
Optical-Pumping Method

1 Purpose

The object of this experiment is to measure the energy splitting of the hyperfine structure of the
lowest energy state of rubidium which is subjected to a uniform magnetic field whose magnitude
can be determined by other means. From the method called “optical pumping”, you will deduce
the frequency of the RF-transitions in this magnetic dipole interaction which will then allow you
to determine the g-factor of the resultant magnetic moment for two isotopes of Rb in a series of
measurements with progressively increasing sensitivity:

• A rough measurement performed by sweeping the uniform magnetic field and finding the
frequency of an applied transverse RF field at which de-pumping occurs at a particular spot
along the sweep.

• A second measurement performed by finding the transverse field frequency at which the
amplitude of Rabi oscillations are maximal.

• A third measurement using the dependence of the Rabi oscillation frequency as a function of
amplitude of the transverse RF field.

The results of these measurements will be used to also find the ratio of the g-factors for the two
isotopes. You will note that this experiment requires the conservation of both energy (in the
resonance phenomenon) as well as angular momentum (in the absorption of photon quanta) in
order to proceed.

The Nobel Prize in Physics was awarded to Alfred Kastler for his pioneering work on this highly
important experimental method. Kastler (with the help of Jean Brossel) was the first to propose a
successful optical method to investigate RF resonances in atoms. He believed that selected magnetic
sublevels could be excited from higher lying energy levels using polarized light having the correct
resonance frequency. In 1952, Kastler performed an experiment that confirmed the practicality of
his recommendation and the validity of his theory. Other important developments that followed as

a result of Kastler’s work include such things as lasers, sensitive magnetometers, and atomic clocks.

2 Theoretical background

2.1 Thermal population distribution

The atoms of some material at a specific temperature, T , are usually distributed amongst a number
of different energy states. Under ordinary conditions, the higher the energy level, the smaller the
number of atoms in each level. Thus, the lowest energy state is generally populated to the greatest
amount. Such a distribution is referred to as a thermal distribution. The relative population of
any two (negative) energy levels, E1 and E2 with E1 < E2, is given by the Boltzmann factor such
that

N2

N1
= e−(E2−E1)/kT . (1)
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This relation yields the fractional difference in population, ∆N
N = 1 − N2

N1
given approximately by

∆N

N
≈

E2 − E1

kT
(2)

when the energy kT is much larger than the energy difference between levels. Of course, in the
absence of an external field, all of the magnetic substates are equally populated, since they all have
the same energy.

Exercise 1 For fields on the order of a Gauss, and for temperatures typical of those used in this

experiment, verify that the fractional excess population is less than 0.1 ppm in level-1. Thus,

ground-state rubidium atoms indeed reside with equal populations throughout all of its magnetic

substates.

2.2 Example: A simple 1-electron system

Under the right conditions, it is possible to cause the atoms to have a different distribution. When
a non-thermal distribution is achieved by using a source of light, the process is then called “optical
pumping”. In order to see the essence of this scheme, let us first describe a simple energy level
system (with no hyperfine structure as described later in this write up) for a sample of gas atoms
which has a 2S1/2 ground state and a 2P1/2 excited state. Assume in this case that the atoms in
the sample are all found in the ground state with its magnetic sublevels equally populated. In a
weak magnetic field, the energy level diagram will look something like that shown in Fig. 1.

Figure 1: Hypothetical energy level diagram showing each fine-structure term split into doublets
by the magnetic interaction. The optical absorption of a photon polarized in the σ+ state, shown
with state-A → state-D, corresponds to +1 change in the magnetic quantum number (∆mS = +1).
Note, however, that spontaneous emission has equal probability of ending with states A or B.
Repeated absorption-emissions would eventually populate state B above the thermal-equilibrium
value.

[Note: The theory section of the “Zeeman Effect” write-up reviews the rules for “Russell-Saunders
coupling.” This first-order energy coupling (or so-called spin-orbit interaction) yields the fine-
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structure in the energy level diagram, i.e. the primary energy separation between the 2P1/2 and
the 2S1/2 states when the magnetic interaction is absent. Also in the “Zeeman Effect” write-up is
a good description of the semi-classical vector model for angular momentum addition.]

In the presence of a magnetic field, the degeneracy between the ms sublevels is lifted. The sublevel
energies acquire an additional term due to the spin’s orientation relative to the direction of the
magnetic field, ~H0:

E(magnetic) = gsµB
H0ms (3)

where µ
B

= e~/2me is the Bohr magneton and gs is the electron’s Lande g-factor whose tiny
difference from exactly 2.0 (as predicted by Dirac) is due to fluctuations in the electromagnetic
vacuum. The quantity, ms, is the magnetic quantum number which can have a value of either +1

2
or −1

2 , depending on the spin’s alignment with the direction of the magnetic field.

Now assume that some resonant optical radiation impinges on the atoms in the sample, and the
energy of that radiation is absorbed as indicated by the upward pointing broken arrow. The
selection rules for the absorption of electric dipole radiation into the excited state from the ground
state are ∆ℓ = ±1 and ∆ms = 0,±1. The first selection rule is valid because the transition is
2S1/2 → 2P1/2 with ∆ℓ = +1. As for the second rule, assume that the impinging radiation is
circularly polarized. This rule indicates that ∆ms = +1 or ∆ms = −1, but not both. Which one is
valid depends on the the direction of the magnetic field relative to the direction of light propagation
as well as the direction of circular polarization. If the angular momentum of the photon (according
to the electric field’s rotation by the right-hand rule) is along the direction of propagation of the
light (i.e. the direction of the photon’s momentum), the light is said to be right-circularly polarized
and is given the notation σ+. This polarization state produces ∆ms = +1 transitions. Likewise,
left-circularly polarized σ− light will produce ∆ms = −1 transitions.

