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Abstract

A descriptive function method was used to measure the detection, discrimination, and identification performance

of a large population of single neurons recorded from within the primary visual cortex of the monkey and the cat, along
six stimulus dimensions: contrast, spatial position, orientation, spatial frequency, temporal frequency, and direction of
motion. First, the responses of single neurons were measured along each stimulus dimension, using analysis intervals
comparable to a normal fixation interval (200 ms). Second, the measured responses of each neuron were fitted with
simple descriptive functions, containing a few free parameters, for each stimulus dimension. These functions were
found to account for approximately 90% of the variance in the measured response means and response standard devia-
tions. (A detailed analysis of the relationship between the mean and the variance showed that the variance is propor-
tional to the mean.) Third, the parameters of the best-fitting descriptive functions were utilized in conjunction with
Bayesian (optimal) decision theory to determine the detection, discrimination, and identification performance for each
neuron, along cach stimulus dimension. For some of the cells in monkey, discrimination performance was comparable
to behavioral performance; for most of the cells in cat, discrimination performance was better than behavioral perfor-
mance. The behavioral contrast and spatial-frequency discrimination functions were similar in shape to the envelope of
the most sensitive cells; they were also similar to the discrimination functions obtained by optimal pooling of the entire

population of cells. The statistics which summarize the parameters of the descriptive functions were used to estimate
the response ot the visual cortex as a whole to a complex natural image. The analysis suggests that individual cortical
neurons can reliably signal precise information about the location, size, and orientation of local image features.

Keywords: Primate visual cortex, Single neuron electrophysiology, Behavioral discrimination performance, Pattern

recognition, Bayesian analysis

Introduction

The human visual system is able to detect, discriminate, and iden-
tify different patterns in space and time. The mechanisms underly-
ing these abilities have been explored by studying the visual pathways
of primates and cats. From this work, we know that neurons in the
visual cortex respond to spatiotemporal contrasts, and that they are
selective along a variety of stimulus dimensions, including con-
trast, spatial position, orientation, spatial frequency, temporal fre-
quency, and direction of motion (e.g. Hubel & Wiesel, 1962, 1968;
Campbell et al., 1968, 1969; for general reviews sec: Robson, 1975;
Orban, 1984; Shapley & Lennie, 1985; De Valois & De Valois, 1988:;
Palmer et al., 1991). To help understand the functional significance
of the visual cortex neurons, their response selectivities have been
evaluated within the context of behavioral psychophysics.

One strategy for comparing neural and behavioral performance
i1s to measure the responses of single neurons using a stimulus
protocol that is similar to a classical psychophysical protocol (Tol-
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hurst et al., 1983; Bradley et al., 1985; Parker & Hawken, 1985;
Barlow ct al., 1987; Hawken & Parker, 1990; Geisler et al., 1991).
An alternate strategy is to find simple functions which adequately
describe the stimulus-response relationships of a given neuron and
then use Bayesian decision theory to determine the performance
(Geisler & Albrecht, 1995). This descriptive function method per-
mits accurate determination of a neuron’s performance with a smaller
number of measurements, thereby making it feasible to conduct a
broad survey of the performance characteristics of the visual cortex.

In this study, we measured cortical neuron responses in monkey
and cat along a number of fundamental stimulus dimensions: con-
trast, spatial position, orientation, spatial frequency, temporal fre-
quency, and direction of motion. We found that relatively simple
functions provided an adequate description of the response means
and the responsc variances. The parameters of these descriptive
functions were used to determine the detection, discrimination, and
identification performance along all of the stimulus dimensions,
for a large population of neurons. The performance of this popu-
lation of neurons was then compared with the behavioral perfor-
mance of humans, monkeys, and cats. Finally, the statistics of the
population were used to estimate the response of the cortex as a
whole to complex natural images.
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Methods

Physiological preparation and stimulus display

The procedures for electrophysiological recording, stimulus dis-
play, and measurement of neural responses using systems analysis
were similar to those described in detail elsewhere (Albrecht &
Hamilton, 1982; Albrecht et al., 1984; Hamilton et al., 1989; Al-
brecht & Geisler, 1991), with the most recent changes described
below. The protocols used in these experiments were approved by
the University of Texas at Austin Institutional Animal Care and
Use Committee and they conform to USDA regulations and NIH
guidelines for the humane care and use of laboratory animals. The
experiments were performed on macaque monkeys (Macaca fas-
cicularis) and domestic cats. Anesthesia was induced using either
ketamine hydrochloride (20 mg/kg/h) or thiopental sodium (20
mg/kg/h), and then maintained for the surgical procedures using
thiopental sodium (20-30 mg/kg/h) for the cats, or sufentanil
citrate (8-12 ug/kg/h) for the monkeys. During this time, a leg
vein was cannulated for infusion; a stainless-steel pedestal was
attached to hold the head in position without ear and eye bars;
tissue was removed over the skull for a craniotomy; and the dura
mater was thinned for insertion of a microelectrode. Following the
surgical procedures, anesthesia was maintained for cats with con-
tinuous inhalation of nitrous oxide/oxygen (75%/25%) and con-
tinuous infusion of thiopental sodium (1 mg/kg/h), or with
thiopental sodium alone (2-6 mg/kg/h); for monkeys, anesthesia
was maintained with sufentanil citrate (4-6 pg/kg/h). Anesthesia
and respiratory gases were monitored via an Ohmeda Respiratory
Gas and Patient Monitor (Ohmeda RGM Model 5250, Critikon
Dinamap Model 8300, Vet/Ox Pulse Oximeter Model 4402), which
monitors the inspired and expired CO,, O,, N>O, airway pressure,
oxygen saturation in the blood, heart rate, and blood pressure.

The eyes were immobilized through continuous infusion of
gallamine triethidiode (10 mg/kg/h) or pancuronium bromide (0.2
mg/kg/h). The animal was artificially respired through an endo-
tracheal throat tube; expired CO, was maintained at 4.5% by ad-
justing the respirator rate and stroke volume. Accommodation was
paralyzed and the natural pupil dilated by applying cyclopentolate
hydrochloride. For cats, the nictitating membrane was retracted
with phenylephrine hydrochloride. The eyes were covered with gas
permeable hard contact lenses to prevent corneal drying. The an-
imal was refracted using streak retinoscopy. corrective lenses were
used to focus the stimuli on the retina, and a 3-mm artificial pupil
was introduced. Core body temperature was continuously moni-
tored and maintained via a thermostatically controlled hydraulic
heating pad which surrounded the animal. Action potentials (col-
lected in 0.1-ms time bins) were recorded from area 17 neurons
using glass-coated platinum-iridium microelectrodes. The recep-
tive fields for the neurons measured in this study were located
within 5 deg of the visual axis.

The stimuli were luminance-modulated, drifting sine-wave grat-
ings patterns for all of the stimulus dimensions except spatial
position, where they were counterphase gratings. The grating stim-
uli were smoothly damped at the edges in space with abrupt onsets
and offsets in time. They were presented on a Conrac studio mon-
itor running at a noninterlaced frame rate of 100 Hz. The mean
luminance was held constant at 27.4 c¢d/m?. Both hardware and
software methods were utilized to compensate for nonlinearities in
the stimulus display. Responses were measured as a function of
contrast, spatial position, orientation, spatial frequency, temporal
frequency, and direction of motion, presented in a pseudorandom
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fashion. A single presentation at a fixed spatiotemporal contrast
consisted of a block of ten or 12 contiguous temporal cycles. Each
block was separated by a period of time equal to the block length;
during these separations, the contrast was zero. Generally, four
blocks were obtained for each stimulus condition, which resulted
in 40 or 48 repeated temporal cycles (in some instances as many as
20 blocks were obtained). To assess the detection, discrimination,
and identification performance within an analysis interval roughly
comparable to a single fixation, the total number of spikes for each
cycle was expressed in terms of spikes per 200 ms.

Analysis

Descriptive functions for the mean and variance

The measured means and standard deviations for each stimulus
dimension were fitted using the descriptive functions shown in
Table 1. In this table, we represent the relative response along each
stimulus dimension by a selectivity function normalized to a peak
of one. The mean of the response (r) is equal to the normalized
function (r,) times the maximum response (r,,,.x) plus the base rate
(ry). The variance of the response (o 2) is equal to the response
mean times a constant (K). No special significance should be
attached to these descriptive functions other than the fact that they
provide a good fit to the measured responses with a minimal num-
ber of free parameters. These functions are simple and yet flexible
enough to handle the wide variety of tuning function shapes.

