
Hydrogen-Deuterium Mass Ratio

1 Background

1.1 Balmer and Rydberg Formulas

By the middle of the 19th century it was well established that atoms emitted light at discrete
wavelengths. This is in contrast to a heated solid which emits light over a continuous range of
wavelengths. The difference between continuous and discrete spectra can be readily observed
by viewing both incandescent and fluorescent lamps through a diffraction grating; hand held
gratings are available for you to do this in the laboratory.

Around 1860 Kirchhoff and Bunsen discovered that each element has its own characteristic
spectrum. The next several decades saw the accumulation of a wealth of spectroscopic data
from many elements. What was lacking though, was a mathematical relation between the
various spectral lines from a given element. The visible spectrum of hydrogen, being rela-
tively simple compared to the spectra of other elements, was a particular focus of attempts
to find an empirical relation between the wavelengths of its spectral lines. In 1885 Balmer
discovered that the wavelengths λn of the then nine known lines in the hydrogen spectrum
were described to better than one part in a thousand by the formula

λn = 3646× n2/(n2
− 4) Å (angstrom), (1)

where n = 3, 4, 5, . . . for the various lines in this series, now known as the Balmer series.
(1 angstrom = 10−10 m.) The more commonly used unit of length on this scale is the nm
(10−9 m), but since the monochromator readout is in angstroms, we will use the latter unit
throughout this write-up.

In 1890 Rydberg recast the Balmer formula in more general form as

1/λn = R(1/22 − 1/n2) (2)

where again n = 3, 4, 5, . . . and R is known as the Rydberg constant. For reasons to be
explained later, its value depends on the mass of the nucleus of the particular isotope of the
atom under consideration. The value for hydrogen from current spectroscopic data is

RH = 109677.5810 cm−1[1],

and the current value for an infinitely heavy nucleus is

R∞ = 109737.31568525(73) cm−1[2].

A generalization of the Rydberg formula to

1/λ = RH
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(3)
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suggested that other series may exist with n1 taking on the values 1, 3, 4, 5, . . ., subject to the
restriction that n2 > n1. This proved to indeed be the case. In 1906 Lyman measured the
ultraviolet spectrum of hydrogen and found the series, now bearing his name, corresponding
to n1 = 1. In 1908 Paschen measured the infrared spectrum of hydrogen and discovered
the series, now bearing his name, corresponding to n1 = 3. Figure 1 shows some of the
lines in these series. The vertical axis in this figure is linear in energy (given in units of
electron-volts, or eV, at the right), so you can get some sense of the relative energies of the
different series.

The remarkable success of the Rydberg formula in describing the spectrum of atomic hy-
drogen was in stark contrast to theoretical understanding of the atom in the early 1900’s.
Attempts to understand the emission of light at discrete wavelengths, or frequencies, using
principles of classical mechanics and electrodynamics proved fruitless, as classical theory
does not allow for an electron to circulate about a nucleus in a stable orbit. Rather, classical
theory predicted that the negatively charged electron, circulating about the positive nucleus
under the influence of a Coulomb potential, would emit radiation due to the centripetal ac-
celeration associated with circular motion (recall that accelerating charges emit radiation).
As the electron emitted radiation and lost energy, the orbit would shrink and eventually (in
a predicted 10−12 seconds!) the electron would spiral into the nucleus, emitting a contin-
uum of radiation in the process. The stability of atoms, and discrete atomic spectra clearly
demonstrate that such a theory does not describe atomic behavior.

1.2 The Bohr Postulates

in 1913 the Danish physicist Niels Bohr, working at Ernest Rutherford’s laboratory in Manch-
ester, England, proposed a blend of classical and radically new ideas to describe atomic
behavior. His three postulates were:

1. The electron moves in a circular orbit about the nucleus under the influence of the
Coulomb potential, obeying the laws of classical mechanics;

2. In contrast to the infinite number of orbits allowed classically, the electron can occupy
only orbits for which its orbital angular momentum is quantized in units of ~, i.e., L =
orbital angular momentum = n~ where n = 1, 2, 3, . . .. Electrons are stable in such
orbits, i.e., they have a well defined energy and do not emit radiation even though they
are undergoing centripetal acceleration. Bohr termed these orbits stationary states;

3. Radiation is emitted when an electron transitions from one stationary state to another.
The energy of the radiation, E = hν, is equal to the difference in the energies of the
initial and final stationary states.