Figure 1 illustrates the absorption of σ+ light which only allows a transition from state-A to state-D.
Assuming no disorientation by collisions occurs during the lifetime of about 10−8 seconds for this
excited state, the atom will fluoresce from state-D to state-A and state-B with equal probability.
Thus, some of those atoms leaving state-A do not return to state-A, but end up in state-B. Without
any means of transferring atoms from state-B back to state-A, the ensemble of atoms in the sample
will all eventually end up in the higher energy state-B, thus producing a non-thermal population
distribution.

If one is observing the intensity of the light transmitted through the sample, one initially notes
the existence of absorption by the reduction of the light intensity, but as the state-B becomes fully
populated, the gas becomes transparent and the light intensity through the gas is at a maximum. In
a real system, state-B may not become fully populated because the final distribution will depend
on such parameters as the intensity of the pumping light (see Sec. 3.1), the relative transition
probabilities of multiple allowed states (which might compete for sublevels), and the relaxation
rates through various internal-gas or wall collisions.

2.3 Hyperfine structure interaction

The main features of atomic spectra for atoms with one optically-active electron are associated
with the interaction of the spin magnetic moment of that electron and its orbital magnetic moment.
These features have become known as the “fine structure” of the atomic spectra because they showed
up first with improved resolution of optical spectrometers. One can show that the interaction
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responsible for the fine-structure energy shift is given by

∆E(fs) = aL · S (4)

where L and S are the orbital and spin angular momentum quanta, respectively, and the fine-
structure coupling constant a is given by

a ∝
1

r

dV (r)

dr
∼ µ2

B

〈

1

r3

〉

. (5)

The function V (r) is the electrostatic potential of the nuclear charge as it interacts with the
electrons orbiting the nucleus. The spatial average (denoted by the angle brackets) is taken using
the electronic wave-function ψe.

As spectrometer resolution was further improved, a still finer structure was observed, now referred
to as the “hyperfine structure” of the atomic spectra. When the nucleus is given the added property
of quantized angular momentum, I, we see that a nuclear magnetic moment, ~µ

I
, will exist. Its

interaction with the magnetic field produced by the atomic electrons at the position of the nucleus
is given by

∆E(hfs) = AI · J (6)

where J is the sum of L and S and the hyperfine-structure coupling constant A depends on the
nuclear magneton but is otherwise similarly dependent on r as the fine-structure interaction above:

A ∝ |ψe(0)|2 ∼ µnµ
B

〈 1

r3

〉

. (7)

In this case, r represents the electron’s radial distance from an assumed “point” dipole located at
the center of the nucleus. The nuclear magneton µn = µ

B
me/mp is 1836 times smaller than the

Bohr magneton. Thus, ∆E(hfs) is typically three orders of magnitude smaller than ∆E(fs). In
weak external magnetic fields, the strong coupling of angular momenta, I and J, yields another
quantum mechanical angular momentum F which is the vector sum I + J. Thus, F is quantized
with values ranging from I + J to |I − J |. It should be noted that transitions between levels of
different F , which are referred to as the hyperfine transitions, will involve absorption or emission
of magnetic dipole radiation (to change direction of a nuclear magnetic moment) with ∆F = 0,±1
only. Likewise, transitions between different m

F
levels with F remaining constant comprise the

Zeeman transitions (which are also due to magnetic dipole interactions), but now with ∆m
F

= 0,±1
only.

2.4 g-Factor calculations

Before proceeding to the rubidium experiment, let us first review the rules for computing the
g-factors associated with a magnetic moment that depends on the coupling of the spin angular
momentum ~S = S~ and the orbital angular momentum ~L = L~. The associated magnetic moments
are

~µ
S

= −gs ·
µ

B

~

~S (8)

~µ
L

= −gℓ ·
µ

B

~

~L (9)

where the quantum mechanical values for the angular momenta are

|~S| =
√

S(S + 1)~ (10)

|~L| =
√

L(L + 1)~ . (11)
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The above magnetic moments add vectorally to yield magnetic moment, ~µ, which precesses around
an axis parallel to the resultant angular momentum, J = L + S with quantum-mechanical value
√

J(J + 1)~. However, the magnetic behavior of this system depends only on ~µ
J
, the component

of ~µ in the direction of ~J = J~ where

~µ
J

= −g
J
·
µ

B

~

~J . (12)

Figure 2 illustrates the vector addition of L and S as well as the associated magnetic moments.
The component, µ

J
, is given by the relation

Figure 2: Origin of magnetic moment ~µ
J
. It should be noted that the direction of the angular

momentum vectors is opposite to that of the corresponding magnetic moments.