Consider first the functions that describe the mean. For the di-
mension of contrast, the function is a saturating power function (the

Table 1. Descriptive functions for the response means
and variances
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Contrast ) "
rde) = 5
¢+ iy
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. =center oricntation
pi=null position
n=response exponent
K = variance proportionality
constant

orientation bandwidth
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Pige = IESPONSE Maximum

p=direction selectivity ratio
¢y =half saturation contrast
ri = base response
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Naka-Rushton function). For the dimensions of spatial frequency and
temporal frequency, the function is a skewed Gabor function (a
Gaussian whose standard deviation is allowed to differ on either side
of the peak). For the dimension of spatial position, the function is
a rectified sine wave raised to an exponent, plus a vertical offset.
For the dimension of orientation, the function is a Gaussian. Fi-
nally, for direction of motion, the function is a constant represent-
ing the relative attenuation in the nonpreferred direction.

Consider next the function which describes the variance. This is
a very simple relationship which states that the variance is pro-
portional to the mean. In other words, the variance is predicted by
one parameter—the proportionality constant K. Previous investi-
gators have used a two-parameter function, where the variance is
proportional to the mean raised to an exponent (e.g. Tolhurst et al.,
1983). In Appendix B, we show that the simpler one-parameter
function describes the measured responses just as well as the two-
parameter function.

The descriptive functions for the means and standard deviations
were fitted simultaneously using a maximum-likelihood proce-
dure. For example, for the dimension of contrast, five parameters
were estimated simultaneously: two for the normalized function,
one for the maximum response, one for the base rate, and one for
the variance. When more than one dimension was fitted simulta-
neously (Figs. 2 and 4), three of the parameters (r,y, fo, K) were
not allowed to vary across dimensions. The details of the maximum-
likelihood fitting procedure are given in Appendix A.

Detection and discrimination performance

The descriptive functions fitted to each neuron’s responses were
used to determine what the neuron’s detection and discrimination
performance would be in a standard two-interval, two-alternative,
forced-choice task. In this task, there are two possible stimuli. In
a single trial, both stimuli are presented (in separate temporal
intervals) in a random order. The goal is to indicate correctly which
stimulus appeared in the first temporal interval. Threshold is de-
fined as the difference in the two stimuli which gives 75% correct
performance.

Thresholds for individual neurons were found using Bayesian
decision theory (ideal-observer theory). We chose to use Bayesian
decision theory because it shows the best performance possible
given the neural responses. and hence provides a useful bench-
mark. To maximize the percentage of correct responses, the Bayes-
ian observer uses (to close approximation) the following decision
rule: if the response in the first interval is greater than the response
in the second interval, then guess that the first interval contained
the stimulus which produces the larger mean response; otherwise,
guess that the second interval contained the stimulus which pro-
duces the larger mean response. The threshold achieved with this
decision rule can be found using the formula:

|AMean)|
d' = . M
VAverage Variance

The quantity d’ is the absolute value of the difference in the means
divided by the standard deviation. A d’ of 1.0 corresponds to 75%
correct in the two-interval forced-choice task. In other words, to
discriminate two stimuli with an accuracy of 75%, the change in
the mean response must equal one standard deviation. Substitution
of a descriptive function for the response mean and variance into
eqn. (1) results in the following formula for detection and discrim-
ination performance:
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|r(x + Ax) — r(x}]|
d' = 2)
\/K-r(x + Ax) + K-r(x)
2

where Ax is the change along the stimulus dimension. Detection
and discrimination thresholds were found by setting d' to 1.0 and
solving for Ax (i.e. incrementing or decrementing Ax from O until
d’ equaled 1.0).

Bayesian decision theory was also used to determine thresholds
for the entire population of neurons as a whole, under the assump-
tion that the responses of the neurons are statistically independent.
The Bayesian decision rule (to close approximation) is to compute
a weighted sum of the differences in the responses between the
first and second stimulus intervals. If the weighted sum is positive
one of the alternatives is picked, if it is negative the other alter-
native is picked. The d' for the entire population (using this deci-
sion rule) can be determined from the d's for the individual neurons
in the same task. Specifically, the population 4’ is given by the
following formula (Green & Swets, 1974):

d'= [e>d 3
i=1

where d/ is the value of d’ for the /th neuron, m is the number of
neurons in the population, and € is the overall pooling efficiency.’
The efficiency parameter quantifies the fraction of information
utilized from each neuron; it varies from 0.0 (where none of the
information is utilized) to 1.0 (where all of the information is
utilized in an ideal fashion). Finally, the population threshold was
obtained by setting 4’ to 1.0 and solving for Ax. For the purpose
of comparing the shapes of behavioral and neural discrimination
functions, the efficiency parameter, €, was allowed to vary. To
compare efficiencies across populations with different numbers of
neurons, it is necessary to normalize for the number of neurons. To
do this, we multiplied the best-fitting efficiency parameter, €, by
the number of cells, m, and then divided by 100 to obtain the
efficiency per 100 cells, €.

Identification performance

Identification involves making a decision about which stimulus
was presented when the set of possible stimuli is large.2 Bayesian
decision theory was used to determine identification performance.
The descriptive functions fitted to the measured responses were
used to determine how accurately the stimuli could be identified
based upon a single response. Specifically, we quantified identifi-
cation performance by finding maximum-likelihood confidence
regions, which define the most probable subset of stimuli given the
observed response; the smaller the confidence region, the more
accurate the identification performance. For example, a 95% con-
fidence region contains, by definition, the correct stimulus 95% of

! Strictly speaking, the d’ summation formula is derived assuming
normal distributions for the responses. with the same variance for signal +
noise and noise alone (the variance is allowed to be different for each
neuron). However, if the average variance for signal — noise and noise
alone ts used in the computation of each d' [sce cgn. (1)] then egn. (3) is
quite accurate for multiplicative noisc (variance proportional to the mean)
and for response distributions that are not normal (c.g. the Poisson distri-
bution). We have shown this to be true in simulations where we compared
the performance of the exact ideal observer with the performance predicted
by eqn. (3).

2 Detection and discrimination are special cases of identification where
the number of stimuli is just two.
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the time. If this region is small, the stimulus can be identified as
belonging to that small region with 95% accuracy. This makes the
confidence region a useful quantitative index of identification per-
formance (Geisler & Albrecht, 1995).

To find the confidence region, we must determine the proba-
bility of the stimulus (x) given the response (R), p(x|R). Bayes’
formula expresses this probability in terms of the probability of the
response given the stimulus, p(R|x), and the prior probability of
the stimulus, p(x):

P(R[x)p(x)

fp(R\x’)p(x')dx’

p(x|R) = 4

where the integral in the denominator is over all possible stimuli x.
We assumed no knowledge of the stimulus prior to the response;
that is, we assumed that p(x) is constant, in which case, p(x)
cancels in the above equation. (Incorporating true stimulus prob-
abilities, i.e. natural environmental constraints, should generally
only improve identification performance.) The probability of the
response given the stimulus was determined from the descriptive
functions for the mean and variance under the assumption that the
responses were approximately normally distributed:

R — r(x)]* }

Kr(x) )

p(R|x) =

1
— —0.5
V27 Kr(x) exp{

This probability density function was then substituted into Bayes’
formula to obtain the probability of the stimulus given the response.

[R - r(x)}*
ool 03 oo
p(x|R) = (6)
— 1 [R — rix)]? )
r(x)fx r(x’) cxp{—O.S W} &

This formula, when regarded as a function of the stimulus (x), is
referred to as the certainty function, or the a posteriori probability
density function. Note that the shape of the certainty function
depends upon the value of R.