The first postulate is clearly based on classical theory; however the second and third postu-
lates marked a radical departure from classical concepts. Applying these postulates to the
hydrogen atom, Bohr’s model predicted the total energy of an electron in a stationary state
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Figure 1: Energy level diagram of atomic hydrogen showing the transitions giving rise to the
Lyman (UV), Balmer (visible) and Paschen (IR) spectra.
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with orbital angular momentum L = n~ to be

En = −

mZ2e4

(4πε0)22~2
1

n2
(4)

where m is the mass of electron, Z is the number of protons in the nucleus (Z = 1 for
hydrogen) and e is the charge of the electron [3]. A transition from a state of higher energy
to one of lower energy should result in the emission of radiation with energy

Ei − Ef =
hc

λ
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mZ2e4

(4πε0)22~2
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where ni~ and nf~ are the electron orbital angular momenta of the initial and final states,
respectively. Comparing this formula with the Rydberg formula we find that RH should be

RH =
me4

8ε2
0
h3c

.

That Bohr’s theory resulted in an expression for the Rydberg constant in terms of fundamen-
tal constants was a great triumph as it allowed for evaluation of the above expression and
comparison to the value derived from spectroscopic data. Then current values form, e, h and
c indicated good agreement between RH calculated from Bohr’s theory and experimentally
derived values.

But doubters of Bohr’s theory remained, with skepticism on the continent being particularly
strong. His brother Harald wrote Bohr in the fall of 1913 from Göttingen, Germany, saying
that the physicists there considered Bohr’s model to be too “bold” and too “fantastic”.
Rutherford himself was skeptical, asking Bohr, “How does the electron decide what frequency
it is going to vibrate (radiate) at when it passes from one stationary state to another? It
seems to me that you would have to assume the electron knows beforehand where it is going
to stop.”

And skeptics were buttressed by new experimental results. Measurements of the spectral
lines of singly ionized helium (one electron orbiting around a nucleus with two protons)
showed that the ratio of the wavelengths of corresponding helium and hydrogen lines (same
ni and nf ) was not 1:4 as predicted by Bohr’s formula, but rather 1:4.0016. (The ratio 1:4
results from increasing Z from one to two in the above expressions for the electron energy.)
Bohr quickly revised his postulates, now requiring that the total angular momentum, the
combined angular momentum of both the electron and the nucleus, be quantized in units
of ~. The result of this requirement is that in the expression for the electron energy, the
electron mass m must be replaced by the reduced mass µ,

µ = mM/(M +m) (6)

where M is the mass of the nucleus. (See the appendix for a derivation of this result.)
The expression for the radiation energy of hydrogen-like ions (i.e., one electron orbiting Z
protons) is now

Ei − Ef =
hc

λ
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where µ
X
is the reduced mass of atom X. According to Bohr’s revised theory, the wavelength

ratios between corresponding hydrogen and helium lines should be 4µ
He
/µ

H
. It turns out

that
µ

He

µ
H

= 1.0004 ,

(you may wish to verify this) resulting in complete agreement between theory and observa-
tion. When Einstein learned of this latest success of the Bohr theory, he responded: “This
is an enormous achievement. The theory of Bohr must then be right.”

The inclusion of the nuclear mass M into the equation for the spectral energies indicates that
different isotopes of the same element should show different spectra, since these atoms would
have different reduced mass. The existence of the isotope of hydrogen, deuterium, whose
nucleus contains one neutron and one proton, was discovered by Harold Urey and his co-
workers around 1930 using spectroscopic methods after they successfully produced samples
of deuterium-enriched hydrogen by a distillation process [4]. Harold Urey was awarded the
Nobel Prize in Chemistry in 1934, “for his discovery of heavy hydrogen.”

