
The Hanle Effect

1 Introduction

The object of this experiment is to measure the intensity (related to the polarization state) of the
fluorescent light from a sample cell containing mercury vapor, as a function of the applied magnetic
field. From this data, you will determine the lifetime of the 3P1 excited state of mercury. [Please

read pages 1–8 of the Zeeman Effect writeup for additional review of magnetic moments and angular

momentum addition.]

Unlike many of the experiments conducted in this modern physics lab, Hanle’s explanation of his
1924 experiment (that demonstrated the variation of polarization of the resonance fluorescent light
in a weak magnetic field) was not well accepted at first. For that matter, Hanle was not even the
first to observe this phenomenon. It was actually reported first by Wood in 1912; and in 1922, R.W.
Wood and A. Ellett published a paper describing the effect of a magnetic field on the polarization
of resonance fluorescence radiation. It turned out that for the 253.7 nm light from Hg absorption
cell, magnetic fields of a few gauss were sufficient to depolarize the resonance fluorescence light.
Wood and Ellett soon realized that this behavior could not be interpreted as a Zeeman effect
since the Zeeman separation in such fields is very small compared to typical Doppler-broadened
linewidths of such radiation. Hanle’s real credit comes for his classical explanation of the effect.
However, typical of the criticism of his interpretation is the statement made by the distinguished
physicist Max Planck who said to Hanle, “your interpretation cannot be correct, it contradicts
quantum theory.” Of course, modern quantum mechanics was not yet born and most theorists
were convinced that his effect was a kind of Faraday effect (see below).

1.1 The Faraday Effect

It is known that the Faraday effect yields a rotation of the plane of polarization in a magnetic
field when light travels through a dispersive medium. The Faraday rotation has the same sense as
the Larmor precession associated with the Zeeman effect in both the right and left wings of the
finite-width absorption line, but the rotation sense is reversed for frequencies close to the center of
the absorption line. For the Hanle effect, only the central part of the line is active and the observed
rotation of the polarization is always in the same sense as the precessional motion. Furthermore,
the Faraday effect causes the rotation to be proportional to the length of the path in the medium
within the magnetic field. For the Hanle effect, the rotation effect reaches its maximum as soon as
the sample experiences the longitudinal magnetic field and there is absolutely no dependence on
the length of the path traveled by the exciting light in the magnetic field, nor on the path traveled
by the fluorescence light in the magnetic field before detection.

In conclusion, the Hanle effect is not a form of the Faraday rotation!

1.2 Level Crossing Spectroscopy

It is said that the Hanle effect is a type of level crossing experiment. If energy levels are split in
an external magnetic field, then in the range from weak to medium-strength fields, the levels can
indeed cross. Such crossings occur when there is already a fine-structure splitting in the absence of
a magnetic field B0, or when there are hyperfine multiplets with the same J angular momentum.
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Let us consider two possible resonance transitions, generically labeled as “g” in Fig. 1, from ex-
cited states b and c, each of which could be populated by the absorption of a photon labeled as
“f” transitioning from the ground state a. Both transitions could be excited simultaneously by

Figure 1: Generic energy level diagram with two crossed excited states. Photons labeled as “f” can be
absorbed from state a to these two states, b and c, because, even when they are not crossed, the quantity ∆ν
is smaller than the typical Doppler-broadened light source. The photons labeled as “g” are in the fluorescence
light that can be detected.

the Doppler-broadened resonance light from some light source. Each excited state could return
separately to the ground, where the sum of the individual intensities is observed by some photo-
detector. If we assume, for example, that each state b or c by itself emits a linearly polarized wave
with amplitudes Ab cos (ωbt) or Ac cos (ωct) respectively, then the total intensity of the observed
resonance light (when there is no level crossing) is proportional to A2

b + A2
c , on the average.

Now, assume that the two levels cross. The transition frequencies are then the same. Both levels
are coherently excited, and the light waves emitted from them can interfere. Thus, the observed
intensity is now proportional to (Ab+Ac)

2. In this case, there is a change in the spatial distribution
of the emitted radiation (in analogy to double-slit interference), and in the direction of observation,
one generally sees a change in the observable total intensity whenever the external B-field produces
a crossing of two such levels. Furthermore, if linearly polarized light is used for the excitation light,
it is possible to excite coherently two magnetic sublevels with the same transition frequency (in
fact, share the same photon), if the selection rule for the one is ∆m = +1, while the selection
rule for the other is ∆m = −1. Both are fulfilled by the linearly polarized light which can be
decomposed into a σ+ and a σ− photon. The σ− components excites the ∆m = −1 transition, and
the σ+ component excites the ∆m = +1 transition.

The significance of this method is that it yields very high spectral resolution. The precision with
which the crossing field can be measured (the so-called linewidth in this level-crossing spectroscopy)
is not limited by the Doppler width of the spectral lines because here the coherence of the excitation
within an individual atom is being utilized. In this case, the linewidth becomes limited by the
lifetime of the excited state.
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Figure 2: The degree of polarization of fluorescence light is plotted as a function of magnetic field.