Once the certainty function has been determined, the maximum-
likelihood confidence interval is obtained by summing stimulus prob-
abilities until the criterion confidence level, «, is reached. Formally,
this process is equivalent to solving the following equation for 3:

a = f px’
{xp(x|R)=p}

where B is some level of stimulus probability. For example, a 95%
confidence region is derived by starting with 8 = 0, and then
increasing B in small steps until the sum (the integral in this
equation) equals 0.95. We refer to this final vatue of 8 as Bys. The
95% confidence region, CRys, is the set of stimuli whose proba-
bility density exceeds Bys; that is,

R) dx’ (7

CRys = {x:p(x|R) > Bos} (8)

The smaller this set, the better the identification performance.
The above procedure is illustrated in Fig. 1. The solid curve
represents a hypothetical certainty function: a probability distribu-
tion for the stimulus given a particular response, p(x|R). The
shaded region has an area of 0.95; it defines the confidence interval
indicated on the horizontal axis. As 3 is increased from zero, the
sum of the probabilities which exceed 8 decreases until the sum
equals 0.95 (the shaded area). which occurs when 8 = Bs.
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Definition of the 95% Confidence Region
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Fig. 1. Identification performance: The 95% confidence region. Definition
of the maximum-likelihood 95% confidence region used to characterize the
identification performance of single neurons. The smooth curve represents
a certainty function (i.e. an a posteriori probability density function). which
gives the probability of each possible stimulus (x) given that a particular
response (R) occurred during a single trial. The 95% confidence region
(indicated by the two-headed arrow along the horizontal axis) is the region
in stimulus space that corresponds to 95% of the area (the shaded arca)
under the certainty function. It is found by increasing the criterion S (the
dashed linc) until the sum of the probabilities greater than 8 equals 0.95.
If a neuron produces a response of magnitude R. then subsequent brain
mechanisms can be 95% certain that the stimulus came from this confi-
dence region. The smaller this confidence region the better the identifica-
tion performance of the neuron.

Advantages and limitations of the performance measures

The standard method for measuring neural performance is to mea-
sure counting distributions (pulse-number distributions) for each
stimulus level and from these determine performance using Bayes-
ian decision theory. The major advantage of the descriptive func-
tion method proposed here is that it is considerably more efficient:
performance can be measured along a number of stimulus dimen-
sions within a relatively short period of time. One reason the method
is efficient is that the underlying pulse-number distributions are ap-
proximated by normal distributions, estimated from measurements
of just two summary statistics: the response mean and variance. In
Appendix C, we show that the estimates of performance are quite
accurate even when the pulse-number distributions deviate substan-
tially from normality. Another reason the method is efficient is that
performance is determined from descriptive functions containing
only a few parameters, and these parameters are estimated simul-
taneously from all of the data. In other words, the method makes
use of the a priori knowledge that the means and variances of cor-
tical cells can be described by specific descriptive functions with
only a few parameters. This a priori knowledge reduces the amount
of data required to estimate a cell’s response characteristics.

We have compared the results of the descriptive function method
with a more traditional signal detection method where entire pulse-
number distributions are measured. We found that the estimates of
performance from the descriptive function method were compara-
ble to those from the more traditional method (see Appendix C).

One potential limitation of the descriptive function method used
here is that it assumes that the parameters (e.g. 7,.x, K) are rela-
tively stable through time; that is, the method does not incorporate
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nonstationary factors. Although it might be possible to include such
factors, they are unlikely to play a significant role. First, the de-
scriptive functions accounted for approximately 90% of the varia-
tion in the measured responses (e.g. Figs. 3 and 4), leaving only a
small amount of residual variation to be explained by other factors.
Second. in a series of analyses designed to measure the degree of
nonstationarity in striate neurons, we found little evidence of non-
stationarity (see Appendix D in Geisler et al., 1991). Finally, in the
present study we tested for systematic drifts in the parameters by
fitting several data sets collected at different times with a common
set of parameters as opposed to a unique set of parameters for each
data set. The results of this analysis were consistent with what would
be expected of a stable stochastic process.

It is important to note that this report only considers perfor-
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mance based upon rate information. We have developed methods
that can incorporate rate and temporal pattern information (Geisler
et al., 1991). Using these methods, we found that for visual cortex
neurons, temporal pattern information appears to be important for
discriminating stimuli that differ in some temporal parameter. The
descriptive function method developed here can be extended to
take into account temporal pattern information.

Results

Descriptive functions

Fig. 2 shows the responses of representative neurons along each of
the stimulus dimensions measured in this study: contrast, spatial

Measured Responses & Descriptive Functions
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Fig. 2. Measured responses and descriptive functions. Responses of six monkey visual cortex neurons plotted as a function of six
stimulus dimensions: contrast, spatial position. spatial frequency, orientation. temporal frequency, and direction of motion. For each
dimension, the upper panel plots the mean response (the average total number of action potentials which occurred during a single
200-ms interval), and the lower panel plots the standard deviation associated with that response. Responses as a function of contrast
(A) were measurcd at an optimal and a nonoptimal spatial frequency. Responses as a function of spatial position (B), spatial frequency
(C), and temporal frequency (E) were measured at a saturating and a nonsaturating contrast. Responses as a function of orientation (D)
were measured for motion in the preferred versus nonpreferred directions. at a saturating contrast. Responses as a function of contrast
(F) were measured in the preferred versus nonpreferred dircctions for an optimal sine wave. The smooth curves through the data points
are the fits of the descriptive functions given in Table 1. These functions provide a good description of the responses of most cortical

cells for these stimulus dimensions.
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position, spatial frequency, orientation, temporal frequency, and
direction of motion. For each dimension, the upper panel plots the
mean response, and the lower panel plots the standard deviation
associated with that response. For example, in A, the responses are
plotted as a function of contrast measured at two different spatial
frequencies, and in B, the responses are plotied as a function of
spatial position measured at two different contrasts. The smooth
curves through the data points show the fits of the descriptive
functions in Table 1 (see Appendix A for the maximum-likelihood
fitting procedure). As can be seen, the descriptive functions pro-
vide a good fit to the measured responses. To quantify the good-
ness of fit, we used the following index:

lobserved — predicted|
(9}

G =100 X [1 - AVE< observed + predicted
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A perfect fit would result in a value of 100%, and a very poor fit,
a value of 0%.3 The average values of the parameters of the de
scriptive functions for the entire sample of cells, along with the
mean and median values of the goodness-of-fit index, are given in

* The ratio in this index is an error term that varies between 0 and 1 and
is similar to a contrast index in that the difference is scaled by the mean. The
average error is computed across all stimulus levels. Subtracting the average
error from 1 and multiplying by 100 provides an index of the percentage of
the variation accounted for. We chose this index because other indices are
inadequate for describing the goodness of fit for complex cells in the spatial
position experiment. Complex cells respond nearly the same to stimuli at
different spatial positions. Conventional indices (e.g. 100 X [1 — residual
variance/total variance]) indicate a very poor fit even when the darta are well
described as a constant increase in spike rate. For other stimulus dimensions,
the index [eqn. (9)] is in good agreement with the conventional indices.

Table 2. Population statistics for the descriptive functions®

Contrast (247 cat 71 monkey)
n Cs50 K G, G,r
Mean 3.0 25 25.0 43.0 1.7 1.7 89.0 89.0 900 900
Median 2.8 2.0 16.0 320 1.4 1.3 90.0 90.0 91.0 900
S.D. 1.4 1.4 25.0 31.0 1.0 1.2 6.2 6.2 4.4 4.9

Spatial frequency®

(175 cat 96 monkey)

U, 1,
Mean 0.74 4.5 0.69 0.73  0.69
Median 0.62 4.2 0.67 0.66 0.65
S.D. 0.37 2.3 0.30 032 033

Temporal frequency”

080 1.6 1.4
078 14
029 081 083 6.2 7.1 43 4.8

K G, G,
87.0 850 91.0 90.0
1.2 88.0 87.0 910 900

(119 cat 65 monkey)

W LS

K G, Gy
89.0  90.0 90.0 89.0

Mean 6.7 8.1 1.5 2.1 1.2 0.88 2.1 22
Median 6.1 7.2 1.2 1.7 1.3 0.71 1.9 1.7 90.0 91.0 910 90.0
S.D. 33 35 0.99 1.4 0.55 051 1.1 1.1 5.5 5.8 4.6 3.8
Spatial position (58 cat 27 monkey)
n K Gr Gzr
Mcan 2.7 3.0 1.5 1.4 91.0 880 910 880
Median 2.3 2.4 1.3 1.2 920 90.0 920 890
S.D. 1.5 1.5 0.81  0.82 5.6 9.3 3.6 5.9
Orientation (21 cat 15 monkey)
bg p K G, G,
Mean 24.0 20.0 0.46 0.52 1.8 1.7 84.0 84.0 860 88.0
Median  21.0 15.0 0.45 0.51 1.7 1.4 81.0 820 850 880
S.D. 11.0 9.1 0.26 0.28 052 042 5.9 5.7 3.1 4.4
Direction of motion (47 cat 16 monkey)
p K G, Go
Mean 0.62 0.46 1.6 1.7 86.0 940 88.0 940
Median 0.73 0.46 1.5 1.4 86.0 940 89.0 940
S.D. 0.30 0.26 0.75  0.58 6.5 1.9 4.6 1.3
Fmax To
Mean 8.0 8.2 0.36 0.52
Median 5.7 5.7 0.09 0.17
S.D. 6.6 7.0 0.66 0.83

aFor each parameter, cat statistics are in the left column and monkey the right.