µ
J

= µ
L

cos θ
LJ

+ µ
S

cos θ
SJ

(13)

where the law of cosines yields

L2 = S2 + J2 − 2SJ cos θ
SJ

(14)

S2 = L2 + J2 − 2LJ cos θ
LJ

. (15)

Upon substituting for the magnetic moments given in (8), (9) and (12) , one obtains

g
J
J = g

L
L cos θ

LJ
+ g

S
S cos θ

SJ
. (16)

Finally, upon substituting for the values of the cosines in (14) and (15) into (16), using the fact
that gℓ = 1 and gs ≈ 2, and solving for the g-factor g

J
, one obtains

g
J

= 1 +
J(J + 1) + S(S + 1) − L(L + 1)

2J(J + 1)
. (17)

Following the same procedure for the hyperfine structure using

~µ
I

= −g
I
·
µ

n

~

~I (18)
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for the magnetic moment associated with nuclear spin angular momentum ~I = I~, you should be
able to show that the hyperfine g-factor g

F
is given by

g
F

= g
J

F (F + 1) + J(J + 1) − I(I + 1)

2F (F + 1)
− g

I

(

µ
n

µ
B

)

F (F + 1) + I(I + 1) − J(J + 1)

2F (F + 1)
(19)

where the second term in the above is often ignored since µ
n

is three orders of magnitude smaller
than µ

B
:

µn

µ
B

=
me

mp
. (20)

2.5 Rabi Oscillations

In this experiment we prepare a fully pumped state and then introduce an oscillatory field that
drives transitions to neighboring states. Under the right conditions, the system will undergo Rabi

Oscillations (named after I. I. Rabi, usually pronounced “robby”), an effect similar to what one
sees in pulsed nuclear magnetic resonance, and important for quantum computing among other
applications. Rabi oscillations are seen as a periodic variation in the intensity of the light, caused
by the forced population and depopulation of the states that can absorb the polarized light.

Consider a spin-J system in a constant magnetic field ~H0 = H0ẑ, with magnetic moment ~µ =
gJµB

~SJ , where ~SJ is the J-dimensional spin operator. The state splits into 2J+1 sub-states with
Zeeman splitting ∆E = gJµBH0. For simplicity, we will consider just two states (e.g. states A and
B of Fig. 1, corresponding to a spin 1/2, with ~SJ = ~σ/2, where ~σ are the Pauli spin matrices.)
The energies of each state are EA = −∆E/2 and EB = +∆E/2.

Let the system begin in the fully pumped state, i.e. |ψ(0)〉 = |A〉. On timescales short compared to
the pumping time, in the field ~H0 the system would remain in state |A〉. However, if at time t = 0,
we turn on an oscillating transverse field ~H1 = H1 cos ωt x̂, |A〉 is no longer an energy eigenstate,
and the system will evolve into some linear combination |ψ(t)〉 = cA(t)|A〉+ cB(t)|B〉. To compute

|ψ(t)〉, we evolve the system with the Hamiltonian: |ψ(t)〉 = eiH
~

t|ψ(0)〉, where H = −~µ·( ~H0+ ~H1).
We find that the population of state 1 oscillates in time as

c2
A(t) = 1 −

(ω1

Ω

)2
sin2

(

Ωt

2

)

, (21)

where ~ω0 = gJµBH0, ~ω1 = gJµBH1, and Ω is the “Rabi frequency,” given by

Ω =
√

ω2
1 + (ω − ω0)2 (22)

The oscillation is maximal when the frequency of the transverse field matches the energy splitting
∆E, which corresponds to the resonance condition ω = ω0.

Note that on resonance, the Rabi frequency depends linearly on the strength of the transverse
field H1. If the H1 field strength is not spatially homogeneous across the system, the system will
oscillate with a distribution of Rabi frequencies. At small t, the oscillations will be in phase, with
apparent frequency 〈Ω〉 given approximately by the average field strength 〈H1〉. At longer t, the
oscillations will begin to decohere, and the oscillation envelope will decay. The contribution to the
decay constant from decoherence is given roughly by 〈Ω〉/σ2

Ω, where the denominator quantifies the
variance of the frequency distribution.
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For higher spin systems, the Hamiltonian H drives transitions from the pumped state not just into
the neighboring state, but also into all other spin states. Yet qualitatively the system still exhibits
a pumped state population that oscillates at frequency Ω. Semi-classically, one can imagine that
in one Rabi cycle those atoms in the pumped state will mostly transition to the neighboring state,
while in the next cycle half will return to the original state, and the other half will go to the
next neighboring state, and so on. However, in our setup, pumping continues even while we are
generating level mixing with H1. In every time interval a fraction of those atoms not in the pumped
state are re-pumped back into it, leading to further degradation of the Rabi oscillations. Ultimately
a balance is achieved between coherent depopulation of the pumped state via H1 and incoherent
repopulation of the pumped state via optical pumping, and the system levels off to a steady state.
With a constant rate of pumping, the population of the pumped state at long times can be made
higher or lower by decreasing or increasing H1, respectively.

3 The rubidium experiment

For this experiment, a special apparatus has been constructed whose purpose is to be compact and
self-contained, but its components can not be readily viewed. The apparatus is housed inside of
a phenolic tube, which also gives it some thermal isolation from the environment. As shown in
Fig. 3, the phenolic tube contains the Rb-spectral lamp, a lens, an interference filter, a circular
polarizer, the Rb-absorption cell, and a photo-diode detector. The converging lens is needed in
order to collect the diverging rays from the spectral lamp and produce a parallel beam of light
that propagates along the axis of the tube, through the absorption cell, and onto the photo-diode
detector. A mask in the form of a thin disk with a small hole is placed directly in front of the
Rb lamp. It prevents light reflected by the concave mirror in back of the lamp from entering the
absorption cell. Since most of this reflected light would not be parallel to the z-axis of the tube
(and therefore not be parallel to the ~H0 field), it would cause a broadening of the resonance which
is observed when applying the perpendicular RF magnetic field, ~H1. Although the mask cuts down
on the intensity of the transmitted light being detected, the linewidth of the resonance is narrowed
considerably. In order to eliminate the D2 spectral component in this light beam, an interference
filter which is strongly peaked at 794.8 nm (the D1 line) follows the lens. Next, a linear polarizer
and quarter-wave plate are mounted in the light path, immediately before the absorption cell. This
combination serves to circularly polarize the light from the Rb-lamp. The light coming out of the
linear polarizer (which is linearly polarized) is set at a 45◦ relative to the slow and fast axes of the
quarter-wave plate; then the relative phases of the fast and slow components of the light’s electric
vector change by 90◦ in order to produce circularly polarized light. Finally, a 5-cm diameter, 7.5-
cm long absorption cell follows, containing the tiny amount of purified rubidium metal. In order
to increase the degree of polarization of the optical-pumped sample, 50 Torr of neon buffer gas is
included inside the absorption cell. In addition, the cell walls are prepared with a thin coating of
tetracontane which is a long-chain saturated hydrocarbon. Such films have been found to reduce
the wall-relaxation rate by more than a factor of five.