In a similar manner, the Hanle effect can be thought of as a zero-field, level crossing experiment.
Configuration terms which are not split without the aid of an applied B-field “cross” in zero field,
when B0 is varied from negative values to positive values and vice versa. In zero field, degenerate
atoms may be coherently excited for the same reasoning as in the level-crossing spectroscopy,
assuming the validity of the selection rules.

1.3 Observation of Polarization

An example of the changes in the degree of polarization of fluorescence light from an absorption
cell versus B0-field is shown in Fig. 2. The quantity ∆B in the figure represents the half-field
width where the polarization is half its maximum value at B0 = 0. To better understand this
figure, one must first investigate some of the possible orientations of ~B0 where it is assumed that
the incident light travels along the ẑ-direction and the observer looks at the fluorescence radiation
along the ŷ-direction; see Fig. 3 through Fig. 8. For the given directions given in these figures, the
polarization degree is defined as

P =
Ix − Iz

Ix + Iz
(1)

where Ix and Iz are the intensities of the x- and z-linearly polarized components of the output
fluorescence light. The expected experimental observations are as follows:

• Case-1: There is no change in polarization for any value of Bx [see Fig. 3].

• Case-2: There is no change in polarization for values of the magnetic field at the extremes,
Bz = 0 and Bz very large [see Fig. 4].
The intensity will decrease to half as Bz becomes large.

• Case-3: When By = 0, the linear polarization is seen to be in the x̂-direction [see Fig. 5].
When By 6= 0, but small, there is decreased polarization, slightly tilted from the x̂-direction
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(i.e. E′

z is small, but in phase with E′

x).
When By 6= 0, but large, strongly unpolarized light is observed (i.e. random phase angle
between E′

x and E′

z comes from the ensemble of atoms).

• Case-4: When Bx = 0, no light intensity is observed [see Fig. 6].
When Bx 6= 0, but small, a weak intensity with polarization in the ẑ-direction is observed.
When Bx 6= 0, but large, a strong intensity with polarization in the ẑ-direction is observed.

• Case-5: When Bz = 0, no light intensity is observed [see Fig. 7].
When Bz 6= 0, but small, a weak intensity with polarization in the x̂-direction is observed.
When Bz 6= 0, but large, a strong intensity with polarization in the x̂-direction is observed.

• Case-6: No light is seen for any value of By [see Fig. 8].
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Figure 3: Initial polarization is in the x̂-direction and ~B is along the same direction

Figure 4: Initial polarization is in the x̂-direction and ~B is along the ẑ-direction.
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Figure 5: Initial polarization is in the x̂-direction and ~B is along the ŷ-direction.

Figure 6: Initial polarization is in the ŷ-direction and ~B is along the x̂-direction.
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Figure 7: Initial polarization is in the ŷ-direction and ~B is along the ẑ-direction.

Figure 8: Initial polarization is in the ŷ-direction and ~B is along the same direction.
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1.4 Classical Description of the Effect

It is possible for classical theory to explain all the results described in Sec. 3, if one considers the
optically-active electron in mercury to act as a classical oscillator that is set in motion parallel to
the direction of the polarization of the exciting light. The radiation emitted by the oscillator will
be polarized in the same direction as the incident light, thus explaining the results observed along
the ŷ-axis when the incident beam is polarized parallel to the x̂-direction and B = 0. Incidentally,
one should also remember that a classical oscillator can not radiate in the direction of its vibration.
Thus, when the incident light is polarized parallel to the ŷ-direction, classical theory says that no
light can be seen along the y-axis, when B = 0.

The experiments with various orientations of nonzero B-fields are also explained by classical theory
when one remembers that the electron’s magnetic moment will precess about a magnetic field,
giving rise to circularly polarized light when viewed along the field and yielding linearly-polarized
light when viewed perpendicular to the field (i.e. the classical Zeeman effect). Figure 9 illustrates a
plausible arrangement of B-field causing the precession of the orbital magnetic moment, ~µ

L
, as the

momentum ~P from the electric dipole oscillation is carried around the path of the precession along
with ~µ

L
. Since ~P does not convey any angular momentum, it does not require additional energy

Figure 9: Plausible illustration of how the electric dipole momentum is made to precess around the magnetic
field direction.

to rotate it in space. Thus, when the electric vector of the exciting light is in the x̂-direction, and
there is a strong magnetic field parallel to the ẑ-axis [i.e. Case (2)], the electron of the classical
model will precess about the ẑ-axis and light intensity observed along the ŷ-direction (i.e. along the
initial direction of ~L in Fig. 9) will be reduced by a factor of two. This case leaves the polarization
still along the x̂-axis, since the simple harmonic components (in the ŷ-direction) of the circular
rotation can not be seen.