®The bandwidths are expressed in octaves.

“For 41 cat cells and 32 monkey cells. the response did not fall to half of the maximum at the lowest frequency

tested (at .25 Hz).
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Table 2. (In this table, G, is the goodness-of-fit index for the mean
responses, and G,, is the index for the standard deviations.) As can
be seen, the values of the goodness-of-fit index are generally near
90%.

Some of the measurements and analyses reported in Fig. 2 and
Table 2 are similar to those reported previously by us and by many
other investigators (see references in the Introduction). In this
study, the responses along all six stimulus dimensions were mea-
sured and analyzed using the same methods (e.g. the same mean
luminance, trial duration, stimulus protocol), thereby facilitating
comparison of the results.

One important aspect of the results is that the standard devia-
tions are related to the means by a simple proportionality rule
(0> = Kr). To assess the adequacy of this rule, we estimated the
value of K for each stimulus dimension individually using the
maximum-likelihood procedure described in Appendix B, and quan-
tified the goodness of fit to the standard deviation data using the
index defined by eqn. (9). Fig. 3 shows the frequency distribution
of the goodness-of-fit measure for each stimulus dimension. As
can be seen, for all of the stimulus dimensions the values of the
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index are very high (greater than 90%). Thus, the simple propor-
tionality rule captures most of the variability in the data.

A second important aspect of the results is that the value of K
is essentially invariant for a given cell across stimulus dimensions.
This remarkable fact is illustrated in Fig. 2, where the responses
for each cell are shown for two stimulus dimensions. For example,
in C, responses are plotted as a function of spatial frequency for
two different contrasts, and in F, responses are plotted as a function
of contrast for two different directions of motion. The solid curves
through the standard deviations are the predictions for a single
constant of proportionality. To assess the degree to which K is
invariant across stimulus dimensions, we estimated the value of K
for multiple stimulus dimensions simultaneously (see Appen-
dix B); the number of dimensions varied from 2 to 6. Fig. 4 shows
the frequency distribution of the goodness-of-fit index averaged
across all of the stimulus dimensions for each cell in this sample.
The median goodness of fit was greater than 90%. Thus, for each
cell a single value of K describes the relationship between the
mean and the variance across multiple stimulus dimensions.

Note that because the variance is proportional to the mean

Variance Proportional to Mean: Goodness of Fit for Single Dimensions
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Fig. 3. Variance proportional to the mean: Single dimension. Histograms showing the goodness-of-fit index for the response standard
deviations, G,. where the constant of proportionality, K, was estimated for each dimension individually. This goodness-of-fit index
quantifies how well the one parameter proportionality rule, o = Kr, characterizes the measured standard deviations. The mean
goodness-of-fit index for monkey was 93.7 (median = 94.4, s.0. = 3.2). The mean goodness-of-fit index for cat was 93.3 (median =
93.7.5.0. = 2.5). These high values indicate that the simple rule provides a good description of the variance across all of the stimulus
dimensions examined. (Sec Appendix B for a more detailed analysis.)
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Fig. 4. Variance proportional to the mean: Multiple dimensions. Histogram
showing the goodness-of-fit index for the standard deviation where the
constant of proportionality. K. was fitted across more than one dimension
simultaneously. This analysis was performed on a sample of 78 cat cells
and 35 monkey cclls. The mean goodness-of-fit index for monkey was 93.0
(median = 93.1, s.n. = 3.6). The mean goodness-of-{it index for cat was
94.4 (median = 94.6. s.0. = 3.0). These high values indicate that a single
value of K holds across stimulus dimensions.

with a single value of K, then any two stimuli which produce
equivalent mean responses will produce equivalent standard de-
viations. Consider, for example, the cell in Fig. 2D. If the stim-
ulus is moving in the nonpreferred direction, at the optimal
orientation, then the cell produces a mean response of approxi-
mately 8 spikes and a standard deviation of 3 spikes. If the
stimulus is moving in the preferred direction, at a nonoptimal
orientation approximately 20 deg from the peak, then the cell
also produces a mean response of 8 spikes and a standard de-
viation of 3 spikes. Thus, the standard deviation is determined
by the response independent of the stimulus.

One exception to the invariant-K rule is that for some cells K
tends to increase at low temporal frequencies (below 2 Hz). This
behavior can be seen in Fig. 2E; the observed standard deviations
exceed the predicted at low temporal frequencies. For the majority
of cells, K remains invariant as a function of temporal frequency.
Further analysis of this effect is described in Appendix B.

In summary, for all of these fundamental stimulus dimensions,
the relationship between the mean of the response and the variance
of the response for any given cell is adequately described by a
simple constant-ratio rule: the variance is proportional to the mean
with a single proportionality constant that is independent of the
stimulus dimension.

Detection and discrimination performance

As shown in the previous section, the response means and standard
deviations of each neuron in the population were accurately fit by
the descriptive functions in Table 1, thus making it possible to
determine the detection and discrimination performance of each
neuron.

W.S. Geisler and D.G. Albrecht

Fig. 5 shows the discrimination functions for the neurons in
Fig. 2. For example, in A, contrast threshold is plotted as a function
of base contrast (i.e. background or reference contrast) for the
optimal stimulus. This contrast-discrimination function is typical
of those reported in the literature (for a review see Geisler et al.,
1991). As base contrast increases, threshold initially decreases,
reaches a minimum, and then rapidly increases. Thus, the detection
threshold (the threshold at a base contrast of 0.0) is larger than the
best discrimination threshold. Similar trends are seen for the cell in
F, where contrast-discrimination functions are plotted for the pre-
ferred and nonpreferred directions of motion. In B-E, the discrim-
ination functions are shown for the highest contrast measured.

Note that for each stimulus dimension good discrimination only
occurs over a limited region. The smallest thresholds occur away
from the peak, where the slope is steep and the response is still
large (c.f. Fig. 2). For all of the stimulus dimensions except con-
trast, there are multiple regions of high sensitivity. This occurs
because the response functions along these dimensions have mul-
tiple regions where the slope is steep.

It would, of course, be possible to improve discrimination per-
formance by making the analysis intervals longer than 200 ms.
However, intervals longer than 200 ms would not be comparable to
fixation times during normal saccadic inspection. Further, even
under steady fixation, longer intervals would exceed psychophys-
ical estimates of the temporal integration limit of the visual system
(Watson, 1986), and would thus overestimate the contribution of
individual neurons to behavioral performance.

