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Abstract

A descriptive function method was used to measure the dctection, discrimination, and identiflcation pcr-formance
of a large population of single neurons recorded from within the primary visual cortcx of thc monkey and the cat, along
six stimulus dimensions: contrast. spatial position, orientation, spatial irequency, temporal fiequency, and direction of
motion. First. the responses of single neurons were measurcd along each stimulus dimension, using analysis intervals
comparable to a normal flxation intcrval (200 ms). Second, the measured responscs of each neuron were fitted with
simple descriptivc lunctions, containing a few fi'ee parameters, fbr each stimulus dimension. These functions wcre
found to account lbr approximately 9O7r: of the variancc in the measured response means and response standard devia-
tions. (A detailed analysis of the relationship between the mean and the variancc showed that the variance is propor-
tional to the mean.) Third, the parametcrs of the best-fitting descriptive f'unctions wcrc utilized in conjunction with
Bayesian (optimal) decision theory to determine the detection, discrimination, and identification pcrfbrmance for each
neuron, along cach st imulus dimension. For some of the cel ls in monkey, discrimination perfbmance was comparable
to behavioral performance; for most olthe cells in cat, discrimination pcrformance was better than behavioral perfbr-
mance. The behavioral contrast and spatial-frequency discrimination functions wcre similar in shape to the envelope of
the most sensitivc cells: they werc also similar to the discrimination functions obtained by optimal pooling of the entire
population ol-cells. The statistics which summarize the parameters ol'the descriptive functions were used to estimatc
the response ofthe visual coftex as a wholc to a complex natural image. The analysis suggcsts that individual corlical
neurons can reliably signal precise infbnnation about thc location, size, and orientation of local image features.

Keywords: Primate visual coftex, Single neuron elcctrophysiology, Behavioral discrimination performance, Pattern
recognition, Bayesian analysis

Detection, discrimination, and identification

Introduction

The human visual systcm is able to detect, discriminate, and iden-
tify different pattems in space and time. The mechanisms underly-
ing these abilities have been explorcd by studying the visual pathways
of primates and cats. From this work, wc know that neurons in the
visual cortex respond to spatiotemporal contrasts, and that they are
selcct ive along a variety ol 'st imulus dimensions, including con-
trast, spatial position, orientation. spatial ficqucncy, tcmporal iie-
quency. and direct ion of motion (e.g. Hubel & Wiesel, 1962, 1968;
Campbell  et al. .  1968, I969t forgeneral revicws scc: Robson. 19751
Orban, 19841 Shapley & Lennie, 1985; DeValois & De Valois. 1988:
Palmer et al., I 99 I ). To help understand the functional signilicancc
of thc visual coflcx neurons, their response selectivities have been
evaluated within thc context of behaviolal psychophysrcs.

One strategy fbr comparing neural and behaviolal performance
is to measure the responses of single neurons using a stimulus
protocol that is similar to a classical psychophysical protocol (Tol-

Reprint  requests to:  Wi lson S.  Geis ler ' .  Departmcnt of  Psychology and
Clcntcr  fbr  Vis ion and Image Sciences.  Mezes Hal l  330.  Univers i tv  of
Texas .  Aus t i n .  TX  78712 .  USA .

hurst et al. ,  1983; Bradley et al. ,  1985; Parkcr & Hawken. 1985;
Barlow ct al. ,  1987; Hawken & Parker, I990; Ceisler et al. .  l99l).
An alternate strategy is to find simple functions which adequalely
describe the stimulus-responsc rclationships of a given neuron and
then use Bayesian decision theory to determine the per-fbrmance
(Ceisler & Albrecht. 1995). This descript ivc function method per-
mits accurate determination of a neuron's performance with a smaller
number of measurements, thereby making it l'easible to conduct a
broad sulvey of the perlbrmance characteristics of the visual cortex.

In this study, we measured conical neuron responses in monkey
and cat along a number of fundamental st imulus dimensions: con-
trast, spatial position, orientation, spatial fiequency. temporal fre-
quency. and direction of motion. We found that rclatively simple
functions provided an adequate description of the response mcans
and thc rcsponsc variances. The parameters of these descriptivc
functions were used to determine the detection. discrimination, and
identification performance along all of the stimulus dimensions,
for a large population of neurons. The performance of this popu-
lation of neurons was then compared with the behavioral perfbr-
mance of humans, monkeys, and cats. Finally, the statistics of the
population were used to estimate the response of the cortex as a
who lc  to  complcx  na lu ra l  images.
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Methods

Pht,siological preparation antl stimulus displat

The procedures fbr electrophysiological recording, stimulus dis-
play, and measurement of neural responses using systems analysis
were similar to those described in detail elsewhere (Albrecht &
Hamilton, 1982: Albrecht et al. ,  1984; Hamilton et al. ,  1989; Al-
brecht & Ceisler ' ,  1991), with the most recent changes described
below. The protocols used in these experiments were approved by
the University of Texas at Austin Institutional Animal Care and
Use Committee and they conlbrm to USDA regulations and NIH
guidelines fbr the humane care and use of laboratory animals. The

experiments were performed on macaque monkeys (Macacu .fLts-
cicularis') and domestic cats. Anesthesia was induced using either
ketamine hydrochloridc (20 mg/kg/h) or thiopental sodium (20
mg/kg/h), and then maintained for the surgical procedures using
thiopental sodium (20-30 mg/kg/h) for the cats, or sufentanil
citrate (8 12 pg/kg/h) for the monkeys. During this time, a leg
vein was cannulated fbr infusion; a stainless-steel pedestal was

attached to hold the head in position without ear and eye bars;
tissue was removed over the skull fbr a craniotomy; and the dura
mater was thinned for inserlion of a microelectrode. Following the
surgical procedures, anesthesia was maintained for cats with con-
tinuous inhalation of nitrous oxide/oxygen (75%/25Vc) and con-
t inuous inf lsion of thiopental sodium (1 mg/kg/h), or wi lh
thiopental sodium alone (2-6 mg/kg/h)l fbr monkeys, anesthesia
was maintained with sufentanil citrate (4-6 p"g/kg/h). Anesthesia

and respiratory gases wcre monitored via an Ohmeda Respiratory
Gas and Patient Monitor (Ohmeda RGM Model 5250, Critikon
Dinamap Model 8300, Vct/Ox Pulse Oximeter Model 4402), which
monitors the inspired and expired COr, Or, N2O, airway pressure.
oxygen saturation in the blood, hean rate, and blood pressure.

The eyes were immobilized through continuous infusion of
gallamine triethidiode ( I 0 mg/kg/h) or pancuronium bromide (0.2

mg/kg/h). The animal was artificially respired through an endo-
tracheal throat tube; expired CO2 was maintained al 4.5o/c, by ad-
justing the respirator rate and stroke volume. Accommodation was
paralyzed and the natural pupil dilated by applying cyclopentolate
hydrochloride. For cats, the nictitating membrane was rctracted
with phenylephrine hydrochloride. The eyes were covered with gas
permeable hard contact lenses to prevent corneal drying. The an-
imal was refracted using streak retinoscopy. corrective lenses were

used to fbcus the stimuli on the retina, and a 3-mm artificial pupil
was introduced. Core body temperature was continuously moni-
tored and maintained vlo a thermostatically controlled hydraulic
heating pad which surrounded the animal. Action potentials (col-
lected in 0. l-ms time bins) were recorded fiom area 17 neurons
using glass-coated platinum-iridium microelectrodes. The recep-

tive fields fbr the neurons measured in this study were located
wi th in  5  deg o l  the  v isua l  ax is .

The stimuli were luminance-modulated, drifting sine-wave grat-
ings patterns fbr all of the stimulus dimensions except spatial
position, where thcy were counterphase gratings. The grating stim-
uli were smoothly damped at the edges in space with abnrpt onsets
and oflsets in time. They were presented on a Conrac studio mon-
itor running at a noninterlaced frame rate of 100 Hz. The mean
luminance was held constant at 27.1 cd/m:. Both hardware and
software methods were utilized to compensate ior nonlinearities in

the stimulus display. Responses were measured as a function of
contrast, spatial position. orientation. spatial frequency, temporal
frequency, and direction of motion, presented in a pseudorandom
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fbshion. A single presentation at a fixed spatiotemporal contrast
consisted of a block of ten or 1 2 contiguous tcmporal cycles. Each
block was separated by a period of time equal to the block length;
during these separations, the contrast was zero. Generally, four
blocks were obtained fbr each stimulus condition. which resulted

in 40 or 48 repeated temporal cycles (in some instances as many as
20 blocks were obtained). To assess the detection, discrimination,

and identification performance within an analysis interval roughly

comparable to a single flxation, the total number of spikes fbr each
cycle was expressed in tetms of spikes per 200 ms.

Analvsis

Desc'riptive functions Jor the mean and variance

The measured means and standard deviations for each stimulus
dimension were fitted using the descriptive functions shown in
Table l. In this table, we represent the relative response along each
stimulus dimension by a selectivity function normalized to a peak

of one. The mean of the response (r) is equal to the normalized

iunction (r,) times the maximum response (r,,,,,*) plus the base rate
(ro). The variance ofthe response (or) is equal to the response

mean times a constant (K). No special significance should be
attached to these descriptive f'unctions other than the fact that they
provide a good fit to the measured responses with a minimal num-
ber of free parameters. These functions are simple and yet flexible
enough to handle the wide variety of tuning function shapes.

Consider first the functions that describe the mean. For the di-

mension of contrast. the function is a saturating power function (the

Table 1. Descriptive .functktns .for the response means
and variances
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Discrimination and identification in visual cortet

Naka-Rushton function). For the dimensions of spatial frequency and

temporal frequency, the function is a skewed Gabor function (a

Gaussian whose standard deviation is allowed to differ on either side

of the peak). For the dimension of spatial position, the function is

a rectified sine wave raised to an exponent, plus a vertical offset.

For the dimension of orientat ion, the function is a Gaussian. Fi-

nally, for direction of motion, the function is a constant represent-

ing the relative attenuation in the nonpreferred direction.
Consider next the function which describes the variance. This is

a very simple relationship which states that the variance is pro-

portional to the mean. In other words. the variance is predicted by

one parameter-the proportionality constant K. Previous investi-

gators have used a two-parameter function, where the variance is

proportional to the mean raised to an exponent (e.g. Tolhurst et al.,

1983). In Appendix B, we show that thc simpler one-parameter
function describes the measured responses iust as well as the two-
parameter function.

The descriptive functions ior the means and standard deviations
were litted simultaneously using a maximum-likelihood proce-

dure. For example, for the dimension of contrast, five parameters

were estimated simultaneously: two for the normalized funct'ion,

one fbr the maximum response, one for the base rate, and one tbr

the variance. When more than one dimension was fitted simulta-
neously (Figs. 2 and ,1). three of the parameters (r,,,,,,, re, K) were

not allowed to valy across dimensions. The details of the maxtmum-
likelihood fitting procedure are given in Appendix A.