2 The experiment

Experimental Goal: measure the hydrogen-deuterium nuclear mass ratio.

In this experiment you will measure the wavelengths of both the hydrogen and deuterium
spectral lines for at least four transitions in the Balmer series. From a plot of measurements
of the wavelength difference for a set of transitions, you will derive the ratio of the masses
of the hydrogen and deuterium atoms.

The spectral lines are produced by a gas discharge lamp. In our setup, the lamp contains
hydrogen enriched with deuterium so that both spectra are produced simultaneously. En-
richment of the hydrogen is necessary as the natural abundance of deuterium is about .015%.

From the Rydberg formula corrected for reduced mass, Eq. (7), we see that the wavelength
of light emitted from a particular transition is inversely proportional to the reduced mass:

1/λX ∝ µX . (8)

Because of this proportionality, we see that the nuclear masses of hydrogen and deuterium,
MH and MD, are related to the different wavelengths of light produced by each isotope:

∆λHD

λH

=
λH − λD

λH

=
1/µ

H
− 1/µ

D

1/µ
H

=
1−MH/MD

1 +MH/m
. (9)

The mass MH is, of course, just the mass of the proton Mp, and the ratio of the proton and
electron masses is well known, Mp/m = 1836.15. Combining this with the results of your
measurements, the ratio of the masses of the two nuclei, MH/MD can easily be derived and
compared to established values:

MH

MD

=
1.007276

2.013553
= 0.500248 .

5



Extension Ideas

1. Try to measure the Hǫ peak and compare to your other measurements. Investigate the
λ dependence of your measured ratio, if any.

2. Use the setup to measure the emission spectrum of a light source of your choice (some
bulb, a mobile phone LED, etc).

3 Apparatus and Procedure

Before describing the apparatus and measurement process, it is instructive to observe the
difference between continuous and discrete light sources. Turn off the bright fluorescent tube
lights in the experiment area and turn on the smaller overhead lights in the cylindrical shades.
Take one of the slide-mounted diffraction gratings and look at the two overhead lights in
the cylinders near the experiment and near the desk area. One of the bulbs is incandescent
and the other fluorescent. The fluorescent bulb emits light at discrete wavelengths in the
mercury spectrum, and the incandescent bulb emits light over a continuum of wavelengths.
The colored images overlap, so make sure you identify which image goes with which bulb.
Describe the images you see from each bulb, and justify your claim as to which one is the
fluorescent bulb.

3.1 Apparatus

A diagram of the apparatus is shown in Fig. 2. Light from a discharge tube containing
both hydrogen and deuterium is focused by a lens onto the entrance aperture (slit) of the
monochromator. (A monochromator is just a spectrometer that detects one wavelength
at a time.) The dispersive element, i.e., the element which separates light according to its
component wavelengths, inside the monochromator is a diffraction grating—a fancier version
of the hand held grating you used to look at the overhead lights. The angle of the grating
and mirrors inside the monochromator can be varied with the wavelength-adjust knob to
select the wavelength of the light passing through the exit slit and on to the detector. The
detector is a photomultiplier tube (PMT) located inside the housing attached to the exit slit
port. The readout dial on the front of the monochromator indicates the wavelength of the
detected light to the nearest angstrom.

The output of the PMT is a current, typically a fraction of a microampere at maximum
detected light intensity in this experiment. The PDA-700 amplifier converts this current to
a voltage which is recorded on a chart recorder or digital scope. To record the output light
intensity over a wavelength interval, a stepper-motor + reduction-gear drive is attached to
the wavelength adjust shaft. Here are some numbers to help you get a sense of the scan rate:

Stepper motor: 200 steps per revolution of output shaft
Reduction gear ratio: 1:36
wavelength adjust shaft: 20 Å per revolution.
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Figure 2: Apparatus used to measure the spectral lines of the hydrogen-deuterium lamp.

You do want to record data slowly and smoothly, but you don’t want it to take all day. The
following exercise will help you develop a good first set of scanning parameters, you may
adjust them from there at your discretion.