In order to explain arrangements like that shown in Case (3) in which the light becomes depolarized
with increasing field, we need only invoke the classical model of a damped oscillator. In Case (3),
the oscillator begins vibrating in the x̂-direction, but will precess about the field, all the while its
amplitude of vibration is dying down with time. If viewed along the direction of the field, the
path that the oscillator takes is in the form of a rosette pattern. If the angular precession velocity
is large compared to the damping rate, the rosette will be symmetrical as shown in the upper
half of Fig. 10. Here, this constraint means B is large or effectively ω

L
≫ 1/τ where τ is the
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Figure 10: The time-configurations for the classical oscillator that precesses around the magnetic field for
the undamped (upper half) and the damped (lower half) cases. These form symmetrical and un-symmetrical
rosette patterns respectively.
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mean-damping time and ω
L

= g
J
(µ

B
/~)B is the Larmor frequency for magnetic moment ~µ

J
and

µ
B

= e~/2me is the the Bohr magneton. Thus, for a perfectly symmetrical rosette, the observed
radiation from an ensemble of such oscillators will show unpolarized light, being that each such
oscillator randomly damps in all 2π of phase. However, if the damping rate is comparable to ω

L
,

the form is an incomplete rosette, as shown in the lower half of Fig. 10. The resulting radiation
will be partially polarized (i.e. less than when B = 0), with its direction of polarization rotated
relative to the vertical x̂-axis.

1.5 Classical Intensity Calculation

Now imagine Case (4) when the direction of the classical electron oscillator has rotated through
an angle φ relative to the ŷ-direction of observation at time t = 0. Then, the amount of intensity
observed dI in an observation interval dt is proportional to [sin2 φ]e−t/τdt where sin2 φ comes from
the dipole radiation pattern as usual and e−t/τdt represents the dipoles available to radiate between
t and t + dt. Thus, for continual excitation and observation,

I = C

∫

∞

0

[

1 − cos(2ω
L
t)

]

e−t/τdt (2)

where φ = ω
L
t and 2 sin2 φ = 1− cos(2φ), with constant C yet to be determined. Upon completing

the integration, one finds

I =
Cτ

2

[

1 −
1

1 + (2ω
L
τ)2

]

. (3)

Now evaluating this result for large magnetic fields, one obtains I∞ = Cτ/2, where I0 is obviously
zero as required for B = 0. Of special interest is the case when I = I∞/2, for which B = ∆B1/2.
Here, one can show that 2ω

L
∆(B1/2) = ±1 and

1

τ
= 2g

J

µ
B

~
|∆B1/2| (4)

As shown in Fig. 11, the value of ∆B1/2 occurs when the intensity changes from half its value
between Imin and Imax. This quantity can be used to determine the lifetime of the excited state.
For your experiment, you could use unpolarized light incident onto the absorption cell since, from
Case (1), the component Ex does not get affected by Bx. This component merely adds a constant
field-independent background to your signal shown in Fig. 11. You should note that one could also
use Case (5) in this experiment, for which ~B is along the ẑ-direction. However, one could not use
unpolarized light to measure τ , as you should be able to deduce from this model.

1.6 Quantum-Mechanical Treatment

It should be clear by now that there must be a rigorous quantum mechanical explanation for the
existence of this zero-field level-crossing spectroscopy which we call the Hanle effect. The following
will only briefly outline the treatment, since there are several good accounts in the literature, such
as the one in the article entitled “Measurement of Atomic Lifetimes by the Hanle Effect” by R.
deZafra and W. Kirk, Amer. J. Phys. 35, 573 (1967). In this article, the authors point out that
the easiest point of departure from classical physics is in the use of the Breit equation [G. Breit,
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Figure 11: Observed intensity versus swept net-magnetic field. The dip to a minimum in intensity occurs
at Bnet = 0 and ∆B1/2 is the half-width at half height between Imax and Imin. The signal does not always
go to zero at Bnet = 0 because of such things as scattered uv-light and incomplete linear polarization.

Rev. Mod. Phys. 5, 91 (1933)]:

R(f, g) = C
∑

µµ′,mm′

fµmfmµ′gµ′m′gm′µ

1 − i(Eµ − Eµ′)τ/~
(5)

which represents the rate at which light of polarization ~f is absorbed and light of polarization ~g
is re-emitted by a free atom (see Fig. 1). Here, C is a constant that is dependent on vapor-lamp
intensity, absorber-atom density, geometrical factors, etc. The magnetic quantum numbers m and
m′ refer to the Zeeman sublevels of the ground state and µ and µ′ refer similarly to sublevels of the
excited state. Also, the quantity Eµ is the energy of the µ-th excited substate. Finally, the dipole
transition-matrix elements between the substates in question, fµm and gµm, are given by

fµm = 〈µ|~f · ~r|m〉 (6)

gµm = 〈µ|~g · ~r|m〉 (7)

where ~r is displacement vector along the dipole axis. Now, we generalize the ~f and ~g polarizations
as in Fig. 12, where the incoming radiation, directed along the ẑ-axis, has polarization vector
~f making angle θ1 relative to the ŷ-axis, and outgoing radiation, directed along the ŷ-axis, has
polarization vector ~g making angle θ2 relative to the ẑ-axis.