In order to produce the time dependence in the polarization of the sample, a solenoid is wound
around the phenolic tube such that the axis of the ~H0-modulation field is co-linear with the
direction of the pumping light. In order to increase the essential uniformity of this field, the coils
are made about twice the length of the absorption cell. It is crucial that the ~H0-modulation field

be made parallel to the Earth field so that the two can be added like scalars. The other method of
treating this problem (which we do not use) is to buck out the Earth field using special Helmholtz
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Figure 3: Experimental arrangement of optical components in a phenolic tube that comprise the
optical pumping system. The polarizer and quarter-wave plate are mounted together, but the
polarizer must be closer to the Rb-vapor lamp.

8



coils, known for their high-degree of uniformity. To complete the configuration that yields the time
dependence of the sample polarization, another set of modulation coils are wound outside of the
~H0 solenoid (windings not shown in Fig. 3) in order to produce a perpendicular ~H1 rf-field that
will be used to disorient the polarization of the sample.

In this particular experiment, the rubidium metal, which is sealed into the glass cell, should be
heated above the metal’s 38.5◦C melting point. At room temperature, the absorption cell should
contain enough rubidium vapor in order to get a weak resonance signal. The signal will improve
a lot after allowing the lamp to warm the cell: about an hour of warm-up is sufficient. The large
aluminum housing that holds the cell also insulates it thermally. [If this is not the case, the cell can
be heated gently by blowing warm air from a hair dryer through the aluminum tubes that shield
the phenolic tube assembly. This should only be done with the guidance of one of the TA’s in the
lab.]

There are two common isotopes that are present in the resulting vapor, 85Rb with nuclear spin
I = 5/2 and 87Rb with nuclear spin I = 3/2, whose relative abundances are 72% : 28% respectively.
When this vapor cell is placed in a weak magnetic field, the Zeeman splitting of the hyperfine
structure is created. A schematic energy-level diagram for the single optically-active electron in
87Rb is shown in Fig. 4. Note the relative energy separations between the fine structure splitting,

Figure 4: A diagram of the energy levels of 87Rb with I = 3/2.

the hyperfine-structure splitting, and the Zeeman splitting. These are clearly not shown to scale;
if they were, they would then be 1,500,000,000 : 27,000 : 1 in relative proportion.

For 85Rb, the nuclear spin of 5/2 generates hyperfine levels F = 2 and F = 3. Using the expected
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magnetic interaction in the hyperfine Zeeman structure

∆E(magnetic) = hν
F

= g
F
µ

B
H0∆m

F
, (23)

you should be able to show that the energy differences arising from the ∆m
F

= 1 transitions using
85Rb instead of 87Rb are 2/3 as large.

3.1 Time dependence of optical pumping

Atoms in the fully-pumped state tend to become disoriented mainly because of collisions with the
glass walls. The fully-pumped state is called “fully oriented” because the m sublevel is maximized
making the magnetic moment greatest along the direction of the magnetic field. The rate of
disorientation is called the “relaxation rate.” On the other hand, a disoriented atom becomes
oriented through optical pumping, and this process leads to a competing “orientation rate.” Both
processes determine the overall rate at which the gas of atoms reaches its maximum orientation
and the steady-state value of maximum orientation that can be sustained with the pumping light
on. The time constants of the overall process can be studied by observing the oscilloscope trace,
similar to that shown in Fig. 5, as the sample proceeds from the completely disoriented state to the
maximally-pumped state. If one can control the intensity of the pumping light, it becomes possible

Figure 5: Trace of the transmitted light intensity versus time. The level marked I∞ represents
the fully-pumped state and the level marked I0 is the initial intensity after the disturbance to the
fully-pumped state. The horizontal scale is 2.5 ms per major division.

to extract the disorientation rate alone from such traces, as will be evident from the discussion
below. Unfortunately, for our old optical pumping system, the pumping light intensity is fixed.

For the sake of simplicity, the following discussion of the two rates assumes that there is only the
87Rb isotope in the cell. First we must prepare the sample. Let D1 radiation at 794.8 nm be
incident on the cell, causing absorption from 2S1/2 → 2P1/2. If the light has σ+ polarization, then
in the absence of collisions, all the atoms will end up in the F = 2, m

F
= 2, sublevel, as described

earlier. This represents the fully pumped state which can no longer absorb electric dipole radiation
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at the D1 wavelength. It is important that D2 light must not be available, or else an escape channel
is opened to the 2P3/2, F = 3, m

F
= 3 excited state, and atoms in this state experience a higher

relaxation rate by collisions with the background vapor.