Exercise 1 As an initial estimate of the experimental parameters, calculate the difference
in wavelengths of the hydrogen and deuterium α lines, assuming that the mass ratio is 1:2.
Then also calculate the difference in wavelength of the sodium D lines, listed in section 3.2.
What would be the expected ratio of peak separations, ∆λHD/∆λNa?

Now assume you want to place the D lines about 40 seconds apart. What should the stepper-
motor control frequency be? How many seconds separation would this rate give for the α
lines?

Feel free to speed up or slow down the stepper motor rate and scan speed from these starting
values as you see fit, but keep the rate below 100 Hz. (It is hard on the apparatus to use a high
frequency.) However, once you are comfortable with your scanning rate, it is recommended
to use the same set of values for all of your measurements.

The monochromator does not detect light at just a single wavelength but rather detects light
over a small spread of wavelengths centered about the wavelength indicated on the readout
dial. Here we face the common trade-off between signal strength and resolution. The width
of the entrance and exit slits is variable, and is set (for both slits simultaneously) by the slit
width control. Increasing the slit width allows more light to come through, but degrades the
resolution of the monochromator. For the purposes of this experiment, a slit width of about
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50 microns allows for a good signal level and more than adequate resolution; the slit readout
should show “0 0 50”.

3.2 Calibration standards

As mentioned above, the readout dial indicates the absolute wavelength to the nearest
angstrom. We are working with wavelength differences on the order of 1 Å, and will want
to measure the λH − λD interval to fractions of an ångstrom, which is not possible using the
wavelength readout.

To calibrate the monochromator output, the wavelength difference between the two lines of
the yellow sodium doublet, the 32S–32P transition, is used as a standard. The wavelengths
of these two lines, called “the sodium D-lines,” are

D1: 5895.92 Å
D2: 5889.95 Å

The calibration procedure will be described in detail below.

For reference in the next section and for use in data analysis, we also state the wavelengths
of the four strongest Balmer lines:

Hα: 6562.852 Å
Hβ: 4861.33 Å
Hγ : 4340.47 Å
Hδ: 4101.74 Å

It is possible, with some effort, to measure higher energy lines in this series as well.

Exercise 2 Calculate the wavelengths of the next three higher-energy lines in the Balmer
series from Eq. (3).

3.3 Procedure

Turn on the power supply for the sodium discharge lamp. Press the white button on the
power supply if the lamp does not start. It will take a little while for the lamp to reach
full intensity, but you can begin aligning the optics and looking for a signal before it is fully
warmed up.

The wavelength interval of the sodium lines is used to calibrate the recording apparatus, and
the peak separation is much greater for the sodium doublet than for the hydrogen-deuterium
splitting, so it is best to run the sodium scans first to establish the scan settings.

Turn on the power to the SRS Model PS 325 high voltage power supply and the PDA-700
amplifier. The PDA-700 should be on the “.xxxx” microamp range. This corresponds to a
maximum current of 2.000 µA.
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If the stepper motor drive coupling is still attached to the wavelength adjust shaft, remove it.
A hex-socket (Allen) wrench is available for attaching and removing the coupling from the
wavelength-adjust shaft. Turn the know smoothly to set the wavelength to approximately
5890 Å. (Please be gentle: small parts inside the monochromator are easily damaged by
rough treatment.)

Remove the plastic dust cover from the lens. Check that the distance from the sodium lamp
to the lens is about 240 mm and that the distance from the lens to the entrance slit is also
about 240 mm (this corresponds to a carriage position of 725 mm on the optical track). The
focal length of the lens is 120 mm, so these distances will result in the formation of an image
of the lamp with magnification 1 at the entrance slit. Adjust the lamp position to optimize
the focus of the image on the entrance slit.

Exercise 3 Prove the above claim about the image of the lamp by making a ray diagram.