Fig. 6 and Table 3 summarize the detection and discrimination
performance of the entire population of cells. Fig. 6 shows the
frequency histograms of the best discrimination thresholds for each

Table 3. Population statistics for cortical performance

Discrimination Identification

Cat Moﬁkey Cat Eonicv
Contrast Ac (%) Ac (%) ¢ (%) ¢ (%)
Mean 11.0 18.0 80.0 72.0
Median 5.2 12.0 83.0 74.0
S.D. 17.0 18.0 11.0 15.0
Spatiat frequency Au (%) Au (%) u (octaves)  u (octaves)
Mean 13.0 15.0 1.3 1.4
Median 12.0 14.0 1.2 1.4
S.D. 58 5.8 0.48 0.40
Temporal

frequency Aw (%) Aw (%) w (octaves)  w (octaves)
Mecan 28.0 23.0 2.6 2.7
Median 25.0 19.0 2.6 2.8
S.D. 15.0 14.0 1.0 0.69
Spatial position Ap (deg)  Ap (deg) p (deg) p (deg)
Mean 30.0 25.0 123.0 121.0
Median 52 24.0 130.0 116.0
S.D. 17.0 11.0 355 389
Orientation A6 (deg) A8 (deg) 0 (deg) f (deg)
Mean 14.0 11.0 54.0 45.0
Median 12.0 10.0 43.0 39.0
S.D. 9.3 6.6 35.0 24.0
Direction
of Motion Ac (%) Ac (%) ¥ r

Mean 14.0 12.0 0.82 0.75
Median 12.0 9.5 0.96 0.77
S.D. 12.0 4.6 0.20 0.19
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Discrimination Performance: Representative Cells
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Fig. 5. Discrimination performance: Representative cells. Discrimination performance along each of the six stimulus dimensions for
the neurons shown in Fig. 2. The descriptive functions in Fig. 2 were utilized to determine discrimination thresholds along each
stimulus dimension. For spatial frequency. temporal frequency. spatial position. and orientation, the solid curves indicate those values
along the horizontal axis where the decrement thresholds were smaller and the dashed curves indicate where the increment thresholds
were smaller. The arrows along the horizontal axis for the dimensions of contrast and spatial frequency indicate where the best

discrimination performance occurred.

of the stimulus dimensions.* Note that for position, the threshold
is expressed in degrees of spatial phase because position dis-
crimination is strongly dependent on the peak spatial frequency
of the cell.

Identification performance

Identification performance for each neuron was quantified by mea-
suring how accurately one could know the stimulus based upon the
neuron’s response. As described in the Methods section, the de-
scriptive functions and Bayes” formula were used to determine the
probability of each possible stimulus given a particular response;
this is the certainty function. The curves in Fig. 7 show the cer-
tainty functions for the cells in Fig. 2, given that the cells produced
a maximum response. For example, the certainty function for ori-
entation is shown in D. As can be seen, the most probable stimulus
(given a maximum response) is a grating moving in the preferred

* Because complex cells produce nearly equivalent responses at all
spatial positions, they were not included in the analysis of discrimination
performance along the dimension of spatial position.

direction, restricted to a narrow band of orientations. The art s
on the horizontal axis indicate the region that sums to 95% of th»
area under the certainty function; this is the maximum-likelih-:d
95% confidence region. (The arrows on the vertical axis indi it
Bos, the smallest probability included in the 95% confidence =
gion; see Fig. 1.) Thus, when a maximum response is producel, &
subsequent brain mechanism could know the orientation of tx
stimulus to within = 19 deg, and the direction of motion, with ¢4577
confidence. Similarly, the other certainty functions in Fig. 7 show
that when a maximum response is produced one could know i«
spatial frequency to within £ 1.25 cycles/deg (cpd), the positic
to within £ 1.7 min of arc,” the contrast to within * 429 th-

* The two separate confidence regions for spatial position reflec: -
biguity in the spatial phase of the stimulus when the temporal phase « th~
response is ignored. For the simple cells analyzed here. the temporal = -
shifts typically corresponded to intervals of 100 ms or more. Any ..
sequent brain mechanism which can detect these large phase changes v !
know which confidence region applies: hence, we report only the ¢ !
dence interval for onc of them. This convention was adopted for all <
cells in the analysis of spatial position.
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Discrimination Performance: Population Statistics
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Fig. 6. Discrimination performance: Population statistics. Histograms showing the best discrimination performance for all of the cells,
across all of the dimensions. For contrast, spatial frequency, and temporal frequency, the threshold is expressed as a percentage of the
base or standard. For position the units are degrees of spatial phase. The means, medians. and standard deviations are given in Table 3.
For direction of motion, the minimum contrast which evoked a reliably different response between the two directions was determined;
the bins on the far right indicate cells which could not discriminate direction at any contrast. For spatial position, the bins on the far
right indicate cells which could not reliably discriminate position/phase.

temporal frequency to within % 7.8 Hz, and the direction of mo-
tion with greater than 95% confidence.

Fig. 8 and Table 3 show the 95% confidence regions along each
of the stimulus dimensions for the entire sample of neurons. (Again,
position is expressed in degrees of spatial phase because the con-
fidence region is dependent on the peak spatial frequency of the
cell.)

The width of the certainty functions and the size of the 95%
confidence regions generally increase as the response decreases.
Thus, for responses above the average maximum, the confidence
regions would be smaller than those shown in Figs. 7 and 8, and
for responses below the average maximum the confidence regions
would be larger. However, the size of the confidence regions re-
mains very similar for responses within approximately =20% of
the average maximum (Geisler & Albrecht, 1995).

Discussion

In an effort to understand the neurophysiological mechanisms of
the visual system up to the level of the primary visual cortex, and

how these mechanisms might contribute to visual performance, we
measured the detection, discrimination, and identification perfor-
mance of a large population of cortical neurons. These measure-
ments were made along a number of fundamental stimulus
dimensions, for analysis intervals comparable to the normal fixa-
tion duration. The method of measuring performance was to fit the
response means and standard deviations with descriptive functions
and then use these descriptive functions to determine performance.
This method proved to be robust and efficient because the descrip-
tive functions were able to account for a large percentage of the
variation in the data with a relatively small number of parameters.

Response functions and performance

It is worthwhile to consider the relationship between the measured
response functions and discrimination performance along each stim-
ulus dimension (c.f. Figs. 2 and 5). Discrimination performance is
good when the change in the mean response is large compared to
the standard deviation. The change in the mean response is largest
where the slope of the response function is greatest. On the other
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Identification Performance: Representative Cells
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Fig. 7. Identification performance: Representative cells. Identification performance along each of the six stimulus dimensions for the
neurons shown in Fig. 2. The descriptive functions were utilized to determine certainty functions: the probability of cach stimulus,
given that a maximum response has occurred. The certainty functions were then utilized to determine 95% confidence regions. The
arrows along the horizontal axes indicate the 95% confidence region. and the arrows along the right vertical axes indicate the Bys for
each dimension [see Fig. 1 and eqns. (7) & (8)]. If a maximum response occurs, subsequent brain mechanisms can be 95% certain that

the stimulus is located between the arrows on the horizontal axis.

hand, the smallest standard deviations occur when the response is
small, because the variance is proportional to the mean. Thus, the
best discrimination occurs slightly below the steepest point of the
response function. Above and below this point, performance de-
creases until either the bounds of the stimulus range are reached or
the response function approaches a constant value and discrimi-
nation is no longer possible. For example, for the dimension of
contrast (Figs. 2A and 5A) the slope of the response function is
greatest at 9%, the best discrimination occurs at 5%, and discrim-
ination becomes impossible beyond 12%.

To understand the relationship between the measured responses
and identification performance, compare the means and standard
deviations shown in Fig. 2 with the certainty functions shown in
Fig. 7. Recall that the certainty functions in Fig. 7 show the prob-
ability of each particular stimulus given that a maximum response
has occurred. As can be seen, the certainty functions are similar in
shape to the response functions except that they have steeper fall-
offs and they are generally narrower. To understand why, consider
a cell with a maximum response of 10 spikes and a variance
proportionality constant of 1.5. A nonoptimal stimulus which pro-
duces a mean response of 2.5 spikes (25% of the maximum re-

sponse) will produce a standard deviation of 1.9 spikes. Therefore,
the maximum response of 10 spikes is four standard deviations
above the mean response of 2.5 spikes, making it highly unlikely
that this nonoptimal stimulus could ever produce the maximum
response (the relative probability is less than 0.0003).

As a rule of thumb, if a stimulus produces less than half the
maximum response then it falls outside of the 95% confidence
region. In other words, the 95% confidence region corresponds
approximately to the half-height bandwidth (c.f. compare Fig. 8
and Table 2). Given this rule, it is interesting to note that the polar
plots in De Valois et al. (1982), which show the half-height band-
widths in spatial frequency and orientation, are approximately equiv-
alent to the 95% confidence regions for these two dimensions,
when a response near the maximum occurs.