Now, we apply an RF magnetic field ~H1 to the sample at right angles to the weak dc ~H0 field
aligned along the axis of the phenolic tube shown in Fig. 3. Further assume that the frequency
of the ~H1 field is close, but slightly above ν

F
where hν

F
represents the energy difference between

adjacent magnetic sublevels in the 2S1/2, F = 2 ground state. By slowly ramping up H0, the ~H1

field can become resonant to this energy spacing and thus induce rapid absorption or stimulated
emission by induced magnetic dipole transitions. This process induces a rapid de-orientation of the
atoms, much faster than through collisions, since it tends to equalize the population in the Zeeman
sublevels and destroy the original magnetic orientation corresponding to the sample being in the
fully-pumped ground state.

The trace was made in Fig. 5 using the same ramp to generate the time sweep for the oscilloscope’s
horizontal scale as used to sweep the H0 field. The slope of the initial sharp drop in intensity, from
the I∞ level to I0 (from left to right), depends on the degree of homogeneity of the H0 field across
the sample cell. If the field were completely homogeneous, this edge would be exactly vertical. As
it is, the atoms in the cell become disoriented at different locations throughout the sample volume,
causing the initial non-vertical slope.

As soon as all parts of the sample have passed through resonance with the ~H1 field, the pumping
process becomes evident as the light transmitted through the sample begins to increase in intensity.
In effect, we assume that the pumping process consists essentially of raising atoms indiscriminately
from all the other ground-state sublevels to the m

F
= 2 ground sublevel. Let dn/dt be the rate of

change of the m
F

= 2 ground-state population, n, and let dN/dt be the rate of change of population,
N , for all other ground-state sublevels (m

F
6= 2). Further, define Wddt to be the probability for

downward transitions from the m
F

= 2 level (mostly via collisions), and define Wudt to be the
probability for upward transitions to the m

F
= 2 level (via the pumping light). As for our initial

conditions at t = 0 when I = I0 (the lowest intensity level of the transmitted light), let n = n
0

(the initial population of the m
F

= 2 sublevel) and N = N0 (the initial population of all other
ground-state sublevels). The rate equations for the time-dependent values of these populations
becomes

dN

dt
= nWd − NWu (24)

dn

dt
= NWu − nWd . (25)

The solutions to these two rate equations consistent with initial conditions are

N = N0 − C(1 − e−t/τ ) (26)

n = n
0
+ C(1 − e−t/τ ) (27)

where τ ≡ (Wu + Wd)
−1 and C = (N0Wu − n

0
Wd)/(Wu + Wd).

Finally, if one assumes that the transmitted intensity is proportional to the number of excess atoms
in the m

F
= +2 ground sublevel, according to I = α(n − N), it follows that

I = I∞ − αCe−t/τ (28)

where αC = I∞ − I0 is the amount of light lost at full disorientation. The above equation is in
qualitative agreement with observed results. At t = 0, when the sample is completely disoriented,

11



I is a minimum. Thereafter, as the pumping proceeds, I increases exponentially to the limit, I∞.
The quantity τ can thus be estimated from the slope and magnitude of the curve in Fig 5 at any
point:

dI

dt
=

I∞ − I

τ
. (29)

Note also: if the light intensity is reduced, Wu must reduce (because of fewer photons available to
make upward transitions), and thus C would approach zero. However, for pumping to occur, C
must be positive which yields

Wu ≥
n

0

N0
Wd . (30)

Let (1/τ)min be the rate measured at minimum pumping light. Since 1/τ ≡ Wu + Wd, it then
follows that

(

1

τ

)

min

→

(

n
0

N0
+ 1

)

Wd (31)

where W−1
d is a measure of the relaxation time by all causes from the fully pumped state.

For 87Rb, n
0
/N0 is equal to 1/7, assuming equal populations in all eight ground-state sublevels.

Thus, in the limit as the pumping light intensity is reduced, the rate back to the pumped state
becomes τmin(87) = (7/8)W−1

d . And for 85Rb, n
0
/N0 is equal to 1/11, so τmin(85) = (11/12)W−1

d .
This suggests that the rate from a fully disoriented sample towards maximally pumped one should
be slightly quicker for the 87Rb atoms than for the 85Rb atoms, assuming that the processes that
cause relaxation do not depend on the isotope.

4 Procedure

In this experiment you will determine the g-factor for the ground state of the two isotopes of
rubidium, 85Rb and 87Rb. You will investigate the time constant τ for pumping the Rb atoms into
the highest Zeeman (magnetic) sublevel of the ground state under two experimental conditions:
1. Equalizing the populations of the ground state sublevels by passing through the resonance
condition; 2. completely inverting the ground state sublevels by reversing the magnetic field. You
will also estimate the field inhomogeneity across the Rb cell, expressed as so many ppm/cm.

4.1 Preliminary procedure

A diagram of the setup is shown in Fig. 6. Turn on all the electronics. The power supply for the
Rb lamp should already be on; the resonance signal does not achieve full intensity until the lamp
has been on for an hour or so. The power switch for the ADA400A preamp power supply is on the
back of the black box. Other equipment settings follow.

Rb lamp power supply

Turn on the Power switch, and then after the current comes up turn on the Standby switch.

Current should read 22–25 mA.
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Figure 6: Setup of the optical pumping apparatus for the H0 sweep experiments.

ADA400A preamp

Signal to +input, AC coupled, −input switch set to ground;

Gain = 100;

3 kHz upper bandwidth;

Offset OFF;

Output (from black box/power supply) goes to digital scope, Ch1.

AFG3022B function generator Ch1 Ch1 provides the sweep of the H0 field. Select Ch1 by
pressing the Ch1/Ch2 button to enable channel 1 (yellow trace).
Run Mode: Continuous

Function: Ramp. Then under Ramp Parameter Menu select 100% Symmetry. This makes a
positive ramp (shown in Fig. 7).