Check that the high voltage setting displays “1000” volts. This is the number that should
be displayed at the center of the high voltage power supply. Turn on the high voltage with
the switch at the lower left of the front panel. The output voltage should read −1000 volts
(polarity is negative) within a volt or two. Slowly scan by hand through the D2 line at 5890 Å
while watching the PDA-700 reading; you should see an increase in the PMT output current
as you scan through the line. Keep turning the knob and scan through the second D-line, D1

at about 5896 Å to verify that you are seeing both peaks. Scan back through the lines and
set the wavelength on D2 to give maximum output current, typically about 0.1 microamp
for a slit width of 50 microns. (Note: the exact value is unimportant, and your value may be
very different depending on how warmed up your lamp is and how well aligned your setup is.)
Then fine-tune the focus by moving the lamp carriage along the track, looking for maximum
output. If you are having trouble getting any output, consult with the TA, Professor or Lab
Manager.

Once you are getting a signal from the sodium lamp, log into the computer near the setup.
It is connected to a National Instruments (NI) data acquisition system. The NI box will be
used with a LabVIEW application that acts as a chart recorder. Start the Chart Recorder

application from its icon on the desktop.

After the Chart Recorder application starts, click on the tabs at the top left to set the scan
parameters. The following settings should produce a nicely visible trace (if the setting is not
specified, the default value is acceptable):

Channel 1 Check Enable Ch 1. Also check Invert signal; the current from the detector (and
thus voltage from the current amplifier) is negative, so this option makes the peaks
point up rather than down.

Sample Clock The sample clock controls how often a measurement is recorded by the
interface box. We will use a little signal averaging to reduce noise. Check Pre-bin
samples and set Bins/Read-cycle to 10.
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Go back to the Scan Controls tab, click TAKE SCAN, and see what you get as you manually
turn the knob through the two sodium lines.

When you can see a signal with the manual scan, then connect the stepper motor as follows:

1. Make sure that the switch box between the function generator and the stepper motor
controller is off, and turn on the power to the digital function generator.

2. Set the function generator frequency to 60 Hz by using the keypad on the front panel:
push FREQ/PER, then 6, 0, then the units key Hz Vpp. By using the STEP SIZE button
and the Up/Down buttons to select the 10’s column (it will flash), you can then change
the frequency quickly in steps of 10 Hz with the Up/Down buttons.

3. Turn on the switch box briefly to verify that the motor shaft turns. You may safely
run the function generator up to 150 Hz for small adjustments, but for data taking,
the frequency should be set at a value below 100 Hz.

4. Set the wavelength 2–3 angstroms less than the D2 wavelength. Connect the stepper
motor drive coupling to the shaft: Note the location of the “FLAT” on the shaft.

Turn the knob so that the FLAT is at the same angle as the set screw on

the coupling. Then push the coupling onto the shaft and tighten the set

screw by hand against the FLAT. Use the Allen wrench to make the screw

snug against the shaft. DO NOT OVER-TIGHTEN THIS SCREW!! Just

tight enough to keep it from getting loose is enough—over-tightening only

wrecks the apparatus.

Select the increasing wavelength direction on the stepper motor controller, and turn on the
power to the controller.

Start the stepper motor by flipping the switch on the box between the generator and the
stepper-motor controller on, then immediately click TAKE SCAN on the Chart Recorder.
Watch to see the sodium peaks recorded.

After you have scanned through the lines, stop the scan and turn off the pulse train with the
switch box. Do not turn off the stepper motor controller power. The sodium peaks should be
well-shaped and pointed at the tops. If they are rounded or flattened at the tops, you have
too much gain on the PDA-700 current amplifier. Reduce the Range switch on the amp, and
try another scan.

IMPORTANT: Once you decide on a stepper-motor frequency and chart speed,

you must stick with it for all of the measurements, otherwise your calibration

will be ruined. Also, scan in the same direction of “increasing wavelength” for

all runs.

You can filter noise with the Low Pass Filter settings. Do not be to aggressive with these
filters! You do not want to distort the underlying signal, just remove the “fuzz” that may be
obscuring the important response to the varying light intensity. See the effect of the different
filter options on your scan. A good starting choice is the “Smoothing” filter with a setting
of 5 points.
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Save the scan in local memory to look at it later by clicking RETAIN SCAN. If you give the
scan a name (in Scan Name), e.g., “Na cal”, it will save this name with the scan. Otherwise
it will use the default. Subsequent RETAIN SCANs will save more scans with the assigned
name and a number.