Contrast and performance

In the primary visual cortex, the response functions along the var-
ious stimulus dimensions are relatively invariant in shape when mea-
sured at different contrasts, even at contrasts which produce response
saturation (see for example, Figs. 2B, 2C, and 2E). This is because
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ldentification Performance: Population Statistics
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Fig. 8. Identification performance: Population statistics. Histograms showing the identification performance for all of the cells, across
all of the dimensions. The means, medians. and standard deviations are given in Table 3. For all of the dimensions except direction
of motion, the histograms represent the 95% confidence regions. For direction of motion. the histogram represents the probability that
the stimulus was moving in the preferred direction. (For position, the units are degrees of spatial phase.)

response saturation in the cortex is not determined by the overall
magnitude of the response but rather by the overall magnitude of
the contrast (Albrecht & Hamilton, 1982; Sclar & Freeman, 1982;
see Geisler & Albrecht, 1995, for a general review).

This fact implies that response saturation will not have a detri-
mental effect on discrimination for any dimension except contrast.
This point is illustrated in Fig. 9, where contrast discrimination and
spatial-frequency discrimination are plotted as a function of contrast
for the same cell. When response saturation occurs (at approximately
15% contrast for this cell) contrast threshold becomes unobtainable
whereas frequency threshold reaches its best value, and maintains
that value at higher contrasts. Thus, the lower the contrast at which
response saturation occurs, the better for frequency discrimination.
Similar plots were obtained when contrast discrimination was com-
pared with discrimination along the other stimulus dimensions.®

® If the response functions are invariant with contrast and the variance
is proportional to the mean, then for any stimulus dimension. the signal-
to-noise ratio {(d') as a function of contrast will be proportional to the
square root of the contrast response function. To sce this. note that if the
response function for a given dimension x is invariant with contrast then
the joint two-dimensional response function can be described as the prod-

Similarly, response saturation does not have a detrimental ef-
fect on identification performance (except for contrast); in fact,
cortical neurons provide their best identification performance when
they are in the saturated region. As stimulus contrast increases and
the response increases, the 95% confidence region decreases (Gei-
sler & Albrecht, 1995). Hence, the smallest confidence regions will
occur when stimulus contrasts are sufficient to produce maximum
saturated responses. Further, because many cortical cells saturate
at low contrasts (some as low as 5%), there will be many cortical
cells providing good identification performance even for low-
contrast image features.

Finally, we note that response saturation of the type observed
in cortical neuron responses (i.e. contrast-determined response
saturation) is not necessary for good discrimination perfor-
mance; for example, good discrimination performance is possi-
ble with a linear mechanism as long as a small change in the
stimulus produces a big change in the response. On the other

uct of the response functions for x and for contrast: r(x,¢) = rpar (X r.(c).
The square-root refation follows by substituting r(x + Ax.¢) for r(x + Ax),
and r(x.c) for r{x). in eqn. (2). (The square-root relation would be cx-
pected to break down for small responses near the basc ratc ry.)
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Discrimination Performance:
Contrast & Spatial Frequency
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Fig. 9. Discrimination performance: Spatial frequency and contrast. Con-
trast discrimination and spatial-frequency discrimination plotted as a func-
tion of contrast for a neuron recorded from monkey visual cortex. The
vertical axis on the left plots Ac¢ (% contrast); the vertical axis on the right
plots Af (cycles/deg): the horizontal axis plots contrast. As can be seen.
contrast discrimination is best from 0 to 10% contrast: whereas, frequency
discrimination is best from 10% to 100% contrast, even though the cell
saturated at 15% contrast.

hand, this type of saturation is essential for good identification
performance because it insures that only those stimuli near the
peak of the tuning function can produce big responses; good
identification performance is not possible with a linear mecha-
nism because large responses can be produced by nonoptimal
stimuli if the amplitudes of the stimuli are sufficiently large
(Geisler & Albrecht, 1995).

Relationship to behavioral discrimination performance

In this study, the descriptive function method was used to measure
discrimination performance for a large population of cells in mon-
key and cat. The results provide a unique opportunity to compare
cortical neuron responses with behavioral psychophysics. To this
end, we compared neural and behavioral discrimination perfor-
mance along the dimensions of contrast and spatial frequency,
utilizing two different methods. In the first method, we determined
the best performance of each cell individually and then plotted
these individual performances against published measures of be-
havioral performance. In the second method, we determined the
performance of the entire population of cells as a whole, assuming
optimal pooling of neural responses, and then plotted the popula-
tion performance against the behavioral performance.

The solid symbols in Fig. 10A show the best contrast discrim-
ination performance for all of the neurons recorded in monkey.
Each point represents the minimum of the contrast discrimination
function (i.e. the minimum contrast threshold, and the base con-
trast where the minimum occurred, see arrow in Fig. 5A). As can
be seen, these best performance points are widely scattered at each
base contrast, and the best base contrasts span most of the contrast
axis. All points that fall on the vertical axis at 0% contrast repre-
sent cells where the best discrimination threshold was the absolute
threshold; all other points represent cells where the threshold ini-
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tially decreased with contrast (i.e. they showed the “dipper” ef-
fect). It is interesting to note that as contrast increases the thresholds
of the most sensitive cells increase monotonically. Specifically,
those cells with the lowest thresholds are bounded by an envelope
which is approximately constant at lower contrasts and linear (in
log—log coordinates) at higher contrasts.”

The open symbols in Fig. 10A plot behavioral contrast discrim-
ination functions for monkeys (Kiper & Kiorpes, 1994) and hu-
mans (Bradley & Ohzawa, 1986; Legge & Kersten, 1987; Seay &
Geisler, 1995). As contrast increases, threshold initially decreases
by a small amount (the “dipper” effect), and then increases linearly
with a slope of 0.6 to 1.0 (i.e. as a power function with an exponent
between 0.6 and 1.0). As can be seen, the general shape of the
behavioral functions is similar to the shape of the envelope of the
most sensitive cells. However, the behavioral thresholds are some-
what lower.

The envelope of the most sensitive cells provides one method
for comparing cortical and behavioral performance. This compar-
1son is appropriate if behavioral discrimination at each contrast is
determined by the most sensitive neuron at each contrast. On the
other hand, behavioral discrimination at each contrast could be
determined by combining the responses of all neurons. Although it
is clear that the most sensitive neurons at each contrast will con-
tribute the most information, there is nevertheless additional in-
formation in the responses of the other neurons.

The solid curve in Fig. 10B shows the population contrast
discrimination function; this curve is the result of pooling all of the
discrimination information from all of the cells in an optimal fash-
ion. Each point on this curve was obtained as follows. First, the
measured contrast response function for each neuron was used to
find the mean responses and standard deviations to the base con-
trast and to the base-plus-increment. Second, these means and
standard deviations were used to obtain the signal-to-noise ratio
(the d") for each cell [see eqn. (2)]. Third, the d' summation
formula from Bayesian decision theory was used to find the signal-
to-notise ratio for the entire population [see eqn. (3)]. Fourth, the
threshold was obtained by varying the increment contrast until the
population d’ equaled 1.0 (75% correct). Finally, the population
function was shifted vertically, using an efficiency parameter, to
allow comparison of the shapes (see Methods).

The open symbols in Fig. 10B are the same behavioral data
shown in Fig. 10A. As can be seen, the shape of the population
discrimination function is remarkably similar to the shapes of the
behavioral discrimination functions.