Detection and discriminution performance

The descriptive functions fitted to each neuron's responses were

used to determine what the neuron's detection and discrimination
performance would be in a standard two-interval, two-alternative,
forced-choice task. In this task, there are two possible stimuli. In

a single trial. both stimuli are presented (in separate temporal

intervals) in a random order. The goal is to indicate conectly which

stimulus appeared in the first temporal interval. Threshold is de-

fined as the difference in the two stimuli which gives 7570 correct

performance.
Thresholds for individual neurons were found using Bayesian

decision theory (ideal-observer thcory). We chose to use Bayesian

decision theory because it shows the best perfonnance possible

given the neural responses. and hence provides a usetul bench-

mark. To maximize the percentage of corect responses, the Bayes-

ian observer uses (to close approximation) the fbllowing decision

rule: if the response in the first interval is greater than the response

in the second interval, then guess that the first interval contained

the stimulus which produces the larger mean response; otherwise,
guess that the second interval contained the stimulus which pro-

duces the larger mean response. The threshold achieved with this

decision mle can be found using the iotmula:

, \Meanl

\fAue,Tt gelrrr^^z
( t )

The quantity d' is the absolute value of the difference in the means

divided by the standard deviation. A d' of 1.0 corresponds Io'/57o

correct in the two-interval forced-choice task. In other words, to

discriminate two stimuli with an accuracy of 15%, the change in

the mean response must equal one standard deviation. Substitution

of a descriptive function for the response mean and variance into

eqn. ( I ) results in the following formula for detection and discrim-

ination peribrmance:

899

r ( . r * J . r )  - r ( . r )

where Ar is the change along the stimulus dimension. Detection

and discrimination thresholds were lound by setting d' to 1.0 and

solving for Ar (i.e. incrementing or decrementing A-r from 0 until

d'  equaled 1.0).
Bayesian decision theory was also used to determine thresholds

lbr the entire population of neurons as a whole, under the assump-
tion that the responses of the neurons are statistically independent.

The Bayesian decision rule (to close approximation) is to compute

a weighted sum of the diff'erences in the responses between the

flrst and second stimulus intenals. If the weighted sum is positive

one of the altematives is picked, if it is negative the other alter-

native is picked. The d' for the entire population (using this deci-

sion rule) can be determined from the d's for the individual neurons
in the same task. Specifically, the population d' is given by the
fbllowing formula (Green & Swets, 1974):

where d,l is the value of d' for the lth neuron, ln is the number of
neurons in the population, and e is the overall pooling efTiciency.l
The efficiency parameter quantifies the fraction of infbrmation

utilized from each neuron; it varies fiom 0.0 (where none of the

information is utilized) to 1.0 (where all of the information is

utilized in an ideal fashion). Finally, the population threshold was

obtained by sett ing d'to 1.0 and solving fbr Ar. For the purpose

of comparing the shapes of behavioral and neural discrimination
functions, the efficiency parameter, e, was allowed to vary. To

compare efficiencies across populations with different numbers of
neurons, it is necessary to normalize for the number of neurons. To

do this, we multiplied the best-fitting efficiency parameter, €, by

the number of cells, n, and then divided by 
,l00 

to obtain the

eff iciency per 100 cel ls, e1so.

Identificati on p e (b rmance

Identification involves making a decision about which stimulus
was presented when the set of possible stimuli is large.r Bayesian

decision theory was used to determine identification perfbtmance.

The descriptive functions tltted to the measured responses were

used to deterrnine how accurately the stimuli could be identified

bascd upon a single response. Specifically, we quantified identifi-

cation per-fbrmance by finding maximum-likelihood confidence
regions, which define the most probable subset of stimuli given the

observed response; the smaller the confldence region, the more

accurate the identification perfbrmance. For example, a 957c con'

fidence region contains. by deiinition, the corect stimulus 95% of

I  Str ic t ly  spcaking,  the 11'  summation formula is  der ivcd assuming
normal distributions fbr the responses. with the same variance fbr signal +
noise and noisc alone (the variance is allowed to bc dif-fcrent for each
ncuron.). However. if thc average variance fbr signal - noise and noise
alone is  used in the cornputat ion ofeach 11' [scc cqn.  ( l ) ]  then eqn.  (3)  is
quite accurate for rnultiplicative noisc (variance proportional to the mean)
and fbr response distnbutions that are not normal (c.g. the Poisson distri-
bution). Wc have shown this to be true in sirnulations whcre we compared
the perfbrmancc of the exact ideal observer with the perfbrmance predicted
bv  eon .  ( 3 ) .- 

I betection and cliscrimination are spccial cases of identiflcation where
the numbcr of  st inrul i  is  iust  two.

(2)

(3)

K ' r ( . r * - \ . r )  + K . r ( r )
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the t ime. I f  this region is small ,  the st imulus can be identi f ied as
belonging to that small region with 957c accurac!. This makes the
confidence region a useful quantitative index of identification per-
formance (Geisler & Albrecht, 1995).

To find the confidence region, we must determine the proba-

bi l i ty of the st imulus (x) given the response (R), p(r R). Bayes'
formula expresses this probability in terms of the probability of the
response given the st imulus. p{Rlx), and thc prior probabil i ty of
the st imulus, p(x):

p ( x  R )  -
p (R x )p(x )

' ) p ( x ' ) dx

where the integral in the denominator is over all possible stimuli x.

We assumed no knowledge of the stimulus prior to the response:
that is, we assumed that p(x) is constant, in which case. p(x)

cancels in the above equation. (Incorporating true stimulus prob-
abilities, i.e. natural environmental constraints, should generally

only improve identification performance.) The probability of the
response given the stimulus was determined fiom the descriptive
functions for the mean and variance under the assumption that the
responses were apploximately normally distributed:

I  I  f R  -  r ( x ) l r  ]
p ( R x t  : - e x D 1  0 . 5  ^  |  ( 5 )'  

t l  2 r K r t x l  
'  I  A / l x '  )

This probability density function was then substituted into Bayes'

formula to obtain the probability of the stimulus given the response.
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Definition of the 95% Confidence Region

0 .0 .<<]----------+

Confidence Region

STIMULUS DIMENSION (x)

Fig. 1. Idcnti f icat ion perforrnance: The 957c confldcnce region. Definit ion
of thc naximunr likclihood 957r confidencc rcgion used to characterize the
identification perfbnnancc oI single neurons. Thc smooth curve represents
a certainty lunction ( i .e. an u posteriorl  probabil i t l '  dcnsit l ' function). which
gires the probabil i ty 'ofeach possiblc st imulus (x) git 'en that a parl icular
responsc (R) occun'ed during a single tr ial .  Thc 957 confidence region
(indicated by thc tu'o-headed arrow along the horizontal aris) is the region
in stimulus spacc that coresponds to 957 of the area (thc shadcd arca)
undcr thc certaintv function. It is found by incrcasing the criterion p (the
dashed l inc) unti l  the sum of thc probahil i t ies grcater than p equals 0.95.
l f  a ncuron produces a rcsponse of magnitude R. then subsequent brain
mechanisms can bc 957 certain that thc st irnulus cante from this confi
dence region. Thc smaller this confidcnce region the bcttcr thc identi f ica-
tion pcrformancc of thc neuron.

Advantages and limitations oJ the perfotmance measures

The standard method for measuring neural perfbrmance is [() met-

sure counting distr ibutions (pulse-number distr ibutions) for each

stimulus level and fiom these determine performance using Bayes-

ian decision theory. The major advantage of the descriptive tunc-

tion method proposed here is that it is considerably more ef1icient:
peribrmance can be measured along a number of stimulus dimen-
sions within a rclatively shorl period of time. One reason the method

is efficient is that the underlying pulse-number distributrons are ap-

proximated by normal distributions, estimated from measurements

of just two summary statistics: the response mean and variance. In

Appendix C, we show that the estimates of periormance are quitc

accurate even when the pulse-number distributions deviate substan-
tially from normality. Another reason the method is etficient is that
performance is determined from descriptive functions containing

only a fcw parameters, and these parameters are estimated simul-

taneously from all of the data. In other words, the method makes

use of the a priori knowledge that the means and variances of cor-

tical cells can be described by specific descriptive functions with

only a few parameters. This a prioriknowledge reduces the amount

of data required to estimate a cell's response characteristics.
We have compared the results of the descriptivc function method

with a more traditional signal detection method where entire pulse-

number distributions are measured. We fbund that the estimates of

performance from the descriptive function method were compara-

ble to those from the more traditional method (see Appendix C).

One potential limitation of the descriptive function method used

here is that it assumes that the parameters (e.g.rn,"*, K) are rela-

tively stable through time; that is, the method does not incorporate

1 . 0

E.
x

J

m
c0

E
rL

( 4 )

[ , r ' ^ '

I  tn  -  r ' (x) l ]  I
e x p l - 0 . 5  -  |. t  A f l x )  )

p ( x  R )  :

This formula, when regarded as a f'unction of the stimulus (x), is
referred to as the certainty function, or the tt posterlorl probability

density tunction. Note that the shape of thc certainty function
depends upon the value of R.

Once the certainty function has been determined, the maximum-
likelihood confidence interval is obtained by summing stimulus prob-

abilities until the criterion contldence level, a, is reached. Formally,
this process is equivalent to solving the lbllowing equation fbr B:

I
a  :  I  p ( x '  R )dx '  ( 1 )

J  { 1 : 7 r  ( x  t t  ) : ' P }

where B is some level of stimulus probability. For example, a 95%
confidence region is derived by starting with p : 0, and then
increasing p in small steps until the sum (the integral in this

equation) equals 0.95. We ref-er to this final value of B as Be5. The

957o confidence region, CRqs, is the set of stimuli whose proba-

bi l i ty density cxceeds Be5; that is,

CRcr  -  {x  :p (x lR)  >  Fqs}  (8 )

The smaller this set, the better thc identilication perfbrmance.
The above procedure is illustrated in Fig. l. The solid curve

represents a hypothetical ceftainty function: a probability distribu-
tion for the stimulus given a parlicular response, p(x R). The
shaded region has an area of 0.95; it defines the confidence interval
indicated on the horizontal axis. As B is increased from zero, the

sum of the probab:ilities which exceed B decreases until the sum
equals 0.95 (the shaded area). which occurs when B : 96

( 6 )
,  f  I  I  l R - r ( x ' t l j l
v"* ' J ,  

J ( * ' )  
" *P1 -0  5  * r ,a  lo*

95o/o of area
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nonstationary factors. Although it might be possible to include such
factors, they are unl ikely to play a signif icant role. First,  the de-
scriptive functions accounted for approximately 90c/c of the varia-
tion in the measured responses (e.g. Figs. 3 and 4), leaving only a
small amount of residual variation to be explained by other factors.
Second. in a series of analyses designed to measure the degree of
nonstationarity in striate neurons, we found little evidence of non-
stat ionarity (see Appendix D in Geisler et al. ,  l99l).  Final ly. in the
present study we tested for systematic drifis in the parameters by
fitting several data sets collected at dilferent times with a common
set ofparameters as opposed to a unique set ofparameters fbr each
data set. The results of this analysis were consistent with what would
be expected of a stable stochastic process.

It is imporlant to note that this report only considers per'lbr-

901

mance based upon rate intbrmation. We have developed methods
that can incorporate rate and temporal pattern infbrmation (Geisler
et al., 1991). Using these methods, we fbund that for visual cofiex
neurons, temporal pattern information appears to be important for
discriminating stimuli that difl'er in some temporal parameter. The
descriptive function method developed here can be extended to
take into account temporal pattem infbmation.

