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In the correlation tutorial we discussed how the Pearson correlation coeficient is a measure
of how well a set of points are fit by a line. In this tutorial, we’ll show how to find that
best-fitting line, called the regression line. We’ll then talk about how to use this line to
predict values of y from arbitrary values of x.

We previously used as an example the relation between the heights of mothers and fathers
of students that chose Green as their favorite color. We’ll use the same example data set
here.

You can download the csv file containing the data for this tutorial here: parentheight-
Green.csv

Here’s the scatterplot again:
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We also calculated the Pearson correlation, r, which has the formula:

r =

∑
xy− (

∑
x)(
∑

y)
n√(∑

X2− (
∑

x)2
n

)(∑
Y 2− (

∑
y)2
n

)
The summary statistics for this data set are:
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x y xy x2 y2

60 72 4320 3600 5184
63 74 4662 3969 5476
63 77 4851 3969 5929
64 75 4800 4096 5625
64 72 4608 4096 5184
65 72 4680 4225 5184
68 75 5100 4624 5625
68 74 5032 4624 5476
67 73 4891 4489 5329
66 72 4752 4356 5184
69 72 4968 4761 5184
66 69 4554 4356 4761
65 68 4420 4225 4624
64 69 4416 4096 4761
64 67 4288 4096 4489
64 66 4224 4096 4356
64 65 4160 4096 4225
62 66 4092 3844 4356
60 66 3960 3600 4356
62 69 4278 3844 4761
62 69 4278 3844 4761
60 68 4080 3600 4624
59 68 4012 3481 4624
60 70 4200 3600 4900∑

x
∑

y
∑

xy
∑

x2 ∑
y2

1529 1688 107626 97587 118978

Plugging these sums into the formula gives:

r =
107626− (1529)(1688)

24√(
97587− (1529)2

24

)(
118978− (1688)2

24

) = 0.41

A first guess

Looking the scatterplot, you can probably make a guess at the best fitting line through the
data. Now we’ll define how to calculate that best fitting line.

First, we need to define what we mean by ’best fit’. Let’s pick a line that looks like it might
be a reasonable fit. Remember, lines can be defined by a choosing a point that it goes
through, and a slope.

A reasonable guess that the line passes through the mean height of US women on the x-axis
and the mean height of men on the y-axis, which is the point x= 64 and y = 70.
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Let’s also assume that for every inch that a mother is taller, the corresponding father is also
an inch taller. That means that the line has a slope of 1. From these values we can find the
equation of our firt guess of the best-fitting line.

If (xc, yc) is the point that the line goes through, and m is the slope, then the equation of
the line is:

y − yc = m(x− xc)

This can be rearranged into the ’slope-intercept’ formula:

y′ = mx + [yc −mxc]

y’ is used here instead of y because in statistics the ’ (prime) symbol is used to indicate a
predicted value. Our line has the equation:

y′ = 1x + [70− (1)(64)]

Or

y′ = 1x + 6

We can draw this line by picking two points on the line and drawing a line through them.
We already have one point: (64,70). We can pick a second point, say, 2 inches to the right,
x = 66. The y’ value for this point is y′ = (1)(66) + 6 = 72.

Here’s that line drawn through the data:
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Residuals

At first glance it looks like a reasonable fit. But to find the actual best-fitting line, we need
to define what it means to be a good fit. With regression, the best fitting line is the defined
as the line that minimizes the sums of squared deviation from the line to the data.

I’ve drawn red lines showing these deviations, called residuals, between the y value for
each point and the value of y’.

Here’s a table showing the values of x, y, y’, the residuals, and the residuals squared:

x y y′ = 1x + 6 y − y′ (y − y′)2

60 72 66 6 36

63 74 69 5 25

63 77 69 8 64

64 75 70 5 25

64 72 70 2 4

65 72 71 1 1

68 75 74 1 1

68 74 74 0 0

67 73 73 0 0

66 72 72 0 0

69 72 75 -3 9

66 69 72 -3 9

65 68 71 -3 9

64 69 70 -1 1

64 67 70 -3 9

64 66 70 -4 16

64 65 70 -5 25

62 66 68 -2 4

60 66 66 0 0

62 69 68 1 1

62 69 68 1 1

60 68 66 2 4

59 68 65 3 9

60 70 66 4 16

Our measure of the best fit is the sums of these squared residuals:∑
(y − y′)2 = 36 + 25 + ... + 16 = 269

This equation should remind you of our definitions of variance and standard deviation.
Remember that if ȳ is the mean if the values of y, then the sums of squared deviation from
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the mean is:

SSy =
∑

(y − ȳ)2

This was used to calculuate the standard deviation:

sy =
√

SSy

n
=
√∑

(y−ȳ)2

n

We will now define an analogous statistic like the standard deviation, but for the fit of the
regression line. It’s called the standard error of the estimate and is given the symbol
syx:

syx =
√∑

(y−y′)2
n

You can think of it as the average deviation of the line from the data.