Frequency = 50.000 Hz;

Amplitude = 2.00 V(olts pk-pk)

To change the amplitude, for example, press the Amplitude/High button, enter the desired
voltage with the number keys and then press the softkey for the appropriate unit (V). This
is the general scheme for changing the value of any parameter on this generator: press the
button for the desired parameter, enter the desired numerical value, then press the button
for the desired units.

Offset = 0.00 V;

Ch1 output goes through 50Ω resistor to apparatus and to scope, Ch1. TTL out goes to AUX
input on digital scope to provide external trigger. Press Output On to turn on generator
signal.
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AFG3022B function generator Ch2 Ch2 provides the H1 resonance RF field.
Run Mode: Continuous

Function: Sine

Frequency ≈ 220 kHz

Amplitude = 2.0 V pk-pk;

Offset = 0.00 V;

Ch2 output goes to back side of Rb Lamp Supply labeled “H1 FN GEN.” Press Output On
to turn on generator signal.

Tektronix digital scope The settings below are approximate. Adjust as needed to make an
easy-to-see picture.
Horizontal: 5–10 milliseconds (ms) per division

Vertical: Ch1, 1 V per division, Ch2, 20 mV per division.;

Trigger source: AUX, Use a TTL level: 1.4 V trigger level;

Cursors: OFF;

Averaging feature: OFF.

Before attempting to observe a signal, make sure that aluminum cylinder holding the apparatus
is aligned parallel to the Earth field. A compass/tiltmeter is available in the lab to indicate the
direction of the Earth field. To use the tiltmeter, first set it horizontal (like a compass) to find
magnetic North, and align the long edge of wooden base of the aluminum tube with this direction.
Then rotate the tiltmeter in its holder so that it will follow the vertical component of the Earth
field. Align the tilt of the tube to be parallel to the tilt-meter needle.

The tiltmeter should not be left close to the apparatus, as the magnetic fields from the needles will
distort the field inside the apparatus resulting in a distorted output signal.

Having set the equipment as indicated above, you should see a signal something like that in Fig. 7.
If you do not see anything like the dip in the Ch1 signal, adjust the frequency of the RF channel
(Ch2) between 200 and 280 kHz. (Press Frequency/Period and use the knob.) This channel provides
the H1 (see Fig. 3) signal which disorients the polarization upon passing through the resonance
condition. If you still don’t see anything, make sure all the equipment is on, and check all of the
above settings. If you still don’t see a signal, consult with TA, Professor or lab manager.

To get a more stable pattern on the scope, you can display the average of a number of sweeps.
To activate this feature, press the ACQUIRE button, set Average to be on and set the number of
sweeps to be averaged with the knob at the upper left of the control panel. Averaging just 2 or 4
sweeps will significantly reduce the noise and stabilize the trace while still allowing for a fairly fast
response time.

If you are using the Tektronix MSO2024 digital scope, you can save a screenshot to a USB memory
stick. Insert the stick into the USB port at lower left. Then press Menu in the Save/Recall buttons
and follow the instructions. (Or, you could take a picture with your phone or tablet.)

If the scope you are using is attached to a printer, push the HARDCOPY button on the scope and
the printer underneath the scope will print the screen. To get a less cluttered printout, press the
REMOVE MENU button to the lower right of the screen.
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Figure 7: Initial signal from the optical pumping experiment. The resonance dip shows the effect of
disorienting the polarization of the Rb atoms leading to an increase in the absorption of the light.
As optical pumping proceeds, the cell becomes more transparent.

4.2 Measurements to determine g
F

The first set of measurements will be to determine the resonant frequency, fres , for the H1 signal.
Once this frequency is determined and the static H0 field, i.e., the Earth field, is measured, one can
derive g

F
using Eq. (23). The simplest way to proceed would be to measure the frequency of H1

at the zero crossing of the H0 sweep field. But this method would provide only one measurement
from which to derive g

F
. A better method is to introduce a series of offsets in H0, measure fres at

each offset, and then derive the frequency at zero offset from a least squares fit of the data. We
shall follow this method to determine g

F
for both isotopes of rubidium. We will also be able to

determine the offset necessary to cancel the Earth field altogether, since from Eq. (23) one can see
that fres = 0 when H0 = 0.

After getting a signal like that in Fig. 7 on the scope, turn on the scope cursors (press CURSORS
button) and select the vertical cursors. Move a cursor by rotating the multipurpose knob at the
upper left of the control panel. Set the left cursor just on the vertical edge of the ramp waveform,
as in Fig. 8. Make sure that the frequency of the H0 sweep is exactly 50 Hz. Set the right cursor at
∆ = 10.0 ms (milliseconds). This is just 1/2 the period of the H0 sweep waveform and is therefore
the zero crossing of this waveform when there is no offset.

Check that the OFFSET of the H0 sweep channel is set to 0. Adjust the frequency of the H1

generator until the leading edge of the dip is centered on the right cursor as in Fig. 8. Note
the frequency of H1; it should be approximately 220–250 kHz. To see how reproducible this
measurement is, you may want to move the dip away from the cursor by changing the frequency
and then back to where the leading edge is again centered on the cursor. You can get some idea
of the uncertainty by repeating this process several times. You should get at least three significant
figures on your frequency measurements; for fine tuning, the frequency increment should be 0.1 kHz
(or smaller). Check that the time interval between the cursors is still 10 milliseconds. It should
remain at 10 milliseconds for this entire set of measurements.
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Figure 8: Scope setup used to find H0. Note that cursors are set to span the range from the
beginning of the sweep to the exact midpoint (10 ms). The frequency of H1 is adjusted to position
the dip at the midpoint cursor.