The two methods of comparing behavioral and neural perfor-
mance (illustrated in Figs. 10A and 10B) represent two extremes in
psychophysical linking hypotheses. At one extreme, behavioral per-
formance is modeled by the envelope of the most sensitive neurons
(Barlow, 1972, 1995; De Valois et al., 1967; Talbot et al., 1968). At
the other extreme, behavioral performance is modeled by optimally
combining the responses of all neurons that might contribute rele-

"1t is important to consider the possibility that the variations in sen-
sitivity with contrast could be the result of correlations between the pre-
ferred spatial frequency and the parameters of the contrast responsc function.
For example. the high spatial frequency cells in this population might
account for the increase in the thresholds at higher base contrasts if there
were a correlation between preferred spatial frequency and the semisatu-
ration constant. To evaluate this possibility, we measured the correlations
between preferred spatial frequency and the parameters of the contrast
responsc function. No significant correlations were found. Further, when
the analysis was restricted to those cells below 10 cpd, the overall trends
were the same.
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Population & Behavioral Performance: Monkey
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Fig. 10. Cortical performance and behavioral performance: Monkey. Comparison of the discrimination performance of monkey visual
cortex neurons with the behavioral discrimination performance of monkeys and humans. using two different methods: the envelope of
the most sensitive cells (upper panels), and optimal pooling (lower panels). In A, the solid symbols plot the best contrast discrimination
thresholds for each neuron (i.c. the minimum Ac. and the location along the contrast axis where the minimum occurred); the open sym-
bols plot behavioral contrast discrimination thresholds for monkeys (. Kiper & Kiorpes, 1994) and humans (¢, Bradley & Ohzawa,
1986; A, Legge & Kersten, 1987: [1. Seay & Geisler, 1995). In B. the solid line plots the overall contrast discrimination performance
for the population of cells as a whole, assuming that the discrimination information from all cells is pooled in an optimal fashion (using
Bayesian decision theory): the open symbols replot the behavioral contrast discrimination thresholds. The neural population curve was
shifted vertically (by varying an efficiency parameter. 109 = 0.5) to allow comparison of the shapes. In C, the solid symbols plot the
best spatial-frequency discrimination thresholds for the neurons: the open symbols plot spatial-frequency discrimination for humans (O,
0.7, 48, Richter & Yager, 1984: A. ¢, Blake et al. 1986). In D, the solid line plots spatial-frequency discrimination for the population
of cells, assuming optimal pooling, and the open symbols replot behavioral spatial-frequency discrimination. Again. the neural popu-

lation curve was shifted vertically (using the same value of the efficiency parameter, €90 = 0.5).

vant information (Watson, 1983; Geisler, 1984, 1989). The results
in Figs. 10A and 10B show that both models account for the data
about equally well. Presumably, models between the two extremes
could also account for the data reasonably well. Thus, it may prove
difficult to distinguish between these different models (see Parker
& Newsome, 1998).

On the other hand, it is important to note that the contrast
discrimination functions of individual cortical neurons are quite
different from the behavioral discrimination functions, in that the
most sensitive neurons only cover a limited range of contrasts (e.g.
see Figs. 5, 9, and Fig. 16 in Appendix C). Thus, it seems likely
that behavioral contrast discrimination functions reflect the com-
bined sensitivity of a heterogeneous population of neurons (Al-
brecht & Hamilton, 1982; Barlow et al., 1987).

Interestingly, there is little or no indication of a dipper in the pop-
ulation performance even though most individual cells have a dip-
per. The heterogeneity of individual cortical cells could perhaps
explain this result: the dippers for the individual cells are widely dis-
tributed along the contrast axis. Thus, our results suggest that the
dipper effect observed in psychophysical experiments is probably
not the result of the response properties of neurons in the primary
visual cortex. On the other hand, the results do not exclude existing
psychophysical explanations for the dipper effect, including neural
thresholds (Foley & Legge, 1981), accelerating nonlinearities (Legge
& Foley, 1980), and/or signal uncertainty (Pelli, 1985), because these
mechanisms could operate at neural stages beyond V1.

Figs. 10C and 10D show a comparison of behavioral and neural
spatial-frequency discrimination. The solid symbols in Fig. 10C
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Population & Behavioral Performance: Cat
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Fig. 11. Cortical performance and behavioral performance: Cat. Comparison of the discrimination performance of cat visual cortex
neurons with the behavioral discrimination performance of cats. using the two different methods (most sensitive cells, and optimal
pooling). The conventions are the same as those described in Fig. 10. In A, the solid symbols plot the best contrast discrimination
thresholds for each neuron and the open symbols plot behavioral contrast discrimination thresholds (Blake & Petrakis, 1984). In B, the
solid line plots the contrast discrimination for the population of cells (using optimal pooling with an efficiency parameter. €;op = 0.04),
and the open symbols replot the behavioral contrast discrimination thresholds. In C, the solid symbols plot the best spatial-frequency
discrimination thresholds for the neurons; the open symbols plot the spatial-frequency discrimination thresholds in cats (Blake et al.,
1986). In D, the solid line plots spatial-frequency discrimination for the population of cells (€90 = 0.006) and the open symbols replot

behavioral spatial-frequency discrimination.

plot the best spatial-frequency discrimination performance for each
individual neuron; the open symbols plot representative spatial-
frequency discrimination functions for humans (Richter & Yager,
1984; Blake et al., 1986). Again, the overall shape of the behav-
ioral functions is similar to the shape of the envelope of the most
sensitive cells (i.e. the shape is approximately flat with a slight rise
at low frequencies); however, the behavioral thresholds are gen-
erally lower. The solid curve in Fig. 10D shows the neural popu-
lation function for spatial-frequency discrimination along with the
behavioral functions. As can be seen, the shapes of the neural and
behavioral functions are quite similar.

Fig. 11 shows a similar analysis for cat. Fig. 11A compares
behavioral performance (Blake & Petrakis, 1984) with the best
performance of individual neurons along the dimension of con-
trast. As in monkey, the envelope of the most sensitive cells
parallels the behavioral discrimination function except in this
case the neural envelope is below the behavioral function rather
than above. Fig. 11B compares the behavioral performance with
the population contrast discrimination function. Fig. 11C com-

pares the behavioral performance (Blake et al., 1986) with the
best performance of individual neurons along the dimension of
spatial frequency. Again, the envelope of the most sensitive cells
parallels the behavioral function but now the envelope is far
below the behavioral function. Finally, Fig. 11D compares the
behavioral performance with the population spatial-frequency dis-
crimination function.

Interestingly, for the monkey, the value of the efficiency pa-
rameter needed to bring the population discrimination functions
into agreement with the behavioral discrimination functions
(Figs. 10B and 10D) was the same for both contrast and spatial
frequency (e€,00 = 0.5). This suggests that the neural information
for these two dimensions is being utilized with equivalent effi-
ciency by subsequent brain mechanisms. In the cat, the efficiencies
are considerably lower than in the monkey and are quite different
for contrast (€,00 = 0.04) and spatial frequency (e€,99 = 0.006).
This relatively poor utilization of neural information for spatial-
frequency discrimination is consistent with the analysis of cat be-
havioral performance by Blake et al. (1986).
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Contrast-Gain Exponent (CGE) Model
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Fig. 12. Contrast-gain cxponent model: CGE filter. Components of the contrast-gain exponent model (upper boxes) and the effect of
cach component (lower boxes) on the contrast response function for an optimal (solid curves) and nonoptimal (dashed curves) stimulus.
plotted in log-log coordinates. The contrast-gain mechanism is a fast-acting gain control that scales the input amplitude by a lactor
which decreases with increasing contrast. thereby producing saturation at higher contrasts: it is set by the local mean contrast. not the
response rate, and thus the optimal and the nonoptimal stimulus are attenuated equally. The linear summation mechanism is a filier
which gives the cell its fundamental selectivities: it causes the nonoptimal stimulus to be attenuated more than the optimal stimulus.
The response exponent mechanism takes the output of the linear filter to an exponent greater than 1.0, thus increasing the difference
in the responses to the optimal and nonoptimal stimuli. The multiplicative noise mechanism introduces a response variance that is
proportional to the mean response rate: thus, when the mean responses to an optimal and a nonoptimal stimulus arc equal. their

variances will be cqual.

son sampling models for behavioral discrimination

t1 . cesults from this report (and many others: see references in the
t.:t, «duction) make it clear that cortical neurons are heterogeneous
i et stimulus-response relationships; they are continuously vari-
abie in preferred spatial frequency, preferred orientation, spatial-
f.i eency bandwidth, orientation bandwidth, half-saturation contrast,
..-SIVE exponent, maximum response, variance constant, etc. (see
:opulation statistics in Table 2). Despite this heterogeneity, it is
¢ ~tble to summarize the stimulus-response relationships of each
-1t using a small set of relatively simple descriptive functions. For
.1iple, for the population of cells in this study, the descriptive func-
i in Table 1 were able to account for 90% of the variability in
i1+ the mean response and the standard deviation.
~{any quantitative psychophysical models of visual discrimi-
- w1un consist of a discrete set of tuned channels, together with a
«i,¢ie contrast nonlinearity. Given the continuous heterogeneity of
¢utical cells along the various dimensions measured in this and
cilir studies, as well as the continuous heterogeneity of the non-
t.oarities, it seems reasonable to consider an alternate class of
wodels. A more parsimonious approach is to represent the early
el system as a large collection of neurons whose tuning char-
i iwristics, nonlinear response characteristics, and noise character-
<1t are randomly sampled from probability distributions. In this
i: wnework, the probability distributions of the cortical cell prop-
itics take the place of the discrete channels.
io construct such models, neuron sampling models, 1t 1s nec-
=~y to determine the probability distributions for the cell prop-
cuites (e.g. 1t is necessary to determine the probability distributions
i+i vach of the descriptive parameters in Table 1). One approach is
¢+ vniimate the parameters of the distributions by fitting psycho-
it ,»ical data. The other approach is to take the parameters from
patdished measurements of cortical cell properties (Seay et al.,
1Y24n). With this latter approach, there are very few parameters to
f . ostimated from the psychophysical data.