A scan you want to save permanently should be saved to disk by clicking SAVE TO FILE.
It is recommended to use the file extension .wfm, which indicates that it is a LabVIEW
“waveform” file (a binary format). You can also load old scan files into the application to
study and manipulate them.

While you are taking your good calibration scan, turn on the H-D discharge lamp and the
cooling fan (separate power supply). The discharge tube runs very hot, and cooling it with
the fan will help extend the lifetime of this expensive ($500) tube.

After the sodium scan is finished, turn the sodium lamp off, and carefully loosen the carriage
screw and lift the carriage and lamp off the track. Place it on the track behind the H-D
lamp, and then slide the carriage for the H-D lamp into the same position as the sodium
lamp was.

The image of the H-D lamp is much narrower than that of the sodium lamp, so alignment
is critical here. Check that the image of the lamp falls on the curved entrance slit to the
monochromator (may be necessary to dim lights to see this). To see the slit better, you may
want to open it up to 100 microns or more. Note that the lamp needs to be slightly tilted to
maximize the coverage of the slit with the image of the lamp, as the slits are off-center of a
circle at the focal plane of the monochromator (see Fig. 2) If the image does not fall on the
slit, it may be necessary to move the lens back and forth across the light path with the small
brass adjust screw marked with yellow tape at the base of the lens holder. If the beam is far
out of alignment, it may be necessary to move the entire base on which the lamp and lens
are mounted. If this seems to be necessary, please ask for help from the TA, Professor or Lab
Manager. After checking the image alignment, reduce the slit width back to approximately
50 microns.

Remove the stepper motor drive. Dial in the approximate wavelength value for the Hα line
(see table in the calibration standards section). As you did before, scan slowly through the
Hα and Dα lines by hand.

The sodium lamp is considerably more intense than the H-D lamp so it will be necessary to
increase the sensitivity (“range”) of the PDA-700. As before, use the Wavelength knob on
the monochrometer to park the wavelength at one of the H-D peaks and fine-tune the lens
position by alternately moving it transversely with the yellow screw and also fine-tune the
focus by moving the lamp carriage along the track until you obtain maximum output. If you
are having trouble getting any output, ask for help!

Do not change the function generator frequency! If you do, you will have to repeat the
Na calibration. Run a scan through both the Hα and Dα lines. Adjust the “range” of the
PDA-700 if needed.

The result of the scan should be a trace showing a pair of peaks of unequal height (fractions
of H and D in tube are not equal), with each peak having a symmetric or nearly symmetric
shape. If you are not satisfied with the results of the scan, you can repeat it: switch to
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“decreasing λ” on the controller, dial the frequency up to 100–140 Hz, run the wavelength
back down through the lines, and then repeat the above procedure. Don’t forget to reset the
frequency on the generator to the correct value.

Caution: when you reverse the scan direction, you need to allow the “backlash” in the gears
to be taken up before recording your lines. If you fail to do this, you may see significant
distortions in your trace: a peak will have a large flat part in the middle of it.

Don’t forget to RETAIN and then SAVE TO FILE your best scans.

After successfully recording the Hα and Dα lines, remove the stepper motor drive coupling
from the shaft. Adjust the wavelength to near the Hβ line and repeat the checkout and scan
process as above. (You do not need to readjust the lamp and lens position.) The signal
strength of the Hβ and Dβ lines is different from that of the α lines. This is due to both
a difference in light intensity at these wavelengths, and in sensitivity of the photomultiplier
tube. (Study the sensitivity chart for the tube in the book which describes the apparatus;
does it make sense?) It may be necessary to switch the PDA-700 to a different range to
achieve a suitable displacement on the recorder.

After successfully recording the β lines, proceed to record the γ and δ lines. As the line
strength decreases, you may need to adjust the PDA-700 gain to obtain peaks of reasonable
height. You could also try to get the ε lines; these will be noisy.