For our example,

syx =
√

269
24

= 3.35 inches.

You can see how this is a sensible statistic for measuring how well the data fits the line.
First, it’s in the same units as our y-axis variable (inches). Second, sxy is small when the
line fits the data well.

Unless our initial guess happens to be right, we’ll should be able to find a line that has a
sum of squared residuals that is less than 3.35. The regression line is the line that has the
smallest value of syx.

Finding the best fitting line through the data

To define a line we need a point and a slope. Finding a point on the regession line is easy:
the best-fitting line passes through the mean of the x and y values, (x̄, ȳ), which is the point
(63.71,70.33) in our example.

The slope of the best-fitting line is:

m = r( sy
sx

)

where r is the correlation and sy and sx are our friends, the population standard deviations
of y and x:

sx =
√∑

(x−x̄)2

n
, sy =

√∑
(y−ȳ)2

n

For this example, sx = 2.77 and sy = 3.33, so the slope is m = (0.41)3.33
2.77 = 0.49.

Does it make sense that the slope of the regression line is related to the correlation? We’ll
have more to say about this in the tutorial on interpretation.
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Putting it all together, using the point-slope formula, the equation of the best fitting line
is:

y′ − ȳ = r( sy
sx

)(x− x̄)

Which can be rearranged in the form of the slope-intercept formula as:

y′ = r( sy
sx

)x + [ȳ − r( sy
sx

)x̄]

For our example, the slope-intercept form of the regression line is:

y′ − 70.33 = 0.49(x− 63.71)

And the slope-intercept form is:

y′ = 0.49x + [70.33− (0.49)(63.71)] = 0.49x + 39.11

Here’s a table of the residuals for the best fitting line:
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x y y′ = 0.49x +
39.11

y − y′ (y − y′)2

60 72 68.51 3.49 12.1801

63 74 69.98 4.02 16.1604

63 77 69.98 7.02 49.2804

64 75 70.47 4.53 20.5209

64 72 70.47 1.53 2.3409

65 72 70.96 1.04 1.0816

68 75 72.43 2.57 6.6049

68 74 72.43 1.57 2.4649

67 73 71.94 1.06 1.1236

66 72 71.45 0.55 0.3025

69 72 72.92 -0.92 0.8464

66 69 71.45 -2.45 6.0025

65 68 70.96 -2.96 8.7616

64 69 70.47 -1.47 2.1609

64 67 70.47 -3.47 12.0409

64 66 70.47 -4.47 19.9809

64 65 70.47 -5.47 29.9209

62 66 69.49 -3.49 12.1801

60 66 68.51 -2.51 6.3001

62 69 69.49 -0.49 0.2401

62 69 69.49 -0.49 0.2401

60 68 68.51 -0.51 0.2601

59 68 68.02 -0.02 0.0004

60 70 68.51 1.49 2.2201

The sum of squared resdiduals is:∑
(y − y′)2 = 12.1801 + 16.1604 + ... + 2.2201 = 213.2153

and the standard error of the estimate is: syx =
√

213.22
24

= 2.98 inches.

Compare this value to standard error of the estimate that we calculated from our first guess
(3.35). It’s smaller. In fact, it will be smaller than any other combination of slope and
y-intercept you can think of.

Here’s the scatterplot with the best-fitting line:
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Using the regression line to predict y from x

You can think of this regression line as a summary of our the relation between x and y. More
specifically, if the correlation, r, is near plus or minus 1 then the regression line summarizes
the linear relation between x and y.

This is useful because it lets us predict what y should be for arbitrary values of x. For
example, we can guess what the height of a student’s father should be, on average, for a
student whose mother is 64.5 inches tall.

All we do is plug this value of x = 64.5 into the equation of the regression line:

y′(64.5) = (0.49)(64.5) + 39.11 = 70.715 inches.

Here’s an illustration on the scatterplot:
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IQ example

It is known that the correlations between IQ’s of identical twins is 0.8. We also know that
IQ’s are distributed with a mean of 100 and standard deviation of 15.

What is the regression line that predicts the IQ of one twin based on the IQ of his/her
sibling?

The equation of the regression line is:

y′ − ȳ = r( sy
sx

)(x− x̄)

Which for our example is:

y′ − 100 = 0.8(15
15

)(x− 100)

Or:

y′ = 0.8x + 100− (0.8)(100) = 0.8x + 20

We can now ask: What is the expected IQ of a twin whose sibling has an IQ of 115?

We find this by plugging in 115 into our regression equation:

y′(115) = 0.8(115) + 20 = 112

Are you surprised? You might expect that if the IQ’s of siblings to have the same mean
and standard deviations, then the expected IQ’s of siblings should be the same. But they’re
not. A sibling that has a higher than average IQ of 115 will, on average, have an IQ that’s
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lower than their sibling: 112. However, the expected IQ is still higher than the mean IQ of
100.