For J = 0 ↔ J = 1 (1S0 ↔3 P1), the Breit equation reduces to

R(f, g) ∝ R(∆µ = 0) + R(∆µ = 1) + R(∆µ = 2) (8)

where ∆µ is the integer difference in excited-state magnetic quantum numbers, and

R(∆µ = 0) =
1

2
[cos2 θ1 cos2 θ2 + sin2 θ1 sin2 θ2] (9)
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Figure 12: The arrangement of incoming polarization ~f and outgoing polarization ~g relative to the coordi-
nate axes.

R(∆µ = 1) = cos θ1 cos θ2 sin θ1 sin θ2

{

2∆Eτ/~

1 + (∆Eτ/~)2

}

(10)

R(∆µ = 2) = −
1

2

cos2 θ1 cos2 θ2

1 + (2∆Eτ/~)2
. (11)

If one imposes the condition of no polarization on either the incoming or outgoing radiation, one
must let θ1 and θ2 vary over all possible values, yielding (cos2 θn)ave = (sin2θn)ave = 1/2 while
(cos θn sin θn)ave = 0. Thus, we obtain the rate (which is related to the intensity of the fluorescence
radiation)

R(f, g) =
C ′

4

{

1 −
0.5

1 + (2∆Eτ/~)2

}

, (12)

i.e. Cases (1) and (4) combined. However, for the case in which the input radiation is plane
polarized in the yz-plane and no polarization analysis is made of the outgoing radiation, one finds

R(f, g) =
C ′

4

{

1 −
1

1 + (2∆Eτ/~)2

}

(13)

which corresponds exclusively to Case (4) and is given classically in Eq. (3) with ~ω
L

= ∆E.

One should also note the following salient features of this treatment, as applied to our experiment.
The ∆µ = 0 term contributes only a constant (magnetic-field-independent) term to the rate. The
∆µ = 1 term vanishes on the average, and the entire field-dependent effect comes from the ∆µ = 2
term. With our experimental geometry, mercury atoms are excited into a coherent superposition of
the two eigenstates of the atomic Hamiltonian with µ = +1 and µ = −1. If the separation between

these levels is small compared to ~/τ , i.e. if their energies overlap within their natural widths,

coherent effects will be observed in the emitted fluorescence radiation. And if we sweep the B-field
from negative to positive values, we observe the bell-shaped Lorentzian curve shown in Fig. 11 for
the intensity of the emitted radiation.
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Figure 13: Grotrian diagram for the energy levels of the neutral mercury atom.
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2 The Mercury Experiment

2.1 The Apparatus

In order to see the Hanle effect, our experiment will use the element mercury for the vapor in the
absorption cell. Mercury (with a 1S0 ground state) has the experimental advantage of a substantial
vapor pressure at room temperature. In addition, good mercury vapor lamps for the production of
resonance radiation are readily available. One disadvantage which Hg possesses is that its strongest
resonance line, 1S0 ↔1 P1, is in the far ultraviolet at 185 nm (see Fig. 13) where even the best optical
glass components fail. Fortunately, the first forbidden inter-combination transition, 1S0 ↔3 P1, is
a reasonably strong line owing to generous configuration mixing in mercury, and although this line
is still in the uv at 253.7 nm, it provides no exceptional difficulties as long as special quartz optics
are used throughout.

Figure 14 sketches a basic experimental setup which we could use for observing the Hanle effect.
For our arrangement, though, the ŷ-axis is vertical and does not include a polarizer-2 since we do
not wish to analyze the degree of polarization of the fluorescence radiation. There is, however, a
special liquid-cell optical filter in the location that polarizer-2 would occupy, which filters out the
visible radiation and passes uv-light, in order to make the photo-detector more sensitive to the
wavelength of interest.

The orientation of the magnetic field in our experiment is also different from that shown in Fig. 14,
where we have chosen ~B to be along the x̂-direction and Case (4) is the one of interest. If polarizer-

Figure 14: Basic setup for observing a Hanle-effect signal. The sample is contained in an absorption cell
and is excited by appropriately polarized light into a superposition of quantum states. The polarization
and intensity of the fluorescence light emitted along the B-field direction can be detected by a suitable
photo-detector.