Now introduce an offset into H0 by setting the offset to 0.1 volt (With Ch1 active, press Offset/Low.
You figure it out from here.) Adjust the frequency of H1 until the leading edge of the dip is again
centered on the right cursor. Again note the frequency. Repeat this process for a series of offsets
between −3.00 volts and +1.00 volts. When you analyze your data, perform a (linear) least squares
fit for fres vs. Voffset to obtain the value of fres at zero offset. This will be the resonant frequency
in the Earth field. You will measure this field using the Hall effect gaussmeter at the end of the
experiment.

As you obtain the data, make a plot in order to obtain the offset at fres = 0. This will be useful
later when measuring the relaxation times, as it will give the offset necessary to null the Earth
field.

Set the H0 offset to zero. Adjust the frequency of H1 to about 330 kHz. You should again see a
dip similar to the one you observed at 220 kHz with no offset. The dip at 330 kHz is smaller as it
is due to the 87Rb isotope which has ≈ 1/3rd the abundance of the 85Rb isotope. You may want
to rescale the vertical gain in order to see the resonance more clearly, and take advantage of the
averaging feature of the digital scope to clean up the trace. Make sure the time interval between the
cursors is still 10 milliseconds and the H0 frequency is still set at 50 Hz. Now repeat the process of
introducing a series of offsets, centering the leading edge of the dip, and noting the frequency, just
as for the 85Rb isotope. Again, as part of your analysis, perform a fit for these data to determine
the resonant frequency H1 in the Earth field and the offset necessary to null the Earth field.

Exercise 2 It is interesting to see just how sensitive the signal is to any change in the magnetic

field at the location of the Rb cell. A small magnet is available for this test. With a resonance dip

like that in Fig. 7 displayed on the scope, start far away from the cylinder and slowly bring the

magnet close to the aluminum cylinder as you observe the effect on the scope waveform. Then see

what happens when you flip the magnet, and bring the opposite end to the cylinder. Can you explain

what you see, both in the direction of the shift of the resonance and in how the shape changes?
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Exercise 3 Following the description in section 3.1, estimate the re-pumping time constant τ for

both Rb isotopes. Do they differ? By how much? Is the difference consistent with the expected

behavior predicted in section 3.1?

4.3 Another method of observing optical pumping

There is another way to observe optical pumping without using the perturbation of the H1 field.
The idea is to redistribute the population of the magnetic sublevels of the ground state when they
are in the fully pumped condition. Given the configuration of the experiment, changing anything
about the light is not possible. But we do have other ways to control the applied field. Note that
when taking measurements to determine g

F
, the net magnetic field never changed polarity (how

do you justify this claim?). But what if the magnetic field were to reverse polarity? Referring to
Eq. (23), if H0 changes to −H0, the energy changes sign. This implies that atoms in the m

F
= +1

and +2 states are now in the m
F

= −1 and −2 states, respectively. But this is just the goal we
were seeking—to change the population distribution of the magnetic sublevels. After flipping the
field from H0 to −H0, transitions with ∆m

F
= +1 are again possible, and pumping action can be

observed. Question: are both isotopes participating in the pumping action under these conditions?

Set H1 = 0 by turning off its channel. Select the square wave waveform on the H0 channel, set
the amplitude to 0.6 volts, and the frequency to 7 Hz (this is a frequency that will allow for
averaging out the 60 Hz noise; to see that this is important, try a frequency of 20 Hz). From your
graph of Voffset vs. fres which you made during the procedure to determine g

F
, determine the offset

corresponding to fres = 0; this gives the condition necessary to null the Earth field. Set the offset
on the H0 channel to this value. What do you expect to see when the square wave transitions from
one level to the other? Change the offset in the positive direction by several volts. What happens
to the signal? Change the offset in the negative direction. What do you see now? Finally, adjust
the offset slightly to find the value where the signals on both edges of the square wave are most
nearly equal. (Note: you may find that as you move the offset up and down that you hit a point
where the generator display shows an error; this means you have reached the limit of the generator
output. The generator can produce a maximum voltage of ±10 volts into an open circuit, or ±5
volts into 50Ω. You may be able to move the offset to greater values by reducing the amplitude of
the square wave, and vice versa.)

Exercise 4 Estimate the repumping time constant of this signal. How does it compare to the time

constants you observed using the H1 resonance signal in Exercise 3?

4.4 Rabi Oscillations

To observe Rabi Oscillations with this apparatus, we must prepare a constant background magnetic
field, for which we will use HEarth, and then we must pulse the system with the transverse field
H1. When the transverse field turns on, the system will undergo Rabi cycles, and the oscillating
population in the pumped state (described by Eq. 21) will result in variation of the transparency
of the Rb cell, giving an oscillating signal from the photodiode.

To set this up, you should reconfigure the connections to the function generator in order to make an
RF burst that has its start coincident with the TTL output trigger signal. Ch1 on the AFG3022B
is the only channel that can be used this way. To make the changes:

1. Turn off Ch1 and Ch2.
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2. Disconnect Ch1 from the 50Ω resistor that feeds the H0 coil. But, leave the connection to
the scope in place.

3. Connect the output of Ch1 to the H1 input on the Rb lamp supply.

When you are done, you connections should look like those shown in Fig. 9.

