Suppose you give 3 exams over 3 years to 30 different people. Do these exams differ in difficulty over the years?

You could compare two means at a time with independent measures t-tests. 3 tests.

Avs. B, Avs. C, Bvs. C. Let \(\alpha = 0.05 \)

Problem: the probability of 1 or more type I errors is greater than \(\alpha \) if we run multiple tests.

Suppose we have \(m \) tests

\[
\text{\(p(1 \text{ or more Type I}) = (1 - \alpha)^m \)} \quad \text{if \(m=3, \alpha = 0.05 \)}
\]

"Familywise error"

\[
P = 0.14 > 0.05
\]

Means: 81, 72, 75

We really just want to test:

\[
\text{Ho: } \mu_A = \mu_B = \mu_C
\]

\[
\text{H}_a: \text{Ho is false}
\]

How different are these means from each other? Variance!

Variance of 81, 72, and 75 is 22.5

What do we compare the variance of the means to?

Suppose \(\sigma^2 \) is the population variance for all 3 years

\[
\bar{\sigma}^2 = \frac{\sigma^2}{n} \rightarrow \text{central limit theorem}
\]

\[
\bar{\sigma}^2 = \frac{\sigma^2}{n}
\]

\[
\sigma^2 = n \cdot \bar{\sigma}^2
\]

Variance of population size

\[
\text{Variance of means}
\]

\[
n \cdot \bar{\sigma}^2 = (10)(22.5) = 225
\]
Another way of estimating σ^2 from the data:

calculate the variance for each sample.

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>68</td>
<td>84</td>
<td>72</td>
</tr>
<tr>
<td>61</td>
<td>67</td>
<td>72</td>
</tr>
<tr>
<td>84</td>
<td>67</td>
<td>51</td>
</tr>
<tr>
<td>78</td>
<td>75</td>
<td>82</td>
</tr>
<tr>
<td>93</td>
<td>85</td>
<td>86</td>
</tr>
<tr>
<td>76</td>
<td>62</td>
<td>79</td>
</tr>
<tr>
<td>92</td>
<td>62</td>
<td>62</td>
</tr>
<tr>
<td>68</td>
<td>74</td>
<td>79</td>
</tr>
<tr>
<td>79</td>
<td>71</td>
<td>83</td>
</tr>
<tr>
<td>76</td>
<td>81</td>
<td>79</td>
</tr>
<tr>
<td>81</td>
<td>69</td>
<td>80</td>
</tr>
<tr>
<td>87</td>
<td>87</td>
<td>74</td>
</tr>
</tbody>
</table>

Variances

$61, 94, 55$

σ^2 can be estimated by taking the mean of the variances.

Mean of $61, 94$ and 55 is 70

We have two estimates of σ^2: 1) mean variance of the means: 22.5

2) mean of the variances: 70

If H_0 is true, then these tests estimate the same thing (σ^2)

If H_0 is false, then the variance of the means will increase but the mean of the variances stays the same

Define $F = \frac{\text{mean variance of means}}{\text{mean of variances}}$ if H_0 is true, then $F = 1$

$$F = \frac{22.5}{70} = 0.325$$

F-table has two degrees of freedom

One for numerator: $k = \#$ of groups, $df = k-1$, $3-1 = 2$

One for denominator: $n = \text{sample size for each group}$, $k(n-1) = kn - K = 30 - 3 = 27$ total sample size

Point for $df 2, 27 = 3.35 > 3.23$

Fail to reject H_0.

$22.5 < 3.35$

$22.5 < 3.23$