Results

De sc ript iv e .fincti ons

Fig. 2 shows the responses of representative neurons along each of
the stimulus dimensions measured in this study: contrast, spatial

Measured Responses & Descriptive Functions

o
J
CL
o

u,l
az
o
o.
o
l!
Ir

CONTRAST

40

c (vo)

SPATIAL FREOUENCY

5

u (cpd)

ORIENTATION

TEMPORAL FREQUENCY

w (Hz)

o
.Y
o _ 2
Q _

o
U)

0
80

{ nP 1 0

I
ut
@z 5
o
o.
o
ul
( f , 0

o
c L 2
I
o
a

0
180 360 0 40 80

A

SPATIAL POSITION DIRECTION OF MOTION

a a

- 8 0 8 0

p (arc min) 0 (des) c (7")

Fig.  2,  Measurcd rcsponscs and descr ipt ive lunct ions.  Rcsponscs of  s ix rnonkey v isual  cortex ncurons plot ted as a funct ion of  s ix
stimulus dimensions: contrast. spatial position. spatial fiequencv, oricntation. tcmporal fiequency, and direction of motion. For each
dirnension. thc uppcr panel plots the mean response (thc avcrage total nunlber of action potcntials which occuned during a singlc
200 ms interval). and the lower pancl plots the standard deviation associatcd rvith that response. Responses as a finction of contrast
(A) were measurcd at an optimal and a nonopfinlal spatial ficqucncy. Responses irs a lunction of spatial position (B). spatial liequency
(C), and temporal fiequencv (E) wcrc measured at a saturating and a nonsaturating contrast. Responses as a function oforientation 1D;
u,crc mcasured tbr motion in the prelerrcd rersls nonprefened directions. at a saturating contrast. Responses as a function of contrast
(F) were nreasurcd in the preferred lerras nonpreferred dircctions lbr an optimal sine u'ave. The sntooth curves through the data points
are the f i ts  t t f thc dcscr ipt ive funct ions given in Table i .  Thcsc funct ions provide a good descr ipt ion of the responses ofmost cor l ical
cel ls  fbr  these st imulus dimensrons.
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position, spatial frequency, orientation, temporal frequency, and
direction of motion. For each dimension, the upper panel plots the

mean response, and the lower panel plots the standard deviation
associated with that response. For example, in A, the responses are
plotted as a function of contrast measured at two different spatial
frequencies, and in B, the responses are plotted as a function of

spatial position measured at two different contrasts. The smooth

curves through the data points show the iits of the descriptive
functions in Table I (see Appendix A for the maximum-likelihood
fitting procedure). As can be seen, the descriptive functions pro-

vide a good fit to the measured responses. To quantify the good-

ness of fit, we used the following index:

I r loh.terued - nredicted lf
c :  1 0 0  v  l l  -  A v ' E l  , *  ,  * .  - .  l l  ( 9 )

I  \  O0SerUed +  preAt (  kA t  )

Table 2. Popukttion statistics .for the descriptive .functions"

W.S. Geisler and D.G. Albrecht

A per{ect fit would result in a value of 100%', and a very poor fit,

a value of 07c.3 The average values of the parameters of the de

scriptive functions for the entire sample of cells, along with the

mean and median values ofthe goodness-of-fit index. are given in

3 The ratio in this index is an error term that varies between 0 and I and
is similar to a contrast index in that the difference is scaled by the mean. The
average error is computed across all stimulus levels. Subtracting the average
error from I and multiplying by 100 providcs an index ofthe pcrcentage of
the variation accounted fbr. Wc chose this index because other indices are
inadequatc for describing the goodness of fit for complex cells in the spatial
position experiment. Complex cells respond nearly the same to stimuli at

different spatial positions. Conventional indices (e.g. 100 x [1 residual

variance/total variance]) indicate a very poor fit cven when the data are well

described as a constant increase in spike rate. For other stimulus dimensions.
the indcr Leqn. (9) l  is  in good agrccment wi th thc convent ional  indices.

Contrast (217 cat  7 l  monkey)

Mean 3.0
Median 2.8
s .D .  1 .4

( 5 0

25.0 ,13.0
16.0  32 .0
25.0  3  1 .0

t . l
1 . 4
1 . 0

1 . 7
1 . 3
t . 2

( 175  ca t  96  monkey )

c, G"

2.-5
2 .0
l � . l

89.0 89.0 90.0 90.0
90.0 90.0 9 L0 90.0
6 .2  6 .2  1 .1  1 .9

Spatial fiequency b

h,,

0.73  0 .69  0 .80  1 .6
0.66 0.65 0.78 1..+
0.32 0.33 0.29 O.t i  l

I  . .{  87.0 85.0 9l .0 90.0
|  .2  88 .0  87 .0  91  .0  90 .0
0 .83  6 .2  ] . t  .+ .3  .+ .8

G, G,,

Mean 0.74

Median 0.62

s .D .  0 .37

4.5
1 1

2.3

0.69
o.6l
0.30

remnorar r requencY i  I  lo  ea t  6 -5  monke)  t

l t , 1 , , ' (i, G,,h,, K
1 . 2  0 . 8 8  2 . 1  2 . 2
1 . 3  0 . 7 1  1 . 9  1 . 7
0 . 5 5  0 . 5  I  L l  l . l

(58 cat  27 monkcy)

89.0 90.0 90.0 89.0
90.0 9l .0 9 |  .0 90.0
5 .5  5 .8  1 .6  3 .8

Mean 6.7

Median 6.1

s .D .  3 .3

8.  I  1 . -5
7 . 2  1 . 2
3.s 0.99

2 . 1
1 . 7
1 . 4

Spatial position

C,

Mcan 2.7

Median 2.3

s.D. L5

3.0
1 1

t . )

1 . 5
1 . 3
0.til

L.r 9l .0 88.0 9 L0 88.0
1.7 92.O 90.0 92.0 89.0
0 .82  5 .6  9 .3  3 .6  5 .9

(21 cat  15 monkel ' )Orientation

Mean 24.0

Median 2l  .0

s .D .  I  1 . 0

0..16 0.52
0.45  0 .51
0.26 0.28

K
r .8  1 .1  8 .+ .0
1 . 1  1 . . +  8  1 . 0
0.52 0.42 5.9

(47 cat 16 monkey)

G"
8.1.0 86.0 88.0
82.0  85 .0  88 .0
5 .7  3 .  r  1 .1

ht) G,

20.0
l  5 .0
9 . 1

Direction of motion

G"K G,p

Mean 0.62 0.46

Median 0.73 0.46

s.D. 0.30 0.26

L6 1.7 86.0 9.1.0 88.0 9,1.0
1 .5  1 .1  86 .0  94 .0  89 .0  91 .0
0 .75  0 .58  6 .5  1 .9  4 .6  1 .3

Mean 8.t)

Median 5.7

s.D. 6.6

r0

0.36  0 .52
0.09 0. l7
0.66 0.83

8.2
5 .7
7 .0

'For each parameter, cat statistics are in the left column and monkey the right.
bThe bandwidths are expressed in octaves.
.For 4l cat cells and 32 monkev cells. the response did not fall to half of the maximum at the lowest frequency

tested (at 0.25 Hz).
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Table 2. (In this table, G, is the goodness-of-fit index fbr the mean

responses, and G., is the index lor the standard deviations.) As can

be seen, the values of the goodness-of:fit index are generally near

90Vo.
Some of the measurements and analyses reported in Fig. 2 and

Table 2 are similar to those reported previously by us and by many

other investigators (see references in the Introduction). In this

study, the responses along all six stimulus dimensions were mea-

sured and analyzed using the same methods (e.g. the same mean

luminance, trial duration, stimulus protocol), thereby facilitating

comparison of the results.
One important aspect of the results is that the standard devia-

tions are related to the means by a simple proportionality mle
(c2 : Kr). To assess the adequacy of this rule, we estimated the

value of K for each stimulus dimension individually using the

maximum-likelihood procedure described in Appendix B, and quan-

tified the goodness of fit to the standard deviation data using the

index delined by eqn. (9). Fig. 3 shows the frequency distribution

of the goodness-of-fit measure for each stimulus dimension. As

can be seen. for all of the stimulus dimensions the values of the
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index are very high (greater than 9OVc). Thus, the simple propor-

tionality rule captures most of the variability in the data.
A second important aspect of the results is that the value of K

is essentially invariant for a given cell across stimulus dimensions.
This remarkable fact is illustrated in Fig. 2, where the responses

for each cell are shown for two stimulus dimensions. For example,

in C. responses are plotted as a function of spatial frequency lor

two different contrasts, and in F, responses are plotted as a function

of contrast for two different directions of motion. The solid curves
through the standard deviations are the predictions for a single

constant of proportionality. To assess the degree to which K is

invariant across stimulus dimensions. we estimated the value of K

for mult iple st imulus dimensions simultaneously (see Appen-

dix B); the number of dimensions varied from 2 to 6. Fig. 4 shows

the frequency distribution of the goodness-of-fit index averaged

across all of the stimulus dimensions for each cell in this sample.
The median goodness of fit was greater than 90%. Thus. ior each

cell a single value of K describes the relationship between the
mean and the variance across multiple stimulus dimensions.

Note that because the variance is propoltional to the mean

60

Variance Proportional to Mean: Goodness of Fat for Single Dimensions

CONTRAST SPATIAL FREQUENCY TEMPORAL FREQUENCY
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Fig.3, Variance proportional to the mean: Single dimension. Histograms showing the goodness-o1'-flt index for the responsc standard

deviations. Go, where the constant of proportionality, r(, was estimated fbr each dimcnsion individually. This goodncss-of-fit index

quantifies how well the one parametcr proportionality rule, r: - r(r, characterizes the measured standard deviations. The mean

goodness of,flt index for monkey u,as 93.7 (mcdian - 9.1.:1. s.o. - 3.2). The mean goodness-of-fit rndex tbr cat was 93.3 (median =

93.7.  s.o.  :  2.5) .  These high values indicate that  the s imple ru lc provides a good descr ipt ion of  the var iance across al l  of  the st imulus

dimensions examined. (Scc Appendix B fbr a more detailcd analysis.)

ORIENTATION DIRECTION OF MOTION
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Variance Proportional to Mean:
Goodness of Fit for Mult iple Dimensions

0
50 75 100

GOODNESS OF FIT (%)

Fig. 4. Variance proportional to tlte mean: Multiple dintensions. Hislogranl
showing the goodness-of-fit indcx lbr the standard deviation whcre the
constant of proportionalitv. K. was fittcd across nlore than onc dimension
simultaneously. This analysis was pertbrnrcd on a samplc of 713 cat cel ls
and 35 monkel 'ccl ls. The mean goodness-of-f l t  indcx lbr rnonkel 'was 93.0
(median - 93.1. s.o. :  3.6). Thc mcan goodness of-f i t  index for cat was
9:1..1 (mcdian - 9,1.6. s. l .  -  3.0t.  Thcse hi-ch valucs indicate that a single
value of K holds across st imulus dimensions.

with a single value of K, then any two stimuli which produce

equivalent mean responses will produce equivalent standard de-

viations. Consider, for example, the cell in Fig. 2D. If the stim-

ulus is moving in the nonpref'emed direction. at the optimal

orientation, then the cell produces a mean response of approxi-

mately 8 spikes and a standard deviation of 3 spikes. If the

stimulus is moving in the prefbrred direction, at a nonoptimal

orientalion approximately 20 deg irom the peak. then the cell

also produces a mean response of 8 spikes and a standard de-

viation of 3 spikes. Thus, the standard deviation is determined

by the rcsponse independent of thc stimulus.

One exception to the invariant-K rule is that fbr some cells K

tends to increase at low temporal fiequencies (below 2 Hz). This

behavior can be seen in Fig. 2E; the observed standard deviations

exceed the predicted at low tcmporal fiequencies. For the majority

of cells, K remains invariant as a function of temporal frequency.

Furlher analysis of this efI-ect is described in Appendix B.

ln summary, for all of these tundamental stimulus dimensions.

the relationship between the mean ofthe response and the variance

of the response fbr any givcn cell is adequately described by a

simple constant-ratio rule: the variance is proponional to the mean

with a single proportionality constant that is independent of the

stimulus dimension.

Dete ct ion ttnd di s c rimination pe rfo rmanc e

As shown in the previous section, the response means and standard

deviat'ions of each neuron in the population were accurately fit by

the descriptive f'unctions in Table 1, thus making it possible to

determine the detection and discrimination performance of each

neuron.

