variance: $\frac{\Sigma(x-\bar{x})^{2}}{n-1}=\frac{S S_{x}}{d f} \in$ "mean square d", $m s^{d}$
$K=\#$ of groups
$j=$ group $\# 1 \leqslant j \leq k$
$j=$ sample \# within a group.
$X_{i j}=i$ th sample within group $j \quad X_{3,2}$ aid sample in the 2 nd group
$n_{j}=$ sample size for group j
$\bar{x}_{j}=$ man of grape j
$\overline{\bar{x}}=$ grand mean (mean of all samples) $\quad N=$ total sample size $\sum_{j} n_{j}$

$$
a \cdot b=(a-c)+(c-b)
$$

$$
\begin{aligned}
& d f_{\text {total }}=d f_{\text {within }} d f_{\text {between }} \\
& N-1=N-k+k-1 \\
& m S_{\text {total }}=\frac{S S_{\text {total }}}{d f_{\text {total }}} \quad m s_{\text {within }}=\frac{S S_{\text {within }}}{d f_{\text {within }}, \quad m s_{\text {between }}=\frac{S S_{\text {between }}}{d f_{\text {between }}} \text { variance within }} \\
& \text { variance within } \\
& \text { crops } \\
& \text { variance betuem } \\
& \text { gross } \\
& F=\frac{m s_{\text {betwem }}}{m s_{\text {within }}}
\end{aligned}
$$

Example 2: Preferred temperature for weather sensitivity

At the beginning of the quarter I surveyed you for your preferred outdoor temperature. I also asked you how much weather affected your mood with the options of Not at all, Just a little, A fair amount and Very much. Let's see if there is a significant difference between the preferred temperatures across these 4 options. We'll us $\alpha=0.05$ again. Here's a table of statistics:

	Not at all	Just a little	A fair amount	Very much
n	12	35	63	40
mean	69.13	69.53	70.98	73.62
SS	701.5468	2770.8755	2612.9852	1490.838
s S.d.	7.986	9.0275	6.4919	6.1828
sem	2.3054	1.5259	0.8179	0.9776

Totals:	
n	150
grand mean	71.1993
SS $_{\text {total }}$	7961.6499

$$
\sqrt{\frac{701.5468}{11}}=7.986 \quad \frac{7.986}{\sqrt{12}}=2.3054
$$

Numerator of the F statistic $m S_{\text {between }}=\frac{5 s_{\text {between }}}{d f_{\text {between }}}<K-1=4-1=3$ $S_{\text {bet wean }}=\sum n_{j}\left(\bar{x}_{j}-\overline{\bar{x}}\right)^{2}$
$=9(69.13-21.1993)^{2}+35(69.53-21.1993)^{2}+$

$$
+\cdots=385.4044
$$

$$
m S_{\text {bot ween }}=\frac{385.4044}{3}=128.7784
$$

Denominator: $m S_{\text {within }}=\frac{5 s_{\text {within }}}{d f_{\text {ur thin }}}$
$\sum(x-\bar{x})^{2}$

$$
S_{\text {within }}=201.5468+2770.8755+\cdots=7576.2455
$$

$$
d f_{\text {within }}=N-k=150-4=146
$$

$$
\begin{aligned}
& m s_{\text {within }}=\frac{7576.2455}{146}=51.8921 \\
& F=\frac{m s_{\text {between }}}{m s_{\text {within }}}=\frac{128.7784}{51.8921}=2.4817
\end{aligned}
$$

