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Correlations

People tend to be attracted to those with similar heights. Let’s see if in our survey, there
is such a relationship between the mothers and fathers of students in this class. To keep
the sample size small, let’s just focus on students that chose Green as their favorite color.
Here’s a table the heights (in inches) of the mothers and fathers of the 24 students:
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Parent’s height (in)
Mothers Fathers
60 72
63 74
63 77
64 75
64 72
65 72
68 75
68 74
67 73
66 72
69 72
66 69
65 68
64 69
64 67
64 66
64 65
62 66
60 66
62 69
62 69
60 68
59 68
60 70

You can download the Excel file containing the data for this tutorial here: parentheight-
Green.csv

Can you see a relation in this data? See if the tallest mothers are paired with taller than
average fathers, and/or vice versa.

The Scattterplot

A natural way to graph paired data like this is with a scatterplot, where the two variables
are plotted on the x and y-axes. We’ll arbitrarily choose Mothers heights for the x-axis and
Fathers heights for the y-axis:
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The Pearson correlation

You can see in the scatterplot that there is a trend for taller fathers to pair with taller
mothers. To quantify this trend, we’ll introduce a statistic called the correlation. There
different kinds of correlations, but by far the most common is the ’Pearson Product Moment
Correlation’, which is a number, ranging from -1 to 1, that reflects how well points on a
scatter plot are fit by a straight line. This long name is usually shortened to ’Pearson
correlation’, or even just ’correlation’, and is represented by the letter r.

The intuition behind the Pearson correlation is that points with above average values on the
x-axis should be paired with above-average values on the y-axis, and points below average
on the x-axis should be paired with points below average on the y-axis.

This can be visualized by dividing the scatterplot into four quadrants, where quadrants
are split left and right by the mean of the x-values, and split up and down by the mean
of y-values. The mean of the 24 Mothers’s heights is 63.71 inches, and the mean of the
Fathers’s heights is 70.33 inches. Here’s the same scatterplot, but with the four quadrants
drawn in.
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You should see that there are more points falling in the red and green (1st and 3rd) quadrants
than in the blue and yellow quadrants. This means that there is a positive correlation
between the heights of Mothers and Fathers.

Values of the Pearson correlation range between -1 and 1. A correlation of 1 means that
the points fall exactly on a line with a positive slope. A correlation of -1 fall exactly on a
line with negative slope.

You should convince yourself that a scatterplot for points with a correlation of 1 will only
have points in the green and red quadrants. Similarly, a correlation of -1 will only have
points in the yellow and blue quadrants.

How do we quantify this distribution of scores in the four quadrants? The trick behind
the Pearson correlation coeficient is to translate x and y scores into z-scores. Remember,
z-scores are calculated by subtracting the mean and dividing by the standard deviation.
For the Pearson correlation, we use the population standard deviation (divide by n, and not
n-1).

Here’s a new table with two new columns representing the z-scores, and a last column that
is the product of each pair of z-scores. I’ve colored the table cells in red, green, blue and
yellow depending on which quadrant the pair falls into (the colors are grouped because I
sorted the scores so this would happen beforehand).
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Mothers Fathers zx zy (zx)(zy)
60 72 -1.37 0.51 -0.7
63 74 -0.26 1.13 -0.29
63 77 -0.26 2.04 -0.53
64 75 0.11 1.43 0.15
64 72 0.11 0.51 0.05
65 72 0.48 0.51 0.24
68 75 1.58 1.43 2.26
68 74 1.58 1.13 1.78
67 73 1.21 0.82 0.99
66 72 0.84 0.51 0.43
69 72 1.95 0.51 1
66 69 0.84 -0.41 -0.34
65 68 0.48 -0.71 -0.34
64 69 0.11 -0.41 -0.04
64 67 0.11 -1.02 -0.11
64 66 0.11 -1.33 -0.14
64 65 0.11 -1.63 -0.17
62 66 -0.63 -1.33 0.84
60 66 -1.37 -1.33 1.81
62 69 -0.63 -0.41 0.26
62 69 -0.63 -0.41 0.26
60 68 -1.37 -0.71 0.98
59 68 -1.73 -0.71 1.24
60 70 -1.37 -0.1 0.14

What do the scores in the red and green quadrants have in common? If you look at the
table you’ll see that the product of their z-scores for the red and green scores are all positive.
That’s because for points in the red quadrant both z-scores are positive, and in the green
quadrant both are negative - so their product is also positive. Points in the yellow and blue
quadrants will have one positive and one negative z-score, so their product will be negative.