A similar thing happens to for siblings that have IQ’s that are lower than average, say an
IQ of 85:

y′(85) = 0.8(85) + 20 = 88

If a twin has a below average IQ of 85 the expected IQ of their sibling is higher: 88. But
still lower than the mean of 100.

This seems impossible - how can one twin be expected, on average, to have a different IQ
than his or her sibling? And isn’t the choice if which sibling you choose as the ’x’ sibling
and which is the ’y’ arbitrary?

But according to the formula for the regression line, the only way to predict equal IQs
between twins is to have a slope of 1. That would require the correlation to be 1 (since the
standard deviations of x and y are the same).

A correlation less than 1 means that there are factors influencing the measured IQ of one
sibling that are independent from the IQ of the other. These independent factors include
day-to-day variability in the cognitive state of the test-taker, or the fact that not all twin
siblings have had the exact same life experience.

So if you deliberately choose a twin with a high IQ, the IQ score measured on that day
occurred due to a variety of factors which overall worked out in favor of that twin. Some
of those factors will have nothing to do with genetics or heritability. That twin’s sibling
will, on average, not be as lucky. Therefore, on average, that twin’s IQ will be closer to the
mean.

This phenomenon is aptly named regression to the mean, which we’ll discuss later in
’Interpretative aspects of correlation and regression’.

Using regression lines to make predictions in R

On of R’s main uses by statisticians is for regression. The following script shows how to use
R to draw regression lines and use it to find y from x:

The R commands shown below can be found here: Prediction.R

# Prediction.R

# Calculating the regression line in R is easy. Here we’ll

# work through the example in the ’prediction’ tutorial

# First we’ll load in the survey data:

survey <-read.csv("http://www.courses.washington.edu/psy315/datasets/Psych315W21survey.csv")

# And find the students that chose ’Green’ as their favorite color:

students.green <- survey$color=="Green"
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# to simply things for later, let’s define ’x’ to be the mother’s height

# and y be the father’s height:

x <- survey$mheight[students.green]

y <- survey$pheight[students.green]

# There might be ’NA’s in either x or y, so we’ll find where they are

# and take them out:

goodvals <- !is.na(x) & !is.na(y)

x <- x[goodvals]

y <- y[goodvals]

# The scatterplot can now be done by plotting x vs y:

plot(x,y,

xlab = "Mother’s height",

ylab = "Father’s height",

pch = 19,

col = "blue",

cex = 2)

# Now we’ll calculate the slope and intercept for the regression line:

# We’ll need the correlation:

r <- cor(x,y,use = "complete.obs")

print(r)

[1] 0.4061526

n <- length(x)

# The function ’sd’ in R uses the sample standard deviation formula

# which has the ’n-1’ in the demominator. The way to turn this into’

# the sample standard deviation is to mulitply the population deviation

# by sqrt((n-1)/n). We’ll do this for both x and y:

sy <- sd(y)*sqrt((n-1)/n)

sx <- sd(x)*sqrt((n-1)/n)

# The slope, m, of the regression line is:

m <- r*sy/sx

print(m)

[1] 0.4878738

# where the ’sd’ function is standard deviation.

# The intercept, b, is:

b <- mean(y) - m*mean(x)

print(b)

[1] 39.25171

# where ’mean’ is the mean (of course)

# We can draw the regression line on the scatterplot by

# using R’s ’abline’ function, which takes in the

# intercept and slope as inputs:

abline(b,m)
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# From the slope and intercept we can find the residuals

# which are the deviations of each data point from the

# regression line. First we find the values on the

# regression line for each value of x:

yprime <- m*x+b

head(yprime)

[1] 68.52413 68.52413 70.47563 69.98776 72.91500 71.45138

# The residuals are the differences between yprime and y:

residuals <- yprime -y

head(residuals)

[1] -3.4758653 -1.4758653 3.4756299 -4.0122439 0.9149988 -0.5486226

# The standard error of the estimate is the standard deviation

# of the residuals:

syx <- sqrt(sum(residuals^2)/n)

print(syx)

[1] 2.980587

# The other way to calculate syx is using sy and r:

print(sy*sqrt(1-r^2))

[1] 2.980587

# where ’sqrt’ is the square root, and r^2 is r squared.

# Is this the same number? I hope so.

# The regresion line can be used to predict y from x.

# For example, our best guess at what the height of

# the father for a student who’s mother’s height is 64.5

# inches is:

xplot <-64.5;

yplot <- xplot*m+b;

print(yplot)

[1] 70.71957

# To plot the data point on the graph we’ll use the ’points’

# function intead of the ’plot’ function. ’plot’ will erase

# our current graph and start over.

points(xplot,yplot,

pch = 16, # symbol type. 16 is a filled circle

col = ’red’, # color of symbol

cex = 2) # size of symbol
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