1 3 42 AUXTTL
OUTCH2 INCH1

Digital 
OscilloscopeAFG3022B 

Function
Generator

Rb Lamp Supply

ADA400
Preamp

Preamp Power

50 Ω

Input
1HLamp Power

and H1 Output

Photodetector Signal

Ea
rth

 F
ie

ld

Optical Pumping
Cell in Al Tube

(6 pin Jones plug)

0H Drive disconnected

Figure 9: Setup for observing Rabi oscillations. The only change is in the connections from the
function generator. Use Ch1 to generate the RF burst for H1.

Now, you need to configure an RF burst signal on Ch1. To do this:

1. Set Ch1 to be active.

2. Select Function: Sine, and set the frequency to be the resonant frequency for the 85Rb isotope
(the stronger one). Set the amplitude for 5 V peak-to-peak.

3. Select Run Mode: Burst.

4. In the menu that appears, select N-cycles and set the number to 1000.

5. At the bottom of the menu where it says “–more–”, select the next set of parameters and set
the Trigger interval to 200ms. This will give 5 burst per second.

When you turn on Ch1 you should see something similar to the fields are set up correctly, you
should see a small “wiggle” at the bottom of your depumping dip, like that shown in Fig 10. Tune
the frequency so that the feature is as strong as possible. Use this frequency to derive another
value for gF . Compare to your value from Section 4.2. You might attempt to optimize the angle of
the apparatus relative to the Earth magnetic field, using the Rabi oscillation features as a guide.

Next, develop a procedure for measuring the frequency of your Rabi oscillations using the scope.
You should explore the relationship between Ω and both the H1 frequency and H1 amplitude. What
is predicted by Eq. (22)?
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Figure 10: Scope output in which Rabi Oscillations are observed (in Channel 2). Channel 1 shows
the shape of the H1 RF pulse required. to generate the oscillations.

You can use a careful measurements of Ω as a function of the peak-to-peak voltage Vpp of the H1

pulse, if you know that the H1 frequency is a little below the true resonance ω0, to get an especially
precise measurement of ω0. Find what you think is the best value of ω = ω0, and the deliberately
de-tune it low by a couple of kHz. Then measure Ω2 vs V 2

pp, and use a linear fit to a plot of this
data find the de-tuning of your transverse field frequency from resonance. What quantity from the
plot gives you the detuning from true resonance? From this you should be able to derive a third,
most precise and accurate value for the value of ω0 and therefore gF .

Repeat this measurement for 87Rb and compute it’s gF , as well as the ratio of the two g-factors.

4.5 Measuring the Earth field and the H1 coil parameters

To calculate g
F

from your measurements, you will need to know the Earth field. We will measure
this using a gaussmeter, which requires the optical pumping assembly to be powered down. For
this reason, it is best to perform this measurement after you have completed all measurements on
the rubidium sample.

Turn off all the electronics except the gaussmeter. After the electronics are off, consult the TA
for help in removing the optical pumping assembly from the aluminum cylinder. Carefully set the
assembly aside in a secure place. Turn on the Bell 9500 gaussmeter and allow it to warm up for a
few minutes. Check that the range is on “autorange”. It should autorange into the 3 gauss range.

Take the gaussmeter probe and insert it into the ZERO GAUSS CHAMBER. Perform the probe
zero procedure as follows: find this procedure by pressing the PROGRAM / ENTER button and
then using the arrow buttons. Select CHANGE and then press the ENTER button. After the
zeroing procedure is complete (takes about 15 seconds), select RUN on the menu and press the
ENTER button. Insert the probe into the piece of white foam. Slide this piece of foam into the
aluminum housing, and record the reading of the Earth field. Note how the reading is affected by
changes in the cylinder’s position. The probe is a Hall effect device which is designed to give a
maximum amplitude reading when the field is oriented along the probe axis. (Other probes are
designed for transverse measurements, e.g., the one used in the NMR experiment.) After recording
the field, remove the foam from the housing and remove the probe from the foam. Turn off the
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gaussmeter.

4.6 Extension Ideas

• Compute the magnetic field strength of the H1 field as a function of position across the Rb
cell, and integrate over the volume of the cell to obtain the average field strength in the
cell. To do this, you will need to measure the resistance and geometry of the H1 coil. The
resistance can be measured by simply using a DMM on the BNC that connects the pulser
to the coil. Measure the geometry of the coil by gently inspecting the insert with a ruler or
other measurement device - you should be able to see the H1 wires running along the sides
of the cylinder. Use this to compute the expected Rabi oscillation frequency as a function of
H1 pulse voltage. Compare to your result from Section 4.4.

• Write the rate equation for coherent population transfer between the m = 2 and m = 1 states,
combined with decoherent repopulation of the m = 2 state due to repumping. Solve the
equation in the steady state to obtain a prediction for how the equilibrium m = 2 population
(the level to which the Rabi oscillations dampen out) varies as a function of H1. Measure the
dependence with the apparatus and compare.

• Work out the Rabi Oscillation theory for a 5-level system. Compare with your data.

• Investigate how the depumping dip shape changes as you vary the sign and steepness of the
slope of the H0 ramp.

• Set up the pulser to generate a pulse sequence of specified widths, chosen to be π or π/2
pulses as appropriate, similar to the procedure for the pulsed NMR experiment. Attempt
to measure something akin to the pulsed NMR spin-lattice and spin-spin relaxation times.
Interpret your results.

• Develop the theory and a procedure to use Rabi oscillations to determine an optimal orien-
tation of the apparatus relative to Earth magnetic field.

• Develop a physical model for how the transparency of the system changes with voltage in the
H0 solenoid when ~Hsol ≈ − ~Hearth. Compare to your data.
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