The Pearson correlation is the mean of the product of z-scores. For this example
the mean of the products is:

r =

∑
(zx)(zy)
n = −0.7−0.29−...+0.14

24 = 0.41

This mean of product of z-scores should make intuitive sense. If the mean is positive, then
the positive products outweigh the negative product of z-scores. That is, the points in the
red and green quadrants outweigh the points in the yellow and blue. If the correlation is
negative, then the points in the yellow and blue quadrarants outweigh those in the red and
green quadrants.
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The computational raw-score formula

If you do some algebra and plug in the formula for the z-score, you can show that there
are various ways to calculate the Pearson correlation coeficient. The most computationally
efficient way is the ’computational raw-score formula’:

r =

∑
xy− (

∑
x)(
∑

y)
n√(∑

X2− (
∑

x)2
n

)(∑
Y 2− (

∑
y)2
n

)
If you don’t have a stats calculator or computer around (or happen to be taking an exam),
you can calculate the components of this formula by setting up columns and adding them
up:

x y xy x2 y2

60 72 4320 3600 5184
63 74 4662 3969 5476
63 77 4851 3969 5929
64 75 4800 4096 5625
64 72 4608 4096 5184
65 72 4680 4225 5184
68 75 5100 4624 5625
68 74 5032 4624 5476
67 73 4891 4489 5329
66 72 4752 4356 5184
69 72 4968 4761 5184
66 69 4554 4356 4761
65 68 4420 4225 4624
64 69 4416 4096 4761
64 67 4288 4096 4489
64 66 4224 4096 4356
64 65 4160 4096 4225
62 66 4092 3844 4356
60 66 3960 3600 4356
62 69 4278 3844 4761
62 69 4278 3844 4761
60 68 4080 3600 4624
59 68 4012 3481 4624
60 70 4200 3600 4900∑

x
∑

y
∑

xy
∑

x2 ∑
y2

1529 1688 107626 97587 118978

Plugging these sums into the formula gives:
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r =
107626− (1529)(1688)

24√(
97587− (1529)2

24

)(
118978− (1688)2

24

) = 0.41

Later on this quarter we will define this formally by asking the question of what is the prob-
ablity of getting a correlation this high from a sample of this size under the null hypothesis
that the correlation in the population is zero. For now though, do you think it’s likely that
you’d get a correlation this high by chance?

Survey data

Let’s fish through some of your survey data and look at some scatterplots. See if you can
guess the correlations by eyeballing the plots. It takes practice but you can get pretty good
in just a little time. The answers are at the end of this tutorial.
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Fun facts about r

The Pearson correlation has some useful properties. Remember, z-scores don’t change if
you shift and/or scale your original scores. This means that we can change our units from
inches to centimeters for either or both axes, and the Pearson correlation won’t change.

Another fact is that the Pearson correlation will always fall between -1 and 1. Thus, the
Pearson correlation has no units - it’s just a number that reflects the strength of the relation
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between two variables. Later on when we get into regression we’ll show that the value of r2

has a specific meaning with respect to how well a straight line fits the data in the scatterplot.

Sensitivity to outliers

If you look back at the z-score forumla, you’ll see that the Pearson correlation is affected by
not only which quadrant each point falls in, but also by how far the points are away from
the means of x and y. If the product of a points’s z-scores is large (either in positively or
negatively), then that point will have a stronger influence on r. This should remind you of
the mean: both the mean and Pearson correlation are sensitive to outliers.

Consider this scatterplot of points showing very little correlation between x and y:
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n = 9, r =  0.19

Now we’ll add one extra point off in the corner:
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See how the correlation jumped from 0.19 to 0.88? That one outlying point has a serious
effect on the Pearson correlation.

Spearman rank-order correlation

Remember how when we were dealing with skewed distributions, we showed that the median
can be a better measure of central tendency than the mean? Well, another version of the
correlation called the Spearman rank-order correlation is, like the median, less sensitive
to outliers. Also, like the median, it is more appropriate when dealing with distributions
that are not normal.

As name suggests, the Spearman rank-order correlation is caculated by first ranking the
values for x and y. The lowest score gets a rank of 1, the second lowest 2 and so on. If
there’s a tie, we take the average of the ranks for the tie. So if there’s a tie for the first
three scores, each of those gets a rank of the mean of 1, 2 and 3, which is 2.

Here’s a table of the x and y values in the scatterplot above, with the last (10th) pair being
the outlier at position (8,8).

12



x y rankx ranky
0.73 -1.24 8 1
-0.13 1.02 5 6
-0.39 -0.66 3 2
-0.7 -0.26 2 3
1.61 2.51 9 9
-0.22 1.13 4 8
-2.09 1.06 1 7
0.63 0.7 7 5
0.14 0.6 6 4
8 8 10 10

Note that the ranks for both x and y for this last point is 10, since they are the highest
numbers in their lists.

Assume for the moment that there are no ties. With no ties, the Spearman rank-order
correlation is simply the Pearson correlation of the ranks.

