6) Suppose teenagers come in 3 varieties: toothsome, lucky and giant. Because you don't have anything better to do you find 60 teenagers and count how many fall into each variety. This generates the following table:

observed frequencies of teenagers			observed	frequencies	$\int_{\mathcal{C}}$
toothsome	lucky	giant	1/	,	. •
25	12	23		٠	٠

Make a table of the expected frequencies.

Using an alpha value of $\alpha = 0.01$ test the null hypothesis that the 60 teenagers are distributed evenly across the 3 varieties of toothsome, lucky and giant.

$$\chi^{2}$$
 test for frequencies $\lambda = .01$ $df = 3-1=2$

expected frequencies $\frac{60}{3} = 20$ $fe = 20$
 $\chi^{2} = \sum \frac{(f_{0} - f_{e})^{2}}{f_{e}} = \frac{(25 - 20)^{2} + (12 - 20)^{2} + (23 - 20)^{2}}{20}$
 χ^{2} obs = 4.9 $\chi^{2}_{crit} = 9.21 > \chi^{2}_{ds}$ $\gamma^{2}_{crit} = 9.21 > \chi^{2}_{ds}$

Fail to Reject 4to. $\chi^{2}/2$, $\chi^{2}/2$,

X2 test for independence

Does the type of computer that students use in our class depend on gender? To find out we'll run a χ^2 test for independence using alpha = 0.05.

We'll use our survey data and count the number of students who use each kind of computer, depending upon their gender. This generates the following 2×2 table:

observed frequencies				
	Apple	PC		
Female	82 7	\bigcap_{32}		
Male	13	T ₁₃		

N=140, Z=.05

observed frequencies				
	Apple	PC		
Female	82	32		
Male	13	13		

1951

45

N=140

26

Calculate expected frequencies (fe): for each Cell, multiply the column sum by the row sum & divide by total (N)

2

PC

$$\frac{95.114}{140} = \frac{45.114}{140} = f_c$$

$$\frac{72.3571}{36.6429}$$

$$\frac{95.26}{140} = \frac{45.26}{140} = \frac{17.6429}{8.3571}$$

$$\chi^{2} = \underbrace{\sum (f_{0} - f_{e})^{2}}_{f_{e}} = \underbrace{(82 - 77.3571)^{2}}_{77.3571} + \dots + \underbrace{(13 - 8.3571)^{2}}_{8.3571}$$

$$= \underbrace{4.6682}_{f_{e}} = \underbrace{(\# \text{ rows - 1})(\# \text{ columns - 1})}_{f_{e}}$$

$$= \underbrace{(2 - 1)(2 - 1)}_{f_{e}} = 1.$$

2° c + = 3.84 2 4.6682

Reject Ho. The choice of computer varies with gender $7^2(1, N=140)=4.67$, P=.0307

m