W.S. Ceisler and D.G. Albrecht

Fig. 5 shows the discrimination functions for the neurons in

Fig. 2. For example, in A, contrast threshold is plotted as a function

of base contrast (i.e. background or reference contrast) fbr the

optimal stirnulus. This contrast-discrimination function is typical

of those reported in the literature (fbr a review see Geisler et al.,

l99l). As base contrast increases. threshold initially decreases,

reaches a minimum, and then rapidly increases. Thus, the detection

threshold (the threshold at a base contrast of 0.0) is larger than the

best discrimination threshold. Similar trends are seen for the cell in

fl where contrast-discrimination functions are plotted for the pre-

ferred and nonpref'erred directions of motion. In B-E, the discrim-

ination functions are shown for the highest contrast measured.

Note that for each stimulus dimension good discrimination only

occurs over a limited region. The smallest thresholds occur away

fiom the peak, where the slope is steep and the response is still

large (c.f .  Fig. 2). For al l  of the st imulus dimensions except con-

trast. there are multiple regions of high sensitivity. This occurs

because the response functions along these dimensions have mul-

t ip le  rcg ions  uhcrc  the  s lope ls  s teep.

It would, of course, be possiblc to improve discrimination per-

fbrmance by making the analysis intervals longer than 200 ms.

However, intervals longer than 200 ms would not be comparable to

tixation times during normal saccadic inspection. Further, even

under steady fixation, longer intervals would exceed psychophys-

ical estimatcs of the temporal integration limit of the visual system
(Watson, 1986), and would thus overestimatc the contribution of

individual neurons to behavioral performance.

Fig. 6 and Table 3 summarize the detection and discrimination

perfbrmance of the entire population of cells. Fig. 6 shows the

fiequency histograms of the best discrimination thresholds for each

Table 3. Population statistics .fbr cortical performance
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Discrimination Performance:Representative Cells
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of the stimulus dimensions.r Note that fol position. thc thrcshold
is expressed in degrees of spatial phase because posit ion dis-
crimination is strongly dependent on the peak spatial flequency
of the cel l .

I de nt ific at ion p e rfrt rman c e

Identification pcrtbrmance fbr each neuron was quantified by mea-
suring how accurately one could know the stimulus based upon the
neuron's response. As described in the Methods section, the de-
scriptive functions and Bayes' fbrmula werc used to determine the
probability of each possible stimulus given a particular response;
this is the certainty function. The cuwes in Fig. 7 show the cer-
tainty functions for the cells in Fig. 2, given thal the cells produced
a maximum response. For example, the certainty function for ori-
entation is shown in D. As can be seen, the most probable stimulus
(given a maximum response) is a grating moving in the preferred

u Because complex ccl ls  producc near ly equivaleut  responses at  a l l
spat ia l  posi t ions.  the-v were not  inc ludcd in thc analysis of  d iscr iminatron
performance along the dimcnsjon of spatial position.

direction. restr icted to a nanow band of orientat ions. J[s 211, 'r  1
on thc horizontal axis indicate the region that sums to 957r cl l r"
area under the certainty function; this is the maximum-l ikeUh'., ,  i

9501, confidence region. (The arrows on the vertical axis intli, rrt"

Be5, thc smallest probabil i ty included in the 95% conficlencr: '  '

gion; see Fig. l .)  Thus, when a maximum response is producr l .  i r
subsequent brain mechanism could know the orientation 01 li'i'
st imulus to within + l9 deg, and the direct ion of motion, \  ' i th {. ' '1 '  :

confidence. Similarly, the othcr certainty functions in Fig. 7 ,rlrlr';

that when a maximum response is produced one could f,nsr:; 1!'.
spatial frequency to within + 1.25 cycles/deg (cpd), the po:, ir i i  r i

to within + 1.7 min of arc.5 the contrast to within + 42cti '.1t.

'The two separate conl idence regions tbr  spat ia l  posi t ion rcf lcr . i  , , ,

b igui ty in thc spat ia l  phase of  the st i rnulus when the tempor i i l  phase ,  t  t ' ;
responsc is  ignorcd.  For the s imple cel ls  ani i lyzed here.  the temporal  ;  , .

shi t is  typical ly  corrcspondcd to intervals of  100 rns or  more.  Anr '

sequent brain mcchanism which can detect these la;ge phasc changes r, i

knou'u,h ich conf idcnce region appl iest  hence.  u,e report  only the,
dence interval tbr onc of thcrn. This convention was adopted lbr all ,l

cel ls  in thc analysis of  spat ia l  posi t ion.

A

SPATIAL POSITION

B

\-/" J" -j" -J
- 8 0 8

p (arc min)

Fig.  5.  Discr i rn inat ion pcr lbrmance :  Representat ive cel ls .  Discr iminat ion performancc along each ol ' the s ix st imulus di rnensions f i r t .

the neurons shou'n in Fig.2.  The c iescr iptrve funct ions in I i ig .2 were ut i l ized to determine discr iminat ion thresholds along each

st imulus dimension.  For spat ia l  t requency.  tcmporal  t rcqucncv.  spat ia l  posi t ion.  and or ientat ion.  the sol id curvcs indicatc those valucs

along thc horizontal axis where the decrement thresholds werc smallcr and thc dashed curves indicate where the increment thrcsholds

were sntallcr. Thc arrou,s along the horizontal axis lbr the dimensions of contrast and spatial fieqr:ency indicate where the best

discrimination pertbrmance occurred.
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Discrim ination Performance:

W.S. Geisler and D.G. Albrecht

Population Statistics
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Fig.6. Discrimination performance: Population statistics. Histograms showing the best discrimination performance for all of the cells.

across all of the dimensions. For contrast, spatial fiequcncy. and temporal frequency. the threshold is expressed as a percentage of the

base or standard. For position thc units are degrees of spatial phase. The means, medians. and standard deviations are given in Table 3

For direction of motion. the rninimum contrast which evoked a reliably diff'crent response betwecn the two directions was determined;

the bins on the far right indicate cells which could not discriminate direction at any contrast. For spatial position. the bins on the far

r ight  indicate cel ls  uhich could not  re l iably d iscr iminate posi t ion/phase.

temporal frequency to within + 7.8 Hz, and the direction of mo-

tion with greater than 95% confidence.
Fig. 8 and Table 3 show the 95% confidence regions along each

of the stimulus dimensions for the entire sample of neurons. (Again,

position is expressed in degrees of spatial phase because the con-

fidence region is dependent on the peak spatial frequency of the

cel l .)
The width of the certainty functions and the size of the 95%

confidence regions generally increase as the response decreases.

Thus, for responses above the average maximum, the confidence

regions would be smaller than those shown in Figs. 7 and 8, and

for responses below the average maximum the confidence regions

would be larger. However, the size of the confidence regions re-

mains very similar for responses within approximalely !20%, of

the average maximum (Geisler & Albrecht, 
.l995).

Discussion

In an efforl to understand the neurophysiological mechanisms of

the visual system up to the level of the primary visual cortex, and

how these mechanisms might contribute to visual performance, we

measured the detection, discrimination, and identification perfbr-

mance of a large population of cortical neurons. These measure-

ments were made along a number of fundamental stimulus

dimensions, for analysis intervals comparable to the normal fixa-

tion duration. The method of measuring performance was to fit the

response means and standard deviations with descriptive functions

and then use these descriptive functions to determine performance.

This method proved to be robust and efficient because the descrip-

tive functions were able to account for a large percentage of the

variation in the data with a relatively small number of parameters.

Re s pons e funct i on s an d pe rfo rmanc e

It is worthwhile to consider the relationship between the measured

response functions and discrimination performance along each stim-

ulus dimension (c.f. Figs. 2 and 5). Discrimination performance is

good when the change in the mean response is large compared to

the standard deviation. The change in the mean response is largest

where the slope of the response function is greatest. On the other
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sponse) will produce a standard deviation of l.9 spikes. Therefore,

the maximum response of l0 spikes is fbur standard deviations

above the mean response of 2.5 spikes, making it highly unlikely
that this nonoptimal stimulus could ever produce the maximum
response (the relative probability is less than 0.0003).

As a rule of thumb, if a stimulus produces less than half the
maximum response then it talls outside of the 957c confidence
region. In other words, the 957c confidence region corresponds

approximately to the half-height bandwidth (c.f. compare Fig. 8

and Table 2). Given this rule, it is interesting to note that the polar
plots in De Valois et al. (1982), which show the half-height band-
widths in spatial frequency and orientation, are approximately equiv-
alent to the 95% conlidence regions for these two dimensions,
when a response near the maxrmum occurs.

C o nt ras t and p e rfo rmanc e

In the primary visual cortex, the response functions along the var-
ious stimulus dimensions are relatively invariant in shape when mea-
sured at different contrasts, even at contrasts which produce response

saturation (see for example, Figs. 28, 2C, and 2E). This is because

SPATIAL POSITION

hand, the smallest standard deviations occur when the response is

small, because the variance is proportional to the mean. Thus, the

best discrimination occurs slightly below the steepest point of the
response function. Above and below this point, perfbtmance de-
creases until either the bounds of the stimulus range are reached or
the response function approaches a constant value and discrimi-
nation is no longer possible. For example. for the dimension of
contrast (Figs. 2A and 54) the slope of the response function is

greatest at9Vo, the best discrimination occurs at 5Vc, and discrim-

ination becomes impossible beyond l2%,.
To understand the relationship between the measured responses

and identification performance, compare the means and standard
deviations shown in Fig. 2 with the cenainty functions shown in

Fig. 7. Recall that the certainty functions in Fig. 7 show the prob-

ability of each parlicular stimulus given that a maximum response
has occuned. As can be seen, the cerlainty functions are similar in

shape to the response functions except that they have steeper fall-

offs and they are generally narower. To understand why, consider

a cell with a maximum response of 10 spikes and a variance
proportionality constant of 1.5. A nonoptimal stimulus which pro-

duces a mean resoonse of 2.5 soikes (25% of the maxrmum re-

Fig, 7. Identification performance: Reprcscntative cells. Identiflcation pcrformance along each of thc six stimulus dimensions fbr the

neurons shown in Fig. 2. The dcscriptive functions were utilizcd to determine certainty functions: the probability of cach stimulus,

givcn that a maximum responsc has occurred. The certainty functions were then utilizcd to determine 957c confidcncc rcgions. The

arrows along the horizontal axes indicate thc 9-57c confidence region. and the arrows along the right vertical ares indicate the pe5 for

each dimension lsee Fig.  I  and eqns.  (7)  & (8)1.  I fa maximum response occurs,  subsequent brain mechanisms can be 95% certa in that

the stimulus is locatcd between the anows on the horizontal axis.
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response saturation in the coftex is not determined by the overall
magnitude of the response but rather by the overall magnitude of
the contrast (Albrecht & Hamilton, 1982; Sclar & Freeman, 19821

see Geisler & Albrecht, 1995, fbr a general review).
This fact implies that response saturation will not have a detri-

mental eff'ect on d'iscrimination for any dimension except contrast.
This point is illustrated in Fig. 9. where contrast discrimination and
spatial-frequency discrimination are plotted as a function ofcontrast
for the same cell. When response saturation occurs (at approximately
.l 
57c contrast for this cell) contrast threshold becomes unobtainable

whereas frequency threshold reaches its best value, and maintains
that value at higher contrasts. Thus, the lower the contrast at which
response saturation occurs, the better for fiequency discrimination.
Similar plots were obtained when contrast discriminatron was com-
pared with discrimination along the other stimulus dimensions.('