You should have at least 5 scans total: the sodium lines and and at least four pairs of H-D
lines.

After finishing collecting all of your data, turn off the H-D lamp, and five minutes later turn
off the cooling fan. Turn off all other electronics (except the computer), put the plastic cover
over the lens, and remove the pen and put the cap back on it.

Before closing the Chart Recorder application, make sure to

• Save the raw data for each scan with SAVE TO FILE and use the file extension .wfm.

• Filter, adjust the range, and export each data set so that it can be analyzed with
another computer program (e.g., Python). See how to do these operations in the
descriptions below.

• Make and export a plot of each scan to put into your notebook.

Make a copy of the data for each partner. Each person should carry out the data analysis
separately.

Using the chart recorder plot controls

To adjust, analyze, or export chart recorder data, open the waveform file with the Chart
Recorder application (or select it from the “retained scans” list, if it is still available). Then
use the features under Plot Controls and Adjustments to manipulate the trace and
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prepare it for exporting or printing. Here are the options.

Filters

There are three types of data “smoothing” or “low-pass” filters you may apply. Each only
affects the displayed data, and may be added or removed at will.

LP Butterworth is a digital implementation of a “Butterworth” low-pass filter. It treats the
data set as if it were a signal fed into an analog multi-stage LRC filter. The corner frequency
of the filter is set by the “Time constant”. Longer time constants have a stronger effect.
One side-effect of using this filter is that it always forces the trace to start at zero (similar to
the initial response of an uncharged RC filter). If your data starts near zero, this distortion
may be minimal.

Smoothing Filter uses a simple data smoothing algorithm called “Savitzky-Golay.” Briefly,
the method replaces each data point with a weighted average of that data point and a
selecton of neighboring data points. The more points you include (set by “Smoothing filter
bins”) the more strongly the data set is smoothed out.

Median Filter is a nonlinear filter that is similar to the Smoothing filter in that it averages
over neighboring data points, but in this form the data points are replaced by the median
value rather than a weighted average. This type of filter tends to preserve sudden overall
changes in the trace level. One side effect is that as the number of “Median filter bins” is
increased, the trace will take on a blocky or stair-step appearance.

However you use the filters, the proper amount of filtering should not noticeably affect the
overall shape of the trace. Use filtering sparingly!

Number of points

This control allows you to replace the trace’s original data with a set of interpolated points.
For slow scans, the data sets may get very large, with many more points than one needs.
This may be annoying when you want to import a data set into another application, such
as a spreadsheet or Python notebook.

You can see the effect of changing the number of points by selecting this option and observing
the trace. The default number is 1000 points, but you may select any number, even more
points than the data set contains.

You should adjust the number of points after you have applied any filters. (See what happens
if you do it in the other order.)

To make a set for export, use this feature before selecting Export Plot.

Crop Visible

This control allows you to Zoom into a portion of the trace, or extract a portion for export.
There are two steps to use this control:

SELECT X REGION Click this button and two vertical blue cursors will appear. Use the
mouse to move them so that they surround the region of interest you wish. Then click
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the button again to extract the cursor locations. These will show up in the Low and High
displays.

Enable This checkbox does the work. When selected, the data will be cropped to the selected
range. Deselecting the checkbox brings the original range back into view.

One use for this feature is to get a better resolution on the positioning of the Measure cursor
(see below). When you Zoom into the data, the smallest division recorded by the cursor
decreases.

Export Plot

This is the output control for data sets to be plotted or to create a file usable by other
applications.

EXPORT PLOT DATA builds a spreadsheet file (of type “CSV”, or “comma-separated val-
ues”) with columns for each of x-values and y-values. The values exported are subject to
the results of the three previous adjustments (filtering, point interpolation, and cropping).
You get the traces you see on the screen as a data file.

PRINT PLOT Opens a dialog box that shows only the plot window and a text box. You may
add notes to the text box to describe what you see. Then you can send the results to the
default web browser for the computer. From the browser you may cut and paste into your
notebook, or print to PDF, or whatever you like.