If we calculate the correlation of the ranks of the first 9 pairs of scores - the scores without
the outlier - we get a value of r = 0.07. Including the outlier increases the correlation of
the ranks to 0.32. This is a substantial increase in the Spearman correlation, but not as
large as for the Pearson correlation, which increased from 0.19 to 0.88. Thus, the Pearson
correlation is affected much more strongly by the outlier than the Spearman correlation.

Formula for calculating the Spearman correlation

Instead of calculating the Pearson correlation of the ranks, there’s a simpler way to calculate
the Spearman correlation. The trick is to first calculate the difference in ranks for each score:
D = rankx − ranky , the squares of these differences, and finally the sum of these squares.

Here’s a table of these differences, D and their squares, D2:

rankx ranky D D2

8 1 7 49
5 6 -1 1
3 2 1 1
2 3 -1 1
9 9 0 0
4 8 -4 16
1 7 -6 36
7 5 2 4
6 4 2 4
10 10 0 0

The sum of these squared differences is
∑

D2 = 49 + 1 + ... + 0 = 112

The Spearman correlation, defined as rs, is then calculated by:
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rs = 1− 6
∑

D2

n(n2−1)

Which for our data is:

rs = 1− 6(112)
10(102−1) = 0.32

Keep in mind that the number ’6’ is just part of the formula, and doesn’t depend on the
data.

Note that the formula gives the same value that we got earlier by calculating the Pearson
correlation of the ranks.

I realize that this formula is not intuitive. It can be derived from the Pearson correlation
formula, and some facts about ranks. Yes, it’s weird to have a ’6’ in a formula, but at least
the formula is easy to use.

There is a one caveat regarding repeated values, or ties. If there are no ties, then formula
above will always give you the same value as the Pearson correlation of the ranks. However,
if there are ties, then the values may be different. In the case of ties, you should use the
Pearson correlation of the ranks and not the simpler formula.

I’ll tell you right now that in this class, if you happen to be asked to calculate the Spearman
rank-order correlation, I won’t give you examples with ties.

A funny property of the Spearman rank-order correlation

Consider this scatterplot:
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The Pearson correlation for these points is r = 0.92. Close to 1, but not a perfect correlation.
However, the Spearman rank-order correlation is exactly 1. Why?

Recall that the Pearson correlation is a measure of how well a line fits the data - a straight
line, that is. But the Spearman correlation is a correlation of the ranks. The y-values on
this plot are monotonically increasing with x. This makes their ranks simply increase by 1
as x goes from left to right. A straight line of y = x fits the ranks perfectly. Here’s the table
and corresponding calculation of rs

x y rankX rankY D D2

-1 -1 1 1 0 0
-0.8 -0.512 2 2 0 0
-0.6 -0.216 3 3 0 0
-0.4 -0.064 4 4 0 0
-0.2 -0.008 5 5 0 0
0 0 6 6 0 0
0.2 0.008 7 7 0 0
0.4 0.064 8 8 0 0
0.6 0.216 9 9 0 0
0.8 0.512 10 10 0 0
1 1 11 11 0 0

The difference in ranks is always zero. The calculation of sp is therefore:

rs = 1 − 6(0)

11(112−1)
= 1.00

Which is why the Spearman correlation for monotonically increasing data is equal to 1.

What do you think the Spearman correlation is for this data:
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Correlations from survey scatterplots

Here are the corrrelations from the scatterplots from the survey:

The correlation between Mean of parent’s height (in) and Student’s height (in) is 0.49

The correlation between Father’s height (in) and Male student’s height (in) is 0.74

The correlation between Mother’s height (in) and Female student’s height (in) is 0.55

The correlation between High school GPA and UW GPA is 0.10

The correlation between Caffeine (cups/day) and Sleep (hours/night) is -0.14

The correlation between Caffeine (cups/day) and Drinks (per week) is 0.16

The correlation between Favorite outdoor temperature and Video game playing (hours/day)
is -0.09

Correlations and Scatterplots in R

Simple scatterplots can be generated with R’s ’plot’ function, and correlations can be cal-
culated with the ’cor’ function. The following script generates some of the plots and values
seen in this tutorial.