" lf the response tunctions are invariant with contrast and the variance
is proportional to the mean, then fbr any stimulus dimension. the srgnal-
to noise ratio (d') as a l'unction of contrast will be proportional to the
square root of the contrast response function. To scc this. note that if the
response function fbr a given dimension .r is invariant with contrast then
the joint two-dimensional response function can be dcscribcd as the prod-

0.5 0.75 1

r (probability)

Similarly, response saturation does not have a detrimental ef-
f'ect on identification peltbrmance (except fbr contrast); in fact,

corlical neurons provide their best identification performance when

they are in the saturated region. As stimulus contrast increases and

the response increases, the 95o/c confidence region decreases (Gei-

sler & Albrecht, 1995). Hence, the smallest coniidence regions will

occur when stimulus contrasts are sufTicient to produce maximum
saturated responscs. Further, because many cortical cells saturate

at low contrasts (some as low as 57c), there will be many cortical
cells providing good identification petfotmance even fbr low-

contrast image features.
Finally, we note that response saturation of the type observed

in cortical neuron responses (i.e. contrast-deterrnined response

saturation) is not necessary for good discrimination perfbr-

mance; for example, good discrimination perfbrmance is possi-

ble with a linear mechanism as long as a small change in the
stimulus produces a big change in the response. On the other

uct of the responsc functions fbr.r and 1br contrast: r(-r,r') - r,,,,,.r,(.t)r,.(r').
Thc square-root relation tbllows by substituting r(-r f \r.c) lbr r(r + Ir),
and r( . r . r ' )  fbr  r { . r ) .  in  eqn.  (2) .  (Thc square-root  re lat ion would be cx-
pected to brcak dou'n fbr small rcsponses near the basc ratc r0.)

p (deg)

Fig.8.  Ident i f icat ion perfbrnrance:  Populat ion stat is t ics.  Histosrams showing the ident i f icat ion pcrformance fbr  a l l  of thc ccl ls .  across

al l  of  thc d inrensions.  The nreans.  medians.  and standard deviat ions arc g iven in Table 3.  For a l l  of  the dimensions cxccpt  d i rect ion

of  mot ion.  thc histograms rcprcscnt  the 95% conf ldence regions.  For d i rect ion of  mot ion.  the histogram rcprcsents the probabi l i ty  that

the st inrulus u,as moving in thc prcfcrrcd di rcct ion.  (For posi t ion.  the uni ts are degrccs ol  spat ia l  phase.)

SPATIAL FREQUENCY
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Discrimination Performance:
Gontrast & Spatial Frequency
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Fig.9. Discrimination perfbnnance: Spatial fi'equency and contrast. Con-
trast discrimination and spatial- l iequencl '  discrimination plottcd as a func
tion of contrast firr a ncuron rccordcd from monkey visual cortex. The
r,crt ical axis on thc lcft  plots Ir ' (7. contrast):  the vert ical axis on the r ight
plots l l  (cycles/deg): the horizontal aris plots contrast. As can bc sccn.
contrast discrimination is bcst tr-om 0 to l0% contrast: u'hereas. l iequency
discrimination is best f iom 10% to 1007 contrast. even though the cel l
saturated at l5'Z contrast.

hand, this type of saturation is essential fbr good identification
performance because it insures that only those stimuli near the
peak of the tuning function can produce big responses; good
identiflcation perfbrmance is not possible with a linear mecha-
nism because large responses can be produced by nonoptimal
stimuli if the amplitudes of the stimuli are sufficiently large
(Geisler & Albrecht, 1995).

Relationship to behavioral discrimination pefibrmance

In this study, the descriptive function method was used to measure
discrimination performance for a large population of cells in mon-
key and cat. The resulls provide a unique opportunity to compare
cortical neuron responses with behavioral psychophysics. To this
end. we compared neural and behavioral discrimination perlbr-
mancc along thc dimensions of contrast and spatial tiequency,
utilizing two difTcrent methods. In thc first method, we detcrmincd
the best perfbrmance of each cell individually and then plottcd
these individual performances against published measures of be-
havioral performance. In the second method, we determined the
performance of the entire population of cells as a whole, assuming
optimal pooling of neural responses, and then plotted the popula-
tion performance against the behavioral perfbrmance.

The solid symbols in Fig. l0A show the best contrast discrim-
ination performance for all of the neurons recorded in monkey.
Each point represents the minimum of the contrast discrimination
function ( i .e. the minimum contrast threshold, and the base con-
trast where the minimum occurred. see arrow in Fig. 5A). As can
be seen, these best performance points are widely scattered at each
base contrast, and the best base contrasts span most of the contrast
axis. All points that fall on the vertical axis at 07o contrast reprc-
sent cells where the best discrimination threshold was the absolute
threshold; all other points represent cells where the threshold ini-
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tially decreased with contrast (i.e. they showed the "dipper" ef-
fect). It is interesting to note that as contrast increases the thresholds
of the most sensitive cells increase monotonically. Specifically,
those cells with the lowest thresholds are bounded by an envelope
which is approximately constant at lower contrasts and linear (in
log-log coordinates) at higher contrasts.T

The open symbols in Fig. l0A plot behavioral contrast discrim-
ination functions for monkeys (Kiper & Kiorpes, 1994) and hu-
mans (Bradley & Ohzawa. 

. l986; 
Legge & Kersten. 1987; Seay &

Geisler, 1995). As contrast increases, threshold init ial ly decreases
by a small amount (the "dipper" effect), and then increases linearly
with a slope of 0.6 to 1.0 ( i .e. as a power tunction with an exponent
between 0.6 and 1.0). As can be seen, the general shape of the
behavioral functions is similar to the shape of the envelope of the
most sensitive cells. However. the behavioral thresholds are some-
what lower.

The envelope of the most sensitive cells provides one method
fbr comparing coftical and behavioral perfbrmance. This compar-
ison is appropriate if behavioral drscrimination at each contrast is
determined by the most sensitive neuron at each contrast. On the
othel hand. behavioral discrimination at each contrast could be
determined by combining the re sponses of all neurons. Although it
is clear that the most sensitive neurons at each contrast will con-
tribute thc most information. there is nevertheless additional in-
fbrmation in the responses of the other neurons.

The sol id curve in Fig. l0B shows the populat ion contrdst
discrimination.function; this curve is the result of pooling all of the
discrimination information from all of the cells in an optimal fash-
ion. Each point on this curve was obtained as follows. First, the
measured contrasl response function tbr each neuron was used to
flnd the mean responses and standard deviations to the base con-
trast and to the base-p1us-increment. Sccond. these means and
standard deviations were used to obtain the signal-to-noise ratio
(the d') for each cel l  [see eqn. (2)].  Third, the d'summation
formula from Bayesian decision theory was used to find the signal-
to-noise ratio fbr the entire population [see eqn. (3)1. Fourth, the
threshold was obtained by varying the increment contrast until the
population r1' equaled 1.0 (75E(, coffect). Finally, the population
function was shifted vertically, using an efficiency parameter, to
allow comparison of the shapes (see Methods).

The open symbols in Fig. l0B are the same behavioral data
shown in Fig. l0A. As can be seen, the shape of the populat ion
discrimination function is remarkably similar to the shapes of the
behavioral discrimination functions.

The two methods of comparing behavioral and neural perfor-
mancc ( i l lustratcd in Figs. l0A and 10B) represent two extremes in
psychophysical linking hypothcses. At onc extremc, behavioral per-
fbmance is modeled by the envelope of the most sensitive neurons
(Barlow, 1972, 1995; De Valois eI al. ,1967;. Talbot et al. .  1968). At
the other extreme. behavioral perfbrnance is modeled by optimally
combining the responses of all neurons that might contribute rele-

' l t  is  important  to consider the possib i l i t l ' that  the var i r t i ( )ns in scn-
sitivitl ' 1,"'ith contrast could bc thc rcsult o1'corrclations bctween the pre-
lerred spatial lrequency and the parameters of the contrast responsc function.
For cxample.  the high spat ia l  f requency cel ls  in th is populat ion might
account fbr thc incrcasc in thc thrcsholds at highcr base contrasts if there
were a correlation bctwccn prefcncd spatial frcqucncl' and the semisatu-
ration constant. To cvaluatc this possibility. wc mcasurcd thc conelations
between pret'ened spatial fiequcncl' and the paremeters of the contrast
rcsponsc function. No si,enificant correlations were found. Furthcr. when
the analysis was restricted to those cells below l0 cpd, the overall trends
were the sanlc.
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vant information (Watson, 1983; Geisler, 1984, 1989). The results

in Figs. l0A and 10B show that both models account tbr the data

about equally well. Presumably, models between the two extremes

could also account fbr the data reasonably well. Thus, it may prove

difflcult to distinguish between these different models (see Parker

& Newsome, 1998).
On the other hand, it is important to note that the contrast

discrimination functions of individual cortical neurons are quite

different from the behavioral discrimination functions, in that the

most sensitive neurons only cover a limited range of contrasts (e.g.

see Figs. 5, 9, and Fig. 16 in Appendix C). Thus, it seems likely

that behavioral contrast discrimination functions reflect the com-

bined sensitivity of a heterogeneous population of neurons (Al-

brecht & Hamilton, 
. l982; 

Barlow et a1., 1987).

4 6 8 1 0 1 2

f (cpd)

Interestingly, there is little or no indication of a dipper in the pop-

ulation perfbrmance even though most individual cells have a dip-

per. The heterogeneity of individual cortical cells could perhaps

explain this result: the dippers for the individual cells are widely dis-

tributed along the contrast axis. Thus, our results suggest that the

dipper eff'ect observed in psychophysical experiments is probably

not the result of the response properlies of neurons in the primary

visual cortex. On the other hand, the results do not exclude existing

psychophysical explanations for the dipper eff'ect, including neural

thresholds (Foley & Legge, 1981 ), accelerating nonlinearities (Legge

& Foley, 1 980), and/or signal unceftainty (Pelli, I 985), because these

mechanisms could operate at neural stages beyond Vl.

Figs. 1 0C and 1 0D show a comparison of behavioral and neural

spatial-frequency discrimination. The solid symbols in Fig. 10C
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Fig. 10. Cortical performance and behavioral performance: Monkey, Comparison ofthe discrimination performance ofmonkey visual

cortex neurons with the behavioral discrimination performance of monkei,'s and humans. using two diff'erent methods: the enrclope of

rhe most scnsitive cells (upper panels). and optimal pooling (lower panels). InA, the solid symbols plot the best contrast discrimination

threshokls fbr each neuron (i.c. the rninimun'r -\c. and the location along the contrast axis where the minimum occuned): the open sym-

bols plot behavioral contrast discrinlination thresholds lbr monkeys (O. Kiper & Kiorpes. 1994) and humans (O, Bradley & Ohzawa.

1986; A. Legge & Kersren, 19871 n. Seay & Geisler. 1995). In B. the solid line plots the overall contrast discriminatron perlbrmance

lor the population of cells as a whole. assuming that the discrimination inlbrmation fiom all cells is poolcd in an optimal fashion (using

Bayesian decision theory)i the open symbols rcplot the behavioral contrast discrimination thresholds. The neural population (ur\e \^as

shifted vertically (by varying an efficiency parameter. rlin - 0.5) to allow comparison of the shapes. ln C, the solid symbols plot the

besr spatial-frequency discrimination thresholds fbr the neurons: the open symbols plot spatial-frequency discrimination for humans (O.