1, which is in the incident-light path, is rotated into the horizontal direction (i.e. along the x̂-axis,
then, there is no change in polarization or intensity of the fluorescence radiation since the B-field is
parallel to the classical electron oscillation in this case and momentum ~P of Fig. 9 can not precess
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around Bx. Thus, polarizer-1 must be in the vertical direction and should be adjusted to minimize
the background light signal when Bnet = 0. Failure to properly align the polarizer will yield a
slight asymmetry in the line shape of the I-versus-B plot, with respect to reflection about Bnet = 0.
Since the transition lifetime is fairly long for mercury, the magnetic field variation which is required
to produce the Hanle effect signal is quite small (i.e. ∆B1/2 ∼ 0.5 Gauss). Thus, some care must be
taken to buck out the stray magnetic field in the lab which is dominated by the earth’s relatively
constant magnetic field.

The absorption cell must be made of quartz glass since our uv-light will not penetrate normal
pyrex glass. The shape of our cell is that of a right-cylinder with flat quartz windows on each
end. However, proper absorption cells should have the characteristic shape of a “Woods horn”
type of scattering cell, as shown in Fig. 15. The purpose of the curved taper is to prevent internal
backscattering of the incident light beam (which is therefore not fluorescence radiation). Hence,
the proper shape will reduce the field-independent background light that is picked up by the photo-
detector. Also, our cell contains a small drop of purified mercury, but the sample has not been
isotope separated. This means that it contains both odd and even nuclear isotopes of Hg with
natural abundances of 16.8% for 199Hg, 13.2% for 201Hg, and the remainder being even isotopes
with nuclear spin I = 0. This fact led to one of the main sticking points in the early theoretical
development of the Hanle effect which required 100% degree of polarization at zero field. However,
only 90% was observed in those early cells. This was later found to be due to the appearance of
hyperfine structure in the odd (I 6= 0) isotopes which must be taken into account in the proper
quantum mechanical treatment.

2.2 Determining the excited-state lifetime

Since the object of this experiment is to determine the lifetime of the 63P1 excited state in Hg, we
must also address the issue of “coherent radiation trapping” of the fluorescence radiation. This effect
is often referred to as “coherence narrowing” and is one of the major phenomena which can affect

Figure 15: Basic design for a “Wood’s horn” type of light-absorption cell.
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Figure 16: The effect of coherence narrowing on lifetimes measured at various densities of mercury vapor.
The magnitude of the variation of τ with density depends on the size and design of the vapor cell. In other
words, it is not a true density effect, but rather depends on the number of absorbing atoms along the line of
observation.

Hanle-effect measurements, such as those made in Hg. This effect results when fluorescence light
radiated by the decay of one atom is absorbed by another atom in a coherent fashion, preserving
both the phase and orientation of the electric dipole vibration of the first atom. The newly excited
atom then begins to precess in the B-field in phase with the original atom’s precession, just as if
the original excited atomic state lived longer (or equivalently had a narrower energy width). If the
vapor is dense enough, and the absorption cross-sections are fairly large, this process may occur
several times before the radiation finally escapes from the vapor, with an apparent lifetime being
equal to the sum of the individual lifetimes for each coherent absorption.

One way to minimize this effect is to construct the entrance and exit windows very near to each
other (but still at right angles). The entrance window in Fig. 15 would then be placed much
closer to the exit wall in order to minimize the thickness of the slice of vapor through which
the fluorescence radiation must pass. Another way to address this problem is to vary the vapor
density and extrapolate to 0 K. An example of this scheme is shown in Fig. 16 [from data by M.W.
Zemansky, Phys. Rev. 29, 513 (1927)]. As you can see, room-temperature Hg-vapor might show
a lifetime τ ∼ 3 × 10−7 sec, but this is not necessarily the value you will determine at your single
measurement temperature of ∼ 20◦C. The reason is that coherence narrowing depends so critically
on the size and shape of your particular absorption cell. For your information, Fig. 17 shows two
tables of lifetimes measured using the Hanle effect; the lower table lists several measurements for
the lifetime of the 63P1 exited state of Hg.
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Figure 17: The lower table shows a list of measurements of the lifetimes of the dominant excited states of
mercury. For our information, several other elements have been used in a Hanle-effect experiment, which
are shown in the upper table.
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3 Apparatus and Procedure

3.1 Overview of apparatus

The goal in this experiment is to observe the intensity of resonantly scattered radiation (light) as
a function of applied magnetic field, and from an analysis of intensity vs. applied field, derive the
lifetime of the excited state responsible for the scattering.

Figure 18: Schematic of Hanle effect apparatus.

The direction of the incident light, the direction in which the scattered light is observed, and
the direction of the magnetic field are all mutually orthogonal. The geometry of our apparatus
corresponds to Case (4) in section 1 of this write-up. The mercury cell in which the resonant
scattering takes place is located at the center of a set of Helmholtz coils. This coil pair generates
the applied field, which, having triangular waveform, varies linearly in time.

A second coil, sharing a common center with the Helmholtz pair, is used to cancel out the earth’s
field. When the axis of this coil is aligned parallel to the earth’s field, a current of approximately
200 mA through this coil, known as a bucking coil, will cancel out the earth’s field at the location
of the mercury cell. A horizontal compass and vertical tiltmeter are available in the lab to check
that the table holding the apparatus and the bucking coil are oriented such that the bucking coil
axis is parallel the earth’s field.