After obtaining images of possibly cleaned-up data traces, you may use the Measurement
Cursor to extract the locations of various features from the data and create spreadsheets for
each.

Use of the Measurement Cursor is straightforward. Click the CENTER CURSOR button at
the lower right of the Chart Recorder to bring the red cross-hairs into the center of the plot
screen. Drag the cursor to the location of the feature you want to record.

Click CAPTURE CURSOR in the box at the lower left of the Chart Recorder. The coordinates
of the cursor will appear in the little spreadsheet.

After the cursor is captured, you may edit/modify the Scan Name/Label cell, for example,
to record the voltmeter value corresponding to a particular calibration point. (Note: do not
edit this cell until the coordinates have been captured. See what happens if you violate this
rule!)

After you have collected the points you need, click EXPORT TABLE to export the table
to Microsoft Excel. Unless Excel has already been started, this may take a minute—have
patience. Excel will open, and from here, you may edit the file and then save it.

3.4 Data reduction and analysis

Load the exported data file into your favorite computer program (e.g., Python). Then you
have a couple options:
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1. Make a curve fit to each peak, and use the fit parameter for center of the peak. This
works best with symmetric peaks, because most peak functions are symmetric about
their center, such as a Gaussian or Lorentzian.

2. Calculate a “centroid” which is a weighted average of the counts per channel. The
centroid would be given by the formula

Xcentroid =

∑

xini
∑

ni

, (10)

where the index i runs over the channels included in the peak. Note: a “channel” is a
time value in scope file.

After you have found the peak positions, and determined the statistical uncertainty in each,
use your Na D lines to make a calibration conversion: change the horizontal separation from
inches or time into ångstroms of wavelength difference.

Then make a plot. Equation (9) suggests that ∆λHD/λH should be constant. How can you
plot your data in a way that gives that constant from a line fit?

Some things to think about and discuss:

• How consistently do the data follow the predicted relationship? Are there obvious
outliers?

• How should you deal with the fact that your calibration (the Na Lines) is also a
measurement with uncertainty?

• What would happen if the calibration lines had a mistake (say, by being too far apart)?

Appendix – Reduced mass

Consider a classical system of two particles of mass M and m interacting via central forces
(i.e., Coulomb or gravity). Let the position vector between the two particles be ~r. When no

external forces act on the system, the center of mass ~R will be at rest with respect to some
inertial reference frame S. The center of mass is defined as

~R =
M ~X +m~x

M +m
, (11)

where ~X and ~x locate the particles of mass M and m with respect to the origin of S, and
~x = ~X + ~r. Since the center of mass is at rest with respect to S, a physically equivalent
reference frame S ′ has its origin at the center of mass itself; in S ′, the center of mass of the
system

~R
′

=
M ~X

′

+m~x
′

M +m
= 0 . (12)
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Hence M ~X
′

= −m~x
′. It is still true that ~r = ~x

′
− ~X

′

, since ~x and ~X are related to ~x
′ and

~X
′

by a simple translation. These two equations can be solved to yield

~X
′

= −

m

m+M
~r , (13)

~x
′ =

M

m+M
~r . (14)

In S ′ the energy of the two particle system is given by

E =
1

2
mẋ′

2

+
1

2
MẊ ′

2

+ V (r) , (15)

where the “dot” notation indicates a derivative with respect to time and V (r) is the poten-
tial energy between the two particles. Upon taking derivatives of Eqs. (13) and (14) and
substituting the result into the energy equation one obtains

E =
1

2

(

mM

m+M

)

ṙ2 + V (r) . (16)

Clearly, the expression in parenthesis in the above equation is the reduced mass µ. An
advantage of expressing the energy in terms of µ is that one transforms the problem of two
particles of masses m and M into a problem of one particle of mass µ. A similar calculation
shows that one can write the angular momentum about the center of mass in a similar way:

~L
′

=
(

~x
′
×m~̇ ′x

)

+

(

~X
′

×M ~̇ ′

X

)

= ~r × µ~̇r . (17)

In the Bohr model and in the subsequent Schrödinger theory, these classical results translate
directly into their quantum equivalents.
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