!. 1-. +. Richter & Yager. 1984r A. 0, Blake et al. 1986). ln D. the solid line plots spatial-fiequcncy discrimination fbr the population

of cells, assuming optimal pooling, and the opcn symbols replot bchavioral spatial-frequency discrimination. Again. the neural popu-

lation curvc was shif'ted vertically (using the sante value of the efficiency parameter. eroo : 0.5).
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Population & Behavioral Performance: Cat
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plot the best spatial-frequency discrimination performance for each
individual neuron; the open symbols plot representative spatial-
fiequency discrimination functions for humans (Richter & Yager,
1984; Blake et al., 1986). Again, the overall shape of the behav-
ioral functions is similar to the shape of the envelope of the most
sensitive cells (i.e. the shape is approximately flat with a slight rise
at low frequencies); however, the behavioral thresholds are gen-

erally lower. The solid curve in Fig. 10D shows the neural popu-
lation function for spatial-frequency discrimination along with the
behavioral functions. As can be seen, the shapes of the neural and
behavioral iunctions are quite similar.

Fig. 11 shows a similar analysis for cat. Fig. l lA compares
behavioral performance (Btake & Petrakis, 1984) with the best
performance of individual neurons along the dimension of con-
trast. As in monkey, the envelope of the most sensitive cells
parallels the behavioral discrimination function except in this
case the neural envelope is below the behavioral function rather
than above. Fig. l lB compares the behavioral performance with
the population contrast discrimination function. Fig. 11C com-
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pares the behavioral performance (Blake et al., 1986) with the
best performance of individual neurons along the dimension of
spatial frequency. Again, the envelope of the most sensitive cells
parallels the behavioral function but now the envelope is far
below the behavioral function. Finally. Fig. llD compares the
behavioral performance with the population spatial-frequency dis-
crimination function.

Interestingly, for the monkey, the value of the efficiency pa-
rameter needed to bring the population discrimination functions
into agreement with the behavioral discrimination functions
(Figs. 10B and 10D) was the same for both contrast and spatial
frequency (e roo : 0.5). This suggests that the neural information
for these two dimensions is being utilized with equivalent effi-
ciency by subsequent brain mechanisms. In the cat. the efficiencies
are considerably lower than in the monkey and are quite different
for contrast (errxr : 0.04) and spatial frequency (eroo : 0.006).
This relatively poor utilization of neural iniormation for spatial-
frequency discrimination is consistent with the analysis of cat be-
havioral performance by Blake et al. (1986).
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Fig, 11. Cortical performance and behavioral perfbnnance: Cat. Comparison of the discrimination perfbrmance of cat visual cortex

neurons with the behavioral discrimination perfbrmancc of cats. using the tu'o difl 'erent methods (most sensitive cells. and optimal

pooling). The convenlions are the same as those described in Fig. 10. In A. thc solid symbols plot the best contrast discrimination

thrcsholds lbr each neuron and the open syrnbols plot behavioral contrast discrimination thresholds (Blake & Petrakis. 1984). In B, the

solid line plots the contrast discrimination fbr the population of ccils (using optimal pooling with an eftlciency paramcter. e10g : 0.0.1),

and the open syrnbols replot the behavioral contrast discrimination thresholds. In C. the solid symbols plot thc bcst spatial-frequcncy

discrimination thresholds lbr the neurons: the open svmbols plot the spatial-frequency discrimination thresholds in cats (Blake et al..

1986). In D, thc solid linc plots spatial-frequency discrimination fbr the population of cells (e1e6 - 0.006) and the open symbols replot

behavioral spatial-frequency discrimination.
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Contrast
Gain

Contrast-Gain Exponent (CGE) Model

Linear
Summation

stim 1

stim 2

..;)n sumpling models .for behaviorol discrimination

, i ,esults from this report (and many othcrs: see rciercnces in the
t, i, .rluction) make it clear that corlical neurons are hetelogeneous
1� r i ,r : i r  st imulus-response relat ionships; they are continuously vari-
.,r,;,' in pref-erred spatial fiequency, preferred orientation, spatial-
:, .',,. nLry bandwidth, orientation bandwidth, half:saturation contrast.

, . . , ,rsive exponent, maximum resp()nse. vanance constant, ctc. (see
ri . '  l . lpulat ion stat ist ics in Table 2). Despite this heterogeneity. ir  is

; , .itrlt-'to summarize the stimulus-response relationships of each
.t i  i rsing a small  set of relat ively simple descript ive functions. For

,, . ,  r [ ] le, for the populat ion of cel ls in this study, the descript ive func-
r;.'rr iri -lhble I were able to account lor 90ct, of the variability in
i . ,1. the mean response and the standard deviat ion.

: iany quantitative psychophysical models of visual discrimi-
1, i i ,n consist of a discrete set of tuned channels. together with a

,r, .r ie contrast nonl inearity. G' iven thc continuous heterogeneity of
i .r i i , :al  cel ls along the various dimensions measured in this and
l',ilir, studies, as well as the continuous heterogeneity of the non-
l i , , , ,r- i t ies. i t  seems reasonable to consider an alternate class of
r*',rir:ls. A more parsimonious approach is to represent the early

r:iir:il system as a large collection of neurons whose tuning char-
r, r., istics. nonlinear response characteristics. and noise character-
irlr{ ', alc randomly sampled fiom probability distributions. ln this
j: ,ri!,:work, the probability distributions of the cortical cell prop-
..r i ; . .r  take the place of the discrete channels.

r(r construct such models, neuron sampling models, it is nec-
'j :,,y to determine the probability distributions tbr the cell prop-

, ,,i,. r (e.g" it is necessary to determine the probability distributions
i. r i,ach of the descriptive parameters in Table l). One approach is
i , , ,limate the parameters of the distributions by fitting psycho-

1.i;,:.ical data. The other approach is to take the parameters from

,r,r i , i ished measurements of cort ical cel l  propert ies (Seay et al. ,
1ii rl). With this latter approach, thcre arc very few parameters to
I . ;timated from the psychophysical data.

Response
Exponent

Multiplicative
Noise

The fact that the neural and the behavioral perfbtmances at'e tn
good agreement for the random sample of cells in this study (see

Figs. 10 and 1 I ) suggests that neuron sampling models may prove

to be valuable. Further, setting aside the notion of discrete channels
(or pathways), and placing the emphasis on the distributions of cell
propefties, might lead to a useful shilt in theoretical perspectivc.

lmplicotions ft,r lrdttern recognition

The results summarized in Figs. 7 and 8 show that when a cell
produces a response near thc maximum, subsequent brain mech-

anisms can be certain that the stimulus lies within a nalrow range.
ln other words, when the responses are large, single corlical cells
can signal, with reasonable reliability, the presence of specific
stimulus attributes. This suggests that individual cortical cells might

play a more important role in pattem recognition than expected.
given their broad tuning, low response rate, and high response
variability. However, this suggestion is based upon the measured
responses to sine waves presented one at a time. Sine waves pro-

vide a good match to the receptive field and hence produce robust
responses. Natural images. on the other hand. contain a broad
range of sine-wave components. Mosl of these components do not

match the receptive field and may actually cause response sup-

pression (e.g. as in contrast normalization). Thus, it is not at all

certain that natural images would produce responses in single neu-
rons that are large enough to reliably signal specific stimulus
attr ibutes (Gallant et al. ,  1995).

To evaluate how individual cortical neurons would respond to
complex natural images, we utilized a recent model which is con-
sistent with the descriptive functions given in Table 1. It has been

shown (Albrecht & Geisler, 1991, 1994l' Heeger, 1991, 1992a,b;

Geisler & Albrecht, 1995) that the responses of cortical neurons

are adequately described by a model consisting of fbur compo-
nents: ( l)  a l inear f i l ter which establ ishes the neuron's st imulus
selectivity, (2) a contrast normalization mechanism which main-
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Fig, 12. Contrast gain cxponcnt nrodcl: CGE, filtcr. Ciomponcnts of thc contrast-gain exponent modcl (uppcr boxes) and the efI'ect ol

cach component ( lou 'er  boxes) on the contrast  response funct ion tbr  an opt imal  (sol id curvcs) and nonopt inral  (dashed curvcs) st imulus.

plot ted in log- log coordinates.  The contrast-gain mechanisnr is  a tast-act ing gain contro l  that  scales the input  ampl i tudc by a lactor

u,hich decreases with incrcasing contrast. thcrcby producing saturation at higher contrastsl it is set by thc local nlean contrast. not thc

rcsponse rate.  and thus the opt imal  and the nonopt imal  st imulus are at tenuated equal ly .  Thc l inear summation mechanism is a f i l ter

* ,h ich gi r ,cs the cel l  i ts  fundamental  select iv i t ies:  i t  causes the nonopt imal  st inrulus to bc at tcnuated more than the opt imal  st imulus.

Thc rcsponse exponent nrechanism takes the output  of  the l inear f i l ter  to an exponent grcatcr  than 1.0.  thus increasing thc di l ' lerence

in thc responses to the opt imal  and nonopt inral  s t imul i .  The mul t ip l icat ive noise nrechanism introduces a responsc var iancc th:r t  is

proport ional  to thc mcan rcsponse ratc:  thus.  whcn the mean responses to an opt imal  and a nonopt inral  s t imulus arc cqual .  their

var iances wi l l  be cqua).
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ldentif icatlon Performance :
Gomplex Natural lmage

Fig. 13. Identification performance: Complex natural image. Estimated re-

sponses of single visual cortex neurons to a complex natural image. (A) An

image of a macaque monkey in a natural setting. The RMS contrast of the

image was 0.5. (B) An achromatic reduced-contrast version of the image,

overlayed with colored line segments indicating the neurons that responded

at greater thar. 50Vo of their maximum response. The position, length,

orientation, and color of the line segments indicate the position, size,

orientation, and polarity of each neuron's receptive field. (Polarity refers to

the spatial sequence of light-dark preference of the receptive field: blue :

light-to-dark, red = dark+olight.) There is a reasonable correspondence

between the properties of the line segments and the local image features

(e.g. note the series of blue line segments along the light-to-dark boundary

at the edge of the right arm). The responses of the neurons were determined

assuming that the size of the image was 4 deg X 4 deg, and fixation was

at the center. The reader can approximate this stimulus situation by fixating

the center of the image from a distance of approximately I m (arm's

length). (Photogaph from the Frans Lanting/National Geographic Image

Collection.)
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tains selectivity in spite of response saturation, (3) an expansive

nonlinearity which enhances selectivity, and (4) a noise source

which makes the variance proportional to the mean. A schematic of

this model, the contrast-gain exponent model, is shown in Fig. 12,

and the formal mathematical description is given in Appendix D.

It is important to emphasize that this model is meant to provide a

functional description ofsingle cortical neuron responses and should

not be taken as a hypothesis about the detailed anatomy and phys-

iology. For example, contrast normalization is probably occurring

at many levels, starting in the retina (Shapley & Victor, 1979;

Sclar, 1987; Albrecht & Geisler, l99l; Albrecht, 1995).

The contrast-gain exponent model was generalized to a popu-

lation of cells covering a 4 deg X 4 deg field in a fashion consis-

tent with the concept of cortical magnification, and was then used

to estimate the response of the visual cortex to a 4 deg x 4 deg

natural image.
Fig. 13B illustrates how such a population of cortical cells

would respond to the complex natural image in Fig. 13A. Rather

than show the responses of all cells, we show the responses of the

cells with a critical frequency approximately 1.5 octaves below the

cutoff of the monkey's CSF at each eccentricity (e.g. 16 cpd in

the center of the fovea and 4.4 cpd at 2-deg eccentricity), with

fixation at the center of the image. Each line segment drawn on the

image indicates a single neuron that produced at least 50Vo ofthe

maximum response. The length and orientation of the line segment

indicates the length and orientation of the receptive field. The red

line segments indicate "edge-like" receptive fields sensitive to a

light-dark transition in one direction (90-deg phase), and the blue

line segments indicate "edge-like" receptive fields sensitive to a

light-dark transition in the opposite direction (2i10-deg phase).