The applied magnetic field is swept symmetrically about zero with period slightly greater than 20
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seconds. The triangular waveform is generated by a function generator and buffered by a power
amplifier to provide the necessary current for the Helmholtz coils.

The scattered light is detected by a photomultiplier tube (PMT). Each incident photon that frees
an electron from the photocathode of the PMT results in a pulse on the PMT output. This pulse
is conditioned by several electronic circuits and turned into a TTL logic pulse. The logic pulse is
counted by an instrument known as a multichannel analyzer (MCA). The number of pulses counted
per unit time by the MCA is proportional to the light intensity.

The MCA is operated in the multichannel scaler (MCS) mode. In this mode, the MCA displays
the total number of counted pulses (counts) on the vertical axis vs. time on the horizontal axis.
The MCA is operated in this mode for the Hanle experiment, as time on the horizontal axis can
be correlated with applied magnetic field, the parameter of interest in deriving the excited state
lifetime. In the MCS mode, the MCA stops, or dwells, at each channel for a preset length of time
(called the dwell time—same for all channels), increments the number of counts in that channel by
the number of counts received during that time, and then moves on to the next channel. The time
sweep starts at channel 0, finishes at channel 1023, and is initiated when a trigger signal is received
by the MCA. This trigger signal is generated at the negative extreme of the triangular waveform.

To calibrate the horizontal axis of the MCA in terms of current, one needs to know the dwell time
of the MCA, the period of the triangular waveform, and the maximum positive and maximum
negative (termed maximum and minimum, respectively, for the remainder of the write-up) current
through the coils. The waveform period is accurately controlled by the digital function generator
maximum and minimum current values can be captured by the Keithley 2000 dmm.

3.2 Procedure

A schematic of the electronics is shown in Fig. 18. Turn on all electronics except the Exact 170

power amplifier: turn on the NIM bin, Wavetek 29 digital function generator, Keithley 2000 DMM,
oscilloscope, and small power supply located under the coils. The little supply provides current for
the bucking coil. Check that this supply is set for approximately 200 mA.

Caution: the mercury lamp emits ultraviolet light which can cause damage to your eyes. The UV
is blocked by the glass disk, but it is nonetheless prudent to avoid looking directly at the lamp even
through the protective glass. The optics in this experiment (lamp envelope, polarizer, mercury
cell, optical filter, PMT envelope) are all fabricated of quartz, which transmits UV light (light of
wavelength less than 400 nm). The glass disk which shields the lamp from direct view is made of
Pyrex which transmits visible light but blocks UV.

Turn on the mercury lamp and the power supply for the lamp cooling fan. The latter two devices
are on the cart holding the coils and apparatus.

Locate the high voltage power supply in the NIM bin; check that the voltage-adjust knobs are set
to 0 volts. Flip the switch on the upper channel (A), and slowly turn the knob so that the outer
scale shows a “1” in the little window and the dial is exactly at “.00”. This gives 1000 volts. The
current meter should be 2/3 of maximum. This power supply provides the bias for the PMT.

Caution: the UV polarizer is a very expensive—it would cost over $700 to replace. Please be
careful to avoid any contact with the surface of the polarizer when working nearby.

Check that the polarizer is set to the angle that maximizes the transmission of horizontally polarized
light, i.e., light polarized parallel to the magnetic field. This angle is noted on the polarizer holder.
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The angle reference mark is at the top of the dial. If the polarizer is not at this angle, carefully
rotate it as necessary using the small pegs on the front of the polarizer holder.

You should now be able to see the (amplified) PMT output pulses on the oscilloscope. They are of
negative polarity, approximately 10 nanoseconds in duration and 50 to 100 millivolts in amplitude.
Some adjustment of the scope triggering may be necessary to get a display of the pulses.

Once you have a display, block the light path by carefully slipping an index card between the
polarizer and the long aluminum tube and observe that the pulses disappear from the scope and
reappear when you remove the card. Observe the intensity (brightness) of the scope display as you
rotate the polarizer 90◦. Note whether the intensity of the scope display increases or decreases.
Explain your observations. Leave the polarizer in the orientation which maximizes the transmission
of vertically polarized light.

Turn the digital function generator (Wavetek 29) on. The period of the triangular waveform and
the auxiliary trigger output needs to be set so as to be in co-ordination with the MCA time sweep
(remember that the sweep is triggered at the negative extreme of the triangular waveform). The
dwell time per channel on the MCA will be set to 20 milliseconds, so the total sweep time for
all 1024 channels will be 20.48 seconds. You must adjust the frequency of the function generator
so that its period exceeds 20.48 seconds by a sufficient amount; 21 seconds is fine. (What would
happen to the data collection if the function generator period is just under 20.48 seconds?)

