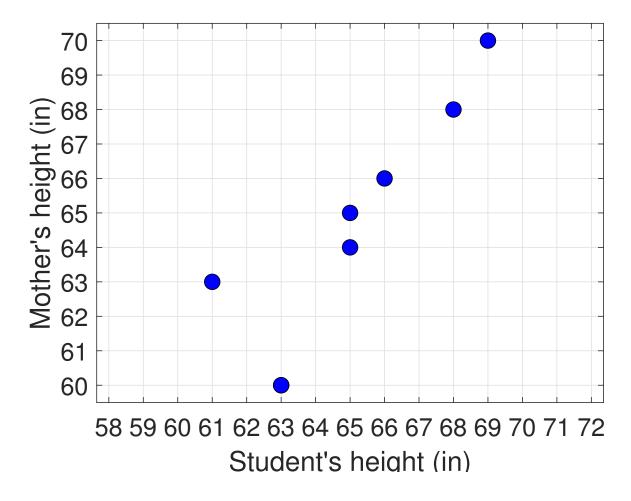
Psych 315, Winter 2021, Homework 4

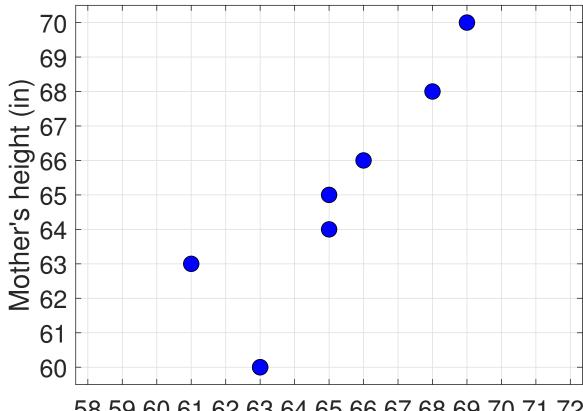

Due Friday, January 29th by 5pm.

Name _____ ID _____

Section [AA] (Natalie), [AB] (Natalie), [AC] (Ryan), [AD] (Ryan), [AE] (Kelly), [AE] (Kelly)

The scatterplot below plots Female students heights and their mother's heights for the 8 students who chose Yellow as their favorite color.

Round all answers to 2 decimal places.



1) Use R to load in the survey data, select the 8 students who chose Yellow as their favorite color, and calculate:

 \bar{x} : mean of student's heights \bar{y} : mean of mother's heights s_x : standard devation of student's heights s_y : standard devation of mother's heights r: corelation between students and mother's heights

Giant Hint: here's how to do this for the female students that chose 'Blue' as their favorite color:

```
# Load the survey data
survey <-read.csv("http://www.courses.washington.edu/psy315/datasets/Psych315W21survey.csv")</pre>
# Find female students that chose "Blue"
student.blue <- survey$gender == "Female" & survey$color=="Blue"</pre>
# Find the heights of these students (call it 'x'):
x <- survey$height[student.blue]</pre>
# Find their mother's heights (call it 'y')
y <- survey$mheight[student.blue]</pre>
# Find where there not NA's in both x and y:
goodId <- !is.na(x) & !is.na(y)</pre>
# Only include these pairs
x <- x[goodId]
y <- y[goodId]
# Means of x and y:
mx \leftarrow mean(x);
my \leftarrow mean(y);
# Standard deviations of x and y
sx <- sd(x);
sy < - sd(y);
# Correlation of x and y:
r \leftarrow cor(x,y)
[1] 64.4375
my
[1] 63.625
[1] 2.758418
sy
[1] 3.034745
[1] 0.6136708
```


58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 Student's height (in)

2) Use R or your calculator to find the equation of the regression line and draw it by hand on the scatterplot.

```
m=r(\frac{sy}{sx}) and the y-intercept is: b=\bar{Y}-(m)(\bar{X})
```

Here's how to do it in R:

```
# slope:
m <- r*sy/sx
# intercept:
b <- my - m*mx</pre>
```

3) Use R or your calculator to find the standard error of the estimate by calculating the sum of the squared residuals:

$$S_{yx} = \sqrt{\frac{\sum (Y - Y')^2}{n}}$$

in R:

```
# Find y on the regression line for every value of x:
yprime <- m*x+b
# Find the residuals:
residual <- y-yprime
# Use the residuals to calculate syx:
syx <- sqrt(sum( (y-yprime)^2)/length(x))</pre>
```

4) Use the correlation as another way of calculating the standard error of the estimate. Your answer should be close, but not exactly the same due to rounding error.

$$Syx = Sy\sqrt{1 - r^2}$$

5) Use the regression line to predict the mother's height for a Female student that is 63 inches tall.
6) Assuming homoscedacity, find the range of mother's heights that covers the middle 50% of the heights of mothers of women that are 63 inches tall. Hint: The heights of the mothers of women that are 63 tall should be distributed normally with a mean determined by the regression line (problem 5) and a standard deviation equal to the standard error of the estimate (problem 4).
7) Repeat problems 5 and 6 but for students that are 67 inches tall. Note, because of homoscedasticity, the range above and below the predicted height should not change.
8) You should see that for any Female student's height, the middle 50% of the corresponding mothers heights should fall within the same range above and below the regression line.
Draw two parallel lines on the scatterplot, one above and one below the regression line that should cover the middle 50% of the mother's heights. Use the values from problems 6 and 7 as points on the lines.
9) Look at the scatterplot and calculate the actual percent of data points that fall between these two parallel lines. How close does it match to 50%?

10) The correlation between SAT scores and IQ is around 0.5. Assume that SAT scores are normally distributed with a mean of 915 and a standard deviation of 88.24, and IQ scores are normally distributed with a mean of 100 and a standard of deviation of 15.
a) Find the equation of the regression line that predicts IQs from SAT score. Hint: use the equations from problem 2. Give your answer in slope-intercept form.
b) What is the expected IQ of a student with a SAT score of 1000?
c) What is the proportion of variance of Y explained by X (the coefficient of determination)?
d) What is the total variance in the IQ scores?
e) From parts c and d, calculate the amount of variance in IQ scores that is explained by SAT scores.
of 110m parties and a, cardadate one amount of tarrance in 14 scores and is onpramed by 5111 scores.

11) Explain why the correlation between parent's heights and all student's heights might be you'd find for just the female or male students. Draw a picture if it helps.	e lower than for	the correlations

12) Explain why the correlation between student's heights and group than for the correlations within male and female students.	video game playing time Again, draw a picture if i	might be stronger thelps.	for the whole