Comparison of Figs. 13A and l3B shows that the orientation,

location, and phase of each line segment corresponds reasonably

well to the orientation, location, and phase of specific local con-

tours in the complex image. For example, note the blue line seg-

ments which follow the light to dark edge along the monkey's right

arm, and the red line segments which follow the dark to light edge

along the monkey's right cheek. Thus, even though cortical cells

are broadly tuned and noisy, when they produce a large response
(5-10 spikes in 200 ms) they transmit accurate information about

local image features.
The cells that produced weak responses (l0%o-50%o of the max-

imum) are not shown in Fig. 13. These cells provided relatively

poor pattern-recognition information; the orientation and location

of their receptive fields were generally poorly correlated with the

orientation and location of the contours in the image.

Note that there are many regions in the image where there are

no line segments. There are a number of reasons for this. First, for

computational reasons, the number of cells we used was approx-

imately 1.5 orders of magnitude less than the actual number of

cortical cells. Second, the density of the cells decreases qdth ec-

centricity. Third, for ease of viewing, we show only the responses

of one size receptive field at each eccentricity. Fourth, even within

the subpopulation, only 0.4Vo of the cells produced a response that

exceeded the 50Vo maximum-response criterion.s If the number of

cells in the simulation was increased to that in the primary visual

cortex, then the number of cells producing responses greater than

8 This occurs because (1) the image does not contain all orientations
and phases, at all locations; and (2) even when an image contour is at the
correct location, orientation, and phase, the shape of the contour may not
perfectly match the receptive field.
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50Vo of the maximum response would form a fairly dense repre-

sentation of the contours in the image.

Based upon the measurements of the 957c confidence regions,

and the results in Fig. 13, it seems reasonable to conclude that local

image contours can be represented by the activity of individual

neurons in the primary visual cortex. On the other hand, even

though the 957o confidence regions are quite small, they are prob-

ably not small enough to account for the very precise local repre-

sentation achieved by the visual system as a whole. Thus, it seems

quite possible that rudimentary local feature recognition is accom-

plished by the level of V1 and then refined in subsequent cortical

stages. Hopefully, the methods developed here can be used to

measure visual performance in these other more advanced regions

of the cortex.
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Appendix A: MaximumJikelihood fitting

of descriptive functions

This appendix describes the maxirnum-likelihood procedure we uscd lor

fining the descriptive functions to the response mcans and rcspon\e vari-

ances. Such maximum-likelihood procedures are knou'n to yield parameter

estimatcs that are optimal in a varietl' of ways (Mood & Gaybill. 1963).

On each trial of an experiment a particular stimulus is presented: Iet x,

represent thcjth stimulus. A particular stimulus is gcncrally presented morc

than once. We represent the number of spikes observcd in the lth presen-

tat ion of  st imulus x;  as Z;(xr) .  For purposes of  parameter est intat ion.  ue

assume that the Zi(xl) are statistically indcpendent, and arc approximately

normal ly  d ist r ibuted wi th a rnean of  r (x, )  and a var iance al lx , ) :

( A l )

where r(x) and ar(x) are the descriptive tunctrons for the mean and vari-

ance, respectivcly. It is the parameters in these descriptivc functions that

were estimated in the fitting process.

The probability or likelihood (l,) of thc measured responscs is simply

the product of the probabilities ot each of the measured responses:

I  I  [ z ' t x ' )  r t x ' ) ] l

t: II II 6112,(.x,)) = II II -4 e I '"(xr) (A2)
t .  I  i  ,  l \ l l f t f - l x t l

Maxirnum-likelihood estimates are obtained by maximizing L with respect

to the unknown parameters in the equations r(x) and,r:(x). To improve

9 r 5

computational precision and speed, it is usually pref'erable to maximize the

logar i thm of  the l ikel ihood. or  equivalent ly  to mrnimize -2 ln l .

- 2 l n  L  -  nm ln ( . 2 r )

n {  r  , '  I
) l n l n l a ' r x , r l  * ) l z , r x , r - r t x . r l r I  r A . r r
- l  c  t x i t T t  l

Minimiz ing -2 lnL is  equivalent  to maximizrng thc l ikc l ihood be-

causc -2 ln L is  a monotonical ly  decreasing funct ion of  L.

Eqn. (A3) can be used to estimate parameters when the data consist of

spikc counts for each trial. However. for some of our experiments. only the

mcan and the standard deviation of the spike count were saved. Fortu-

nately. saving thc individual spike counts is unnecessarv; in fact. idcntical

parameter estimates are obtained by minimizing the lbllowtng equation.

which can bc obtained fiorrl eqn. (A3) with some algebra:

a r ( x ; )

( ,A4)

In this equation, Zix;) and S(x,) represcnt the observed mean and standard

dcr, iat ion of  the spikc counts measurcd tbr  st i rnulus levelT.

Dcscriptive functions were fitted to the mcasurcd spike data by mini-

mizing cqn. (A;l). using thc program STEPIT (Chandlcr. I 969). In general,

local mininra proved not to bc a significant problcm because the parameters

of the descriptivc functions are rclatively orthogonal. and bccausc the

parametcrs were initialized to values typical of conical cells. Although the

fitting process was automated. each best fit was plotted against the data and

visually inspected to ensurc that both the fit and the final parameters were

reasonable.

Appendix B: The relationship between the response mean
and the response variance

Previous investigators (e.g. Tolhurst et al.. i983: Vogels et al.. 1989t Snowden

et a l . .  I  992:  Sof tky & Koch, 1 993) have descr ibed the rc lat ionship between

the mean and variance of cortical ncuron responses $'ith a ts'o-paramcter

power function:

( B l )

wherc K is a proportionality constant. and z an exponent. The reported

averagc values ofKtypical ly  range t iom 1.2 to 1.5 and the values ofz

range l iom 1.0 to 1.2.  In i t ia l ly .  we uscd eqn.  (Bl)  to descr ibe the mean-

variance relationshipt however. wc found that the two paramctcrs. K and z,

u'cre highly conelatcd, and this led us to also consider the simpler formula:

( B 2 )

This appcndix describes a dctailed analysis comparing the two descriptive

tunctions. We show that the simple proportionality function [eqn. (82)]

works quite well. and that there is little to bc gained b-v using the more

complex power function feqn. (Bl)1. at least for the purposes of charac-

terizing tuning charactcristics. and measuring detcction, discrimination,

and idcntification perfbrmance.

Standard statistical techniques (Mood & Gaybill. 1963) were used to

rigorously determine whether the power function provided a significantly

better fit than the proportionality function. First. maximum-likelihood es-

t imates of  the proport ional i ty  constant  and exponent in eqn.  (Bl)  were

obtained for each neuron. Then. the maximum-likelihood estimates of the

proportionality constant in eqn. (B2) wcre obtained for each neuron. To

provrde the fairest possible comparison of the two functions. we lcft the

means completcly unconstrained (i.e. we modeled each mean as a free

2 l n L  =  n m l n ( 2 r )

. , i { ,  rn [a2(x , )1

r r [Sr (x , )  +  22 lx1)  z r& i12 lx )  +  r r (x , ) ]
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parameter). This ensured that thc estimates of K and / were not influenced

by the choice of descriptive formulas fbr the means. Using the results of the

maximum-likelihood procedure. a X 
I test was applied to determine whether

the power function provided a significantly better fit than the proportion-

ality function.
To obtain the unconstrained maximum-likelihood estimates of r( and z.

the formulas for the variance feqns. (Bl) and (B2)] were substituted into

eqn. (A4). Thus. the likelihood given the two-parameter power function is

n[Sr(xr) + Rr{x;) zr,n(xt) + r i)

(B3)

and the likelihood given the one-parameter proportionality function is

-2 l n  L1  -  nm ln ( . 2 r )

W.S. Gei,rler and D.G. Albrer:ht

Using thc minimization program STEPIT (Chandler. 1969), we obtained

simultaneous marimum-likelihood estimates of the parameters of the power-

tunction (K. z) and of the means (the ris). In a scparate analysis. we

obtaincd simultaneous cstimates of the parameter of the proportionality

function (() and of the means (the 17s).

A useful property of maximum likclihood estimation is that the results

can be uscd to test whether one model provides a significantly better fit to

the data than another model. Spccifically, the difference in the minimum

value of 2 ln I (ohtained with the proportionality and power functions) is

asymptotically chi-squarc distributed with I deg of fieedom. under the null

hypothesis that  thc l lnct ions are equivalent  (Mood & Gaybi l l .  1963):

r , - ,  ,  
- m i n {  2 l n L . }  - m i n {  l l n L : } ( 8 5  )

I f  the computed value of  y i ,1 is  s igni f icant ly  grcater  than 1.0.  wc can

conclude that the power tunction providcs a better tlt.

F ig.  l : l  shows the f rcquency histograms of  the 1i ' ,  ra lues fbr  a l l  the

cel ls .  The f i rs t  b in ( lor  cat  and monkey) reprcsents the numbcr o l 'cel ls

which differed at thc 0.0-5 level. For approxin.rately 197 of the monkcy

cells and 2l7c of the cat cells. the power function was significantly better;

for  the remaining cel ls  i t  was not .  I f the two lunct ions were cquivalent .  one

would expect (by chance) 5% of thc cclls to be fit significantlir bcttcr by

the power function. Thus. thc power function fitted some of the cells better

- 2 l n L -  n n l n ( 2 r )

. : { , r n (K r , , ' ) +
Kri

* j{, r"1r,,rn [ 5 r ( x , )  + , t r ( x , ) -  2 r r R ( x i )  +  r , : ]

Kri

(B4)
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Fig. 1,1. Chi-square test of mean-variance rclationship. Histograms showing the significance lcvcls for a chi-square test of the null

hypothesis that the simple proportionality function and the power function provide equivalent descriptions ofthe relationship between

the mean and the variance of cortical cell responses. The first bin (for monkey and cat) represents the numbcr of cells which were better

fitted by the power lunction, at the 0.05 level (approximately 2OQ averagcd across all dimensions and all cells).
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than would be expected by chance alone. However. even for those cells

wherc the power function providcd a significantll ' better fit. the visual

goodness ol flt was usually only marginally improved. Further, wc have

computed detection, discrimination. and identiflcation performances fbr all

the cells using both the proportionality function and the power function;

generally, there was very little ditfbrence in the computed perfbrmanccs.

We conclude that the simple proportionality function is the more parsimo-

nious description of the relationshrp between the mean and the variance of

cofiical neuron responses.
As shown in the results (see Figs. 2-4). the valuc of K remains rela

tively constant within and across dimensions. The one exception was that

fbr approximately half of the cells K tended to increase at lowcr temporal

fiequencies. Fig. l5 shows the value of K as a lunction of temporal fie-

quency, averaged across all cells. The solid curve shows the best-fitting

hvoerbolic function:
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Appendix C: Descriptive function method

versus standard method

The methods we used to measure detection. discrimination. and identifi-

cation perlbrmance require much less data than standard methods. This

cfficicncy derives fiom the tact that all olthe computations are bascd upon

descriptive functions fbr the mean and variance. All that is required to

measure an entire discrimination function. plus an entire set of identifica-

tion confidence regions. is an amount of data suftlcient to estimate the lew

parameters of a descriptive function.

An obvious question is how well the descriptive function method com

pares with morc standard methods. We addrcsscd this question in two

ways. The flrst was to examine the robustncss of the method to violations

of the assumption that the pulse-number distributions can be approximated

as normal distributions. The second was to comparc discrimination func-

tions derived frorn the same raw spike trains using the descriptive function

method and a standard method.