To adjust the frequency and waveform of the digital signal generator, follow these steps:

1. Set the FUNCTION to TRIANGLE.

2. Push the FREQ/PER button, and then use the FIELD and DIGIT buttons to position the
cursor on the numerical part of the period reading.

3. use the keypad to enter ‘2’, ‘1’, and then ‘mHz s %’ to set the period to 21 seconds.

Then set the trigger pulse phase as follows, in order to make the trigger edge line up with the
negative extreme of the triangle wave:

1. Push the EDIT and then the TRIG buttons.

2. Use the FIELD buttons to move the cursor to the phase field.

3. Push ‘9’, ‘0’, ‘+/−’ and ENTER to set the phase of the AUX OUT signal to −90◦.

A suitable range of magnetic field is ± several gauss. Given the current to magnetic field conversion
factor of 14.3 gauss/ampere, this implies a current range of ≈ ±200 mA (400 mA peak-to-peak).
With a knowledge of the coil resistance, amplifier input and output impedance and amplifier gain,
and function generator output impedance and maximum amplitude, you can estimate the amplitude
setting of the function generator necessary to produce a current of 200 mA.

• The Helmholtz coil resistance is approximately 10 ohms.

• The Exact model 170 amplifier has two possible voltage gains: ×2 and ×10. The output
impedance of the amp is 50Ω using the front panel BNC connector and 600Ω using the
banana plug connectors. The input impedance is 600Ω.
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• The maximum output from the function generator is 5 volts into a 50Ω load. The output
impedance is 50Ω.

Given these facts, draw a circuit diagram using Thévenin equivalents of the function generator,
amplifier and coils so that you can work out what peak amplitude settings and gain needed to
create 200 mA in the coils.

Then, using a procedure similar to the above for setting the frequency and auxiliary phase, set the
amplitude of the function generator output to the desired value.

Turn the Exact 170 amplifier on, and check to make sure the correct gain setting is selected.

Finally, turn the OUTPUT of the Wavetek 29 function generator to ON. (If needed, you may use
a second oscilloscope to look at the output of the function generator. One of the Tektronics digital
scopes are best here, since the waveform period is so long.)

With the Keithly 2000 dmm on, set the meter to ’DC-I’. If all is working correctly, you should see
the readings change slowly from about −0.20 A to +0.20 A (give or take). The Keithley 2000 dmm
is used to capture the maximum and minimum (most negative) current values, which you will need
in order to find the range of magnetic field applied by the Helmholtz coils. If you do not see that
the current readings are close to what was expected, try adjusting the amplitude settings a bit. If
they are way off what you expected, double check your calculations and ask for help if needed.

You will need use the Keithley meter to record the maximum and minimum current sent to the
Helmholtz coils. To do this, a set of readings is stored in the dmm buffer, and after the storage
cycle is complete, the maximum and minimum values can be read out. Instructions for using the
buffer are as follows:

Keithley 2000 settings:

Current range: 1 ampere; important: if it is set to autorange, the dmm will change ranges
as the current is being swept and introduce a discontinuity in the coil current;

Filter: OFF;
Rate: MED (medium).

With the reading rate set to medium and a waveform period of approximately 20 seconds, 1024
readings are sufficient to always capture the maximum and minimum current values.

To acquire a set of readings:

1. Press the STORE key.

2. Use the ◭, ◮, N, H keys to set the number of readings to 1024 (◭ and ◮ keys select the digit
to be set; N and H keys set the value of the selected digit); you need set this number only
once.

3. Press ENTER to initiate the acquisition of the readings. The ∗ annunciator on the front
panel will be on while the readings are being taken and stored.

To view the maximum and minimum readings:

1. Press the RECALL key; the BUFFER annunciator will come on to indicate that stored
readings are being displayed.

2. Press the H key three times to bring the buffer to the minimum reading location, and then
press the ◮ key to display the minimum. To display the maximum reading, press the ◭
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key, then the H key and then the ◮ key. To return to the regular display, push the EXIT
key. Several pages from the Keithley 2000 dmm manual are available in the lab for further
information on these operations.

3. To take another set of readings, press the STORE and then ENTER keys.

Take several sets of readings to make sure that you are capturing the maximum and minimum
values, or something very close to them. The values for the maximum and minimum should not
vary by more than ≈ ±1 mA from one set to the next.

In the MCS mode, the MCA will execute 9999 sweeps and then stop. At the top of the screen is a
sweep counter, which counts down the number of sweeps starting at 9999. To get reasonable data,
it is not necessary to sweep this many times (indeed, 9999 sweeps would take more than two days
at the typical sweep rate for this experiment). You can judge from the appearance of the data on
the screen as to when the scatter in the data has been reduced to a reasonable level and terminate
data collection at that point in time. In most cases, 30–40 minutes of data accumulation should be
more than sufficient for the data used to derive the excited state lifetime.