The R commands shown below can be found here: ScatterplotsAndCorrelations.R

# ScatterplotsAndCorrelations.R

#

# First, we’ll load in the survey data

survey <-read.csv("http://www.courses.washington.edu/psy315/datasets/Psych315W21survey.csv")

# Scatterplots can be made with R’s ’plot’ function

#

# Here’s how to make a scatterplot of Mother’s vs. Father’s heights

# for students that chose ’Green’ as their favorite color.

# We first need to find the subset of the data for which

# survey$color is equal to "Green". In R, we use ’==’ to check if

# something is true or not. For example, to see which students chose

# "Green" as their favorite color, we can use:

students.green <- survey$color=="Green"

head(students.green)

[1] FALSE FALSE FALSE TRUE FALSE TRUE

# This list is the same length as survey$color, but is

# ’TRUE’ where survey$color is "Green" and ’FALSE’ otherwise.
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# We can then refer to a subset of our data by using ’students.green’

# as an ’index’. For example, the Mother’s heights for the students

# that prefer "Green" are:

survey$mheight[students.green]

[1] 60 60 64 63 69 66 60 62 60 64 64 64 62 64 66 63 64 62 68 65 65 67 68 59

# To make the scatterplot, we can use:

plot(survey$mheight[students.green],survey$pheight[students.green])

# The default labels and symbols are kind of ugly. We can

# customize our plot by setting parameters like ’xlab’ and ’ylab’

# for x and y labels, ’col’ for the color and ’pch’ to 16

# which is a filled circle, and ’asp’ to 1, which makes the

# aspect ratio for the x and y axes to be the same, and ’cex’

# which for some reason sets the symbol size.

plot(survey$mheight[students.green],survey$pheight[students.green],

xlab = "Mother’s Height",

ylab = "Father’s Height",

pch = 19,

col = "blue",

asp = 1,

cex = 2)

# Search the web for more hints

# For different symbols (or setting for ’pch’) see, for example:

# http://www.endmemo.com/program/R/pchsymbols.php

# Computing correlations in R uses the ’cor’ function.

#

# To calculate the correlation between x and y, just use ’cor(x,y)’

#

# The correlation in this scatterplot is:

cor(survey$mheight[students.green],survey$pheight[students.green],use = "complete.obs")

[1] 0.4061526

# Next we’ll calculate the correlations from the survey that are

# given at the end of the correlation tutorial

# To calculate the correlation between the mean of the parent’s height

# and the student’s height, we first calculate the mean of the father’s

# height (survey$pheight) and the mother’s height (survey$mheight). We’ll

# call it parent.height:

parent.height <- (survey$pheight+survey$mheight)/2;

# Then we use ’cor’ to calculate the correlation between x and

# the student’s heights (survey$height):

cor(parent.height,survey$height,use = "complete.obs")

[1] 0.4933317

# Some of our survey data has missing values which you’ll see as NaN’s

# or ’not a number’. The third argument ’use = "complete.obs"’ deals

# with this by telling ’cor’ to only include data that has both
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# (complate) observations.

# Next we’ll calculate the correlation between the Father’s height

# and the male student’s height. This will require us to include

# a subset of the data (Male students) in our analysis.

#

# This can be done by referring to the subset of the data for which

# survey$gender is equal to "Male":

male.students <- survey$gender == "Male"

head(male.students)

[1] TRUE FALSE FALSE FALSE FALSE TRUE

# The heights of the male students that like Green is:

male.heights = survey$height[male.students]

# The heights of the fathers of the male students is:

male.heights.father = survey$pheight[male.students]

# and the correlation between the male student’s heights and their

# fathers is:

cor(male.heights,male.heights.father,use = "complete.obs")

[1] 0.7397582

# Verify that the following computes the correlation between the

# female student’s heights and their mother’s heights:

female.students = survey$gender == "Female"

cor(survey$height[female.students],survey$mheight[female.students],use = "complete.obs")

[1] 0.4923266

# Here are the other correlations from the tutorial:

cor(survey$GPA_HS,survey$GPA_UW,use = "complete.obs")

[1] 0.1015848

cor(survey$caffeine,survey$sleep,use = "complete.obs")

[1] -0.1361281

cor(survey$caffeine,survey$drink,use = "complete.obs")

[1] 0.1598318

cor(survey$temperature,survey$games_hours,use = "complete.obs")

[1] -0.08867498

# You can use ’cor’ to calculate a whole matrix of pairwise correlations

# This is done by creating a ’data frame’ containing the variables

# of interest. For example, let’s look at the pairwise correlations

# between birth year, drinks/week, sleep, and caffeine

X = data.frame(survey$year,survey$drink,survey$sleep,survey$caffeine)

cor(X,use = "complete.obs")

survey.year survey.drink survey.sleep survey.caffeine

survey.year 1.00000000 0.05181923 0.13244169 0.1119065

survey.drink 0.05181923 1.00000000 0.07421125 0.1726680

survey.sleep 0.13244169 0.07421125 1.00000000 -0.1331541

survey.caffeine 0.11190650 0.17266805 -0.13315414 1.0000000
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# Notice that the diagonal values area all ’1.000000’. That’s

# because the correlation of a variable with itself is 1.0

# ’cor’ will also calculate the Spearman correlation if you set

# the parameter ’method’ to "spearman" instead of the default "pearson":

cor(survey$mheight,survey$pheight,

use = "complete.obs",

method = "spearman")

[1] 0.3153675
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