The pulsc-number distributions of cortical cells are not always well

approximated by normal distributions. Typically. at low spike rates the

distributions are skewed to the right (unlike the normal distribution). whereas

at high spike rates thcy become more symmetric (likc the normal distri-

bution). The Poisson distribution has this same property and hence it is a

good comparison distribution tbr evaluating the error rntroduced by the

assumption of normality.') Wc computed discrimination lunctions, cenainty

funct ions.  and ident i f icat ion conl ldence regions using Poisson pulse-

number distributions and normal distributions that had the same means and

variances as the Poisson distributions. We also computed population per

f i r rmance using thc r / 'summat ion formu)a [eqn.  (3) ] .  The resul ts showed

that thc l'unctions obtaincd lor the two distributions s'crc very similar-the

errors were almost always under 5%.

A morc direct test of the adcquacy of a new method is to comparc it

with an accepted standard method on the same set of spike data. Gcisler

et al. (1991) used standard mcthods to measure contrast discrimination

functions tbr thrce cortical cells. In that analysis. each stimulus contrast

s'as presentcd on 200 separate occasions to provide a reasonable estimate

of the pulse numbcr distribution fbr each contrast. These measured distri-

butions were then uscd to determine neuromctric lunctions. The contrast

discrimrnation thresholds (the1jc/c corrcct points on the neurometric func-

t ions) arc shown as the sol id symbols in Fig.  16.  ln compar ison.  the sol td

curves show thc contrast discnmination functions obtained using the de

scriptive function method. For this latter analysis. the first 40 presentations

of the same data set werc uscd to estimate the parametcrs which describe

the rcsponse as a function of contrast. As can he seen. there is good

agreenlent betwcen the two methods. The deviations seen at saturating

contrasts are duc to the fact that the location along the contrast axis where

thrcshold increases stccply is very sensitivc to the exact shape of the

contrast response function in the region of saturation. Because the descrip-

tive function method smoothly interpolates all the data in the saturation

region it may be more accuratc.

Appendix D: Contrast-gain exponent model

A model of conical simple cells [the ContrastGain Exponent (CGE) model]

was used to obtain responses to thc complex image in Fig. 13. This model

(see Fig.  l2)  is  s imi lar  to thosc proposed b.v Heeger (1991) and Albrecht

and Geis ler  (1991. 1994),  and is  consistent  wi th the descr ipt ivc funct ions

in Tablc I (i.e. the modcl predictions are describcd by the formulas in

Tablc l. for sine-wavc stimuli). The equations and parameters defining the

model are givcn here. For a related psychophysical model sec Folcy ( I 99zl).

For this rnodel. thc mean response of a cortical cell is given by the

fbl lowing equat ion:

e Although the Poisson distribution is asymmetric fbr small means.
similar to cortical cclls. it does not providc a sufficiently general model fbr
conical cell variability because thc variance proportionality constant. (.

can onlv bc 1.0.

A
K t u ' ) -  - * C

1 1  i D
(  B6)

wherc A, B. and C are free paramcters and rr is temporal ftcquency. As can

be seen, K is relatively constant except at lower tcnporal frequencies. Wc

have analyzcd this relationship using trials consisting of a fixcd amount of

time. as well as a flxed number ofcyclesl the incrcasc in K at low temporal

frequencies was obsen'ed for both methods of analysis.

To quantify the magnitude of the variation in K. eqn. (86) was fitted to

each cell individually using the maximum likelihood method. and thcn thc

value of  K at  1.5 Hz was div ided by the value of  K at  15 Hz.  The inset  in

Fig.  15 shows the dist r ibut ion ol th is indcx.  The dark bars indicatc the cel ls

fbr which the hyperbolic function provided a significantly hetter flt than a

flat linc. bv a chi-souare test.
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Fig. 15. Average K and temporal liequency. The variance proportionality

constant, K. plotted as a function of temporal frcquency, averaged across all

of the cclls. The smooth curve is the best-titting hyperbolic function lsee
cqn. (86)1. The histogram shows the rnagnitudc of the effect for cach cell

considered individually: the value of 1{ at 1.5 Hz divided by the value at

15 Hz. Thc black bars are the cclls for which the variation in K was

significant at thc 0.05 level.
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Fig, 16. Comparison of methods to measure discrimination perfbrmance.

Comparison of two different methods for cstimating contrast discrimina-

tion pertbrmance- using the same set of measurements on threc separate

cel ls  ( f rom Geis ler  et  a l . ,  l99l ) .  For the standard method (sol id symbols) ,

200 repeated presentations at each contrast were utilized to estimate the

pulse-number distributions and neurometric functions. For the descrrptivc

function rnethod (solid lines). only the tlrst 40 repeated presentations at

each contrast were utilized to estimatc the mean and the standard dcviation

as a function of contrast. As can bc seen. the two methods provide sinlilar

re sults.

where c(-r;. r',) is the efl'ective contrast ol the lth image point (e g. pixel).

h(.r.r') is a lincar weighting function. c is the local mean contrast. rnra' is

the maximum responsc to the optimal sine-wave grating. csg is the half-

saturation contrast. n is the response exponent. and 16 is the base rate. Note

that applying the max function in the numerator. with thc second argument

sct to zero, is cquivalent to half-wave rectification.

Thc l inear weight ing funct ion.  l (x , r ' ) .  dcscr ibes thc l inear recept i re-

ficld properties ofthe neuron: it determines the basic spatial fiequency and

orientation sclectivity of the cell. (Temporal sclectivit.v and direction se

lcctivity can bc incorporatcd into the model by including the dimension of

t ime in thc weight ing funct ion.)

The ef1ictive contrast is defined by the fbllowing equatiun:
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where 1(-r , .  r i )  is  the luminance of  the l th image point  (c.g.  p ixel  t .  /  is  the

local nrean lurrinance. and 1so is the light-adaptation constant. This defl

nition ofefl'ectivc contrast incotporates multiplicative and subtractive light-

adaptation into the nrodel. These adaptation mechanisms are needcd to

account for thc lact that corlical cells primarily rcspond to contrast rather

than luminance. Eraminat ion of  eqn.  (D2) shows that  the niu l t ip l icat ivc

adaptation factor is l/(i + 11): thc subtractivc adaptation faett'r is 7(1 *

1so) (assurning subtractivc adaptation occurs second).

The local  mern luminance. i .  i t  def ined ht

whcrc l ( . r . r ' )  is  a nonnegat ive weight ing lunct ion dcscr ib ing thc spat ia l

extent  over which the local  mean luminancc is  determined. Simi lar ly .  the

local mean contrast. r., is defined b1

where g( . r . r ' )  is  a nonncgat ive weight ing funct ion descr ib ing the spat iaJ

extent over u'hich thc local mean contrast is determined.r{r

The variancc of the rcsponse is given by

(Ds)

where K is the variance proportionalit)' constant. and r is the mean re-

sponsc f rom eqn. (Dl) .

Eqns. (Dl)-(D5) arc the fbrn'rulas used to generate the predictions of

the model. Consider the relationship of these formulas to the diagram in

Fig. I 2. Thc cun'e within the "contrast gain box" of Fig. I 2 is the contrast

norrnal izat ion funct ion,  which descr ibes hou'  the mul t ip l ieat i re contrast

gain factor  var ies as a funct ion of the local  contrast .  Inspect ion ofeqn.  (Dl  )

shows that this function is of thc form

(D6)

The curve within the "linear summation box" ol Fig. l2 represents the

Fourier translbrm of the linear receptive tleld, /r(-r,r') (only one spatial

dimension is represented). The curve within the "response exponent box"

l0 A more general version ol the model would allow the contrast signal'

c(.r.r'). which feeds the contrast normalization mechanism. to be flltcred
prior to averaging. This would allow the model to incorporate spatial or
temDoral tuning of the norrnalization.
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of Fig. 1 2 is the response exponent function. u'hich describes how thc flnal

responsc varies with the input frorn the prior stage. This curle is a pouer

function with an cxponcnt of n:

u( . t )  :  , t ' (D7)

Final ly .  the curve wi th in the "mul t ip l icat ive noise box" of  Fig.  12 repre

sents the relationship between thc rcsponse variance and thc response

mean: i t  is  a l inear funct ion wi th a s lope of  K and an intercept  of  0.0.r1

To generatc the predictions in Fig. I 3. we first constructcd a large anay

of model cortical cells. The locations of the receptive-ficld centers fell on

a regular grid with a spacing approximately equal to the spacing of on-

center  midget  gangl ion cel ls  in the human eye (Curcio & Al len.  1990t

Geis ler  & Banks,  1995).  Each gr id locat ion contained l2 randomly gen

crated cortical cells. For each model cortical cell. the half saturation eon-

trast ,  the responsc exponent.  and thc rccept ive- f ie ld or ientat ion *crc

randomly sampled f rom probabi l i ty  d ist r ibut ions bascd upon publ ishcd

fiequency histograms fbr these parameters and the data summarizcd in

Table 2 (Seay ct  a l . .  19961. The l :near recept ive- f ie ld u 'c ight ing funct ions

were sine phase Gabor functions u'ith a circularly symmetric envelope and

bandwidth of 2 octaves. Bccause of the variation in the response exponcnt

the eflective bandwidths of the ncurons ranged fiom less than I octave to

greater than 2 octavcs. We only gencrated predictions fbr thc population ot

neurons with a peak spatial frequency of l6 cpd at the center of the lbvea
(i.e. for cells carrying dctailed forrn infbrmation). Adding a widc range ot

peak spatial fiequencies resultcd in plots that wcrc too cluttered to bc casily

rr One possiblc obiection to this version of thc CGE modcl is thirt the
final response cxponent appcars in the contrast normalization function.
However, there arc cssentially equivalent versions ofthe model that do not

have this property. For examplc. ne havc fbund that a normalization tunc-

tion of thc form:

l - e  ' ' -

l t i t  t  
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gives ncarly identical fits to singlc cell data (although the tlnal response

exponent is  a l i t t le  larger) .  We chose to use eqn.  (D6) for  h istor ical  rcasons

and to kccp the CGE model consistent with thc descriptive fbrmulas in

Table 1. The dcscriptive contrast responsc llnction uscd with the above

normal izat ion funct ion is

919

interpreted. To represent retinal/cortical magnification effects. the peak

spatial frcquency varied inversely with thc grid spacing (i.e. the spacing of

the ganglion cells). The local weighting functions for luminance and con-

trast were taken to be the envelope of the linear receptive field, e(r.-r').

normalized appropriately:

(D8)

(D9)

(The r"J factor scales the local mean contrast so that it agrees with the

Michelson contrast fbr sine-wave gratings.) The peak responsc to sinc-

wave gratings. rnr\, was set to 10. and the base rate. /i). to 0.0. The number

of spikes produced by each cell in a 200-ms analysis interval was computed

by randomly sampling from a normal distribution with a mean givcn by

eqn. (Dl) .  and a var iance givcn by eqn.  (D-5) wi th K:  1. .1.

Although some sirnplitying assumptions werc made in generating the

rcsponses shown in Fig. 13. they should have no ef'fect on thc major

conclusion: even though individual cortical neurons are broadly tuned and

quite noisy. they do provide good identification infbrmation about local

image features whcn they produce responses at or above 50% of r.o* (i.e.

5  l 0  sp i kcs ) . r r

r l  Resul ts s imi lar  to those in Fig.  l3 were obtaincd when we set  a l l  of

the parameters. except orientation. to the mcan values reported in the
litcrirture. rathcr than randomly sampling from distributions. One nlinor
difference was that f'ewcr lou'contrast contours were detcctcd (because the
average value of .50 was approximately 0.;l). Note. however. that this
vcrsion of the model does not account tbr other results in thc report (e.g.

F i gs .  l 0  and  I  I  ) ./ , ( r ) - { l  .  " ' ) "