To check out the MCA settings, press the SET UP key and then the MCS key. Step through the
parameters by pressing the CONT key.

The parameters should be set to:

ADD (adds counts instead of subtracting them)
ALL (means data goes into all 1024 channels)
SWEEPS (you can preset the desired number of sweeps here if you like)
T/CH = dwell time (should be set to 20 milliseconds)

To exit the SET UP routine press the TERM button.

To clear the data in memory, press the following buttons in sequence: 0, GOES INTO, ALL.

To initiate data acquisition, press the RUN and then MCS buttons. For the sweep trigger signal to
reach the MCA, the Trigger Enable/Disable switch on the MCS Trigger Control box must be in the
Trigger Enable position. Check that the separate 5 volt power supply for this box is turned on. To
interrupt data collection at any time, move the switch to the Trigger Disable position. The sweep
in progress will finish and the MCA will not resume data collection until the switch is returned to
the Trigger Enable position.

To end data collection first flip the Trigger Enable/Disable switch to Disable, and let the data sweep
finish. Then press the TERM button on the MCA. (Note, When you press the RUN and MCS
buttons to start data collection again, the sweep counter will reset to 9999 or the value to which
you set it in the SET UP procedure.) Stopping data collection with the Trigger Enable/Disable
first keeps the MCA from stopping in the middle of a run. (It als allows you to preserve the sweep
count when you resume data collection, unlike stopping and starting data collection using the MCA
controls.)

To transfer data to the computer, turn on the computer and login according to the TA or manager’s
instructions (it may already be running). Open the LabVIEW application “Norland Interface”
which should be available on the desktop. When the application is loaded, start the program by
clicking on the “arrow” button at the top left corner.

When the program starts, it will show the most recent data set that was loaded from the MCA.
To transfer your data to the computer:

22



1. Make sure that the READY annunciator is visible at the lower left corner of the MCA screen.

2. Click the green “Read data from MCA” button.

3. Press “RUN” followed by the softkey “I/O” on the MCA.

You will see the “I/O” indicator light up on the MCA—this indicates that data is being sent over
the serial line to the computer. As soon as the I/O indicator goes out (about 15 seconds), you will
see your data appear on the screen.

After your data has loaded, you can save it to a file, analyze the data with the peak-fitting routine,
print the data and comments on the lab printer, and load old data sets for examination and
analysis. Instructions for the program are available from the “SHOW INSTRUCTIONS” button.
You should make sure to save your data to a floppy disk or other off-computer storage device (i.e.,
email, memory stick, etc.); we cannot guarantee that your data will remain on the computer.

The data will show two dips in the intensity corresponding to two passages through the zero field
condition. The spacing between the centers of the two dips should correspond to 1

2
the period of

the function generator, provided that the magnetic field sweep is symmetric about zero.

To determine the lifetime of the excited state it is necessary to measure the half width at half
maximum of the intensity dip, as shown in Fig. 11. You can use the peak-fitting dialog box to fit
the (inverted) peaks to a Lorentzian line shape. One of the fitting parameters controls the peak
width, and can be used to deduce the half width at half maximum. Further instructions on how to
operate this part of the program are under the “SHOW INSTRUCTIONS” button.

You will measure the half width at half maximum in channels, which can be converted to magnetic
field to derive a value for ∆B1/2. To convert to magnetic field, you will need to know

• the dwell time per channel,

• the period of the function generator, which should be twice the time separation of the centers
of the dips.

• the maximum and minimum values of the current,

• the factor by which to convert current in the Helmholtz coils to magnetic field produced by
the coils. This factor is

14.3 gauss/ampere.

Once you have determined ∆B1/2, the mean lifetime τ can be derived using Eq. 4.

3.3 Changing the polarizer orientation

Having acquired data with the polarizer in the orientation corresponding to Case (4), it is interesting
to rotate it 90◦ and observe the effect on the measured light intensity. Now, rotate the polarizer
to the orientation which maximizes the transmission of horizontally polarized light. Clear the
MCA memory and acquire data (a few tens of sweeps should suffice) with the polarizer in the new
orientation. Explain the appearance of the data, and associate this configuration of the experiment
with the appropriate Case from Section I.
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3.4 The importance of the bucking coil

Finally, in order to appreciate the need to cancel out the earth’s field with the bucking coil, it
is instructive to take short data runs with and without the bucking coil current on. Return the
polarizer to the position maximizing the transmission of vertically polarized light. With the bucking
coil current still on, clear the memory and set up the MCA to acquire data over 20 sweeps. Save
this data on the computer. Now turn off the current to the bucking coil. Clear the memory and
again acquire data over 20 sweeps. Compare the results for bucking coil current on and off and
explain the qualitative differences.

3.5 Shut down

Turn off all the electronics, except the lamp cooling fan (don’t forget the bucking coil power
supply). After the lamp has cooled a minute or two, turn off the cooling fan. Place the cover over
the polarizer.
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