•  Thus the backprojection of X-ray transform data comprises a 
shift-invariant imaging system blurred with a 1/r function  

•  This can also be seen intuitively by 
considering the sampling of the 
Fourier transform of the 
backprojected image 

•  In the limiting case the sampling 
density in frequency space is 
proportional to 1/θ$

νx

νy

Δφ

Δνxr

θ 



Backprojection Filtering 

•  We can fix this! Recall that 
 so very simply 

•  Backprojection Filtering Algorithm 
– for each θ, backproject measured data g(l, θ) into image 

array b(x,y)
– compute the 2-D Fourier transform B(u,v) 
– multiply by 2-D 'cone' filter                     to get F(u,v) 
– compute the inverse 2-D Fourier transform to get f(x,y) 

B(u,v) = F(u,v) q
F(u,v) = qB(u,v)

q = u2 + v2



Challenges with Backprojection Filtering 

•  The low-pass blurring operation of 1/q has very long tails, so 
backprojection must be done on a much larger array than is 
needed for just the image 

•  Backprojection filtering is computationally very expensive 
– CT images are typically 512 x 512, and a typical factor of 4 needed 

will bring backprojection image size to 2048 x 2048, and another 
factor of 2 for zero padding for FFTs gets us to 4096 x 4096, per 
image 

•  An alternative solution is to interchange order of filtering and 
backprojection 

–  the proof that we can do this is a bit complex 