The fact that the neural and the behavioral performances are in
good agreement for the random sample of celis in this study (see
Figs. 10 and 11) suggests that neuron sampling models may prove
to be valuable. Further, setting aside the notion of discrete channels
(or pathways), and placing the emphasis on the distributions of cell
properties, might lead to a useful shift in theoretical perspective.

Implications for pattern recognition

The results summarized in Figs. 7 and 8 show that when a cell
produces a response near the maximum, subsequent brain mech-
anisms can be certain that the stimulus lies within a narrow range.
In other words, when the responses are large, single cortical cells
can signal, with reasonable reliability, the presence of specific
stimulus attributes. This suggests that individual cortical cells might
play a more important role in pattern recognition than expected,
given their broad tuning, low response rate, and high response
variability. However, this suggestion is based upon the measured
responses to sine waves presented one at a time. Sine waves pro-
vide a good match to the receptive field and hence produce robust
responses. Natural images. on the other hand, contain a broad
range of sine-wave components. Most of these components do not
match the receptive field and may actually cause response sup-
pression (e.g. as in contrast normalization). Thus, it is not at all
certain that natural images would produce responses in single neu-
rons that are large enough to reliably signal specific stimulus
attributes (Gallant et al., 1995).

To evaluate how individual cortical neurons would respond to
complex natural images, we utilized a recent model which is con-
sistent with the descriptive functions given in Table 1. It has been
shown (Albrecht & Geisler, 1991, 1994; Heeger, 1991, 1992a.b;
Geisler & Albrecht, 1995) that the responses of cortical neurons
are adequately described by a model consisting of four compo-
nents: (1) a linear filter which establishes the neuron’s stimulus
selectivity, (2) a contrast normalization mechanism which main-
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Identification Performance:
Complex Natural Image

Fig. 13. Identification performance: Complex natural image. Estimated re-
sponses of single visual cortex neurons to a complex natural image. (A) An
image of a macaque monkey in a natural setting. The RMS contrast of the
image was 0.5. (B) An achromatic reduced-contrast version of the image,
overlayed with colored line segments indicating the neurons that responded
at greater than 50% of their maximum response. The position, length,
orientation, and color of the line segments indicate the position, size,
orientation, and polarity of each neuron’s receptive field. (Polarity refers to
the spatial sequence of light—dark preference of the receptive field: blue =
light-to-dark, red = dark-to-light.) There is a reasonable correspondence
between the properties of the line segments and the local image features
(e.g. note the series of blue line segments along the light-to-dark boundary
at the edge of the right arm). The responses of the neurons were determined
assuming that the size of the image was 4 deg X 4 deg, and fixation was
at the center. The reader can approximate this stimulus situation by fixating
the center of the image from a distance of approximately 1 m (arm’s
length). (Photograph from the Frans Lanting/National Geographic Image
Collection.)
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tains selectivity in spite of response saturation, (3) an expansive
nonlinearity which enhances selectivity, and (4) a noise source
which makes the variance proportional to the mean. A schematic of
this model, the contrast-gain exponent model, is shown in Fig. 12,
and the formal mathematical description is given in Appendix D.
It is important to emphasize that this model is meant to provide a
functional description of single cortical neuron responses and should
not be taken as a hypothesis about the detailed anatomy and phys-
iology. For example, contrast normalization is probably occurring
at many levels, starting in the retina (Shapley & Victor, 1979;
Sclar, 1987; Albrecht & Geisler, 1991; Albrecht, 1995).

The contrast-gain exponent model was generalized to a popu-
lation of cells covering a 4 deg X 4 deg field in a fashion consis-
tent with the concept of cortical magnification, and was then used
to estimate the response of the visual cortex to a 4 deg X 4 deg
natural image.

Fig. 13B illustrates how such a population of cortical cells
would respond to the complex natural image in Fig. 13A. Rather
than show the responses of all cells, we show the responses of the
cells with a critical frequency approximately 1.5 octaves below the
cutoff of the monkey’s CSF at each eccentricity (e.g. 16 cpd in
the center of the fovea and 4.4 cpd at 2-deg eccentricity), with
fixation at the center of the image. Each line segment drawn on the
image indicates a single neuron that produced at least 50% of the
maximum response. The length and orientation of the line segment
indicates the length and orientation of the receptive field. The red
line segments indicate “edge-like” receptive fields sensitive to a
light—dark transition in one direction (90-deg phase), and the blue
line segments indicate “edge-like” receptive fields sensitive to a
light—dark transition in the opposite direction (270-deg phase).
Comparison of Figs. 13A and 13B shows that the orientation,
location, and phase of each line segment corresponds reasonably
well to the orientation, location, and phase of specific local con-
tours in the complex image. For example, note the blue line seg-
ments which follow the light to dark edge along the monkey’s right
arm, and the red line segments which follow the dark to light edge
along the monkey’s right cheek. Thus, even though cortical cells
are broadly tuned and noisy, when they produce a large response
(5-10 spikes in 200 ms) they transmit accurate information about
local image features.

The cells that produced weak responses (10%—50% of the max-
imum) are not shown in Fig. 13. These cells provided relatively
poor pattern-recognition information; the orientation and location
of their receptive fields were generally poorly correlated with the
orientation and location of the contours in the image.

Note that there are many regions in the image where there are
no line segments. There are a number of reasons for this. First, for
computational reasons, the number of cells we used was approx-
imately 1.5 orders of magnitude less than the actual number of
cortical cells. Second, the density of the cells decreases with ec-
centricity. Third, for ease of viewing, we show only the responses
of one size receptive field at each eccentricity. Fourth, even within
the subpopulation, only 0.4% of the cells produced a response that
exceeded the 50% maximum-response criterion.® If the number of
cells in the simulation was increased to that in the primary visual
cortex, then the number of cells producing responses greater than

8 This occurs because (1) the image does not contain all orientations
and phases, at all locations; and (2) even when an image contour is at the
correct location, orientation, and phase, the shape of the contour may not
perfectly match the receptive field.
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50% of the maximum response would form a fairly dense repre-
sentation of the contours in the image.

Based upon the measurements of the 95% confidence regions,
and the results in Fig. 13, it seems reasonable to conclude that local
image contours can be represented by the activity of individual
neurons in the primary visual cortex. On the other hand, even
though the 95% confidence regions are quite small, they are prob-
ably not small enough to account for the very precise local repre-
sentation achieved by the visual system as a whole. Thus, it seems
quite possible that rudimentary local feature recognition is accom-
plished by the level of V1 and then refined in subsequent cortical
stages. Hopefully, the methods developed here can be used to
measure visual performance in these other more advanced regions
of the cortex.
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Appendix A: Maximum-likelihood fitting
of descriptive functions

This appendix describes the maximum-likelihood procedure we used for
fitting the descriptive functions to the response means and response vari-
ances. Such maximum-likelihood procedures are known to yield parameter
estimates that are optimal in a variety of ways (Mood & Gaybill. 1963).
On each trial of an experiment a particular stimulus is presented: let x;
represent the jth stimulus. A particular stimulus is generally presented more
than once. We represent the number of spikes observed in the ith presen-
tation of stimulus x; as Z;(x;). For purposes of parameter estimation. we
assume that the Z;(x;) are statistically independent, and arc approximately
normally distributed with a mean of r(x;) and a variance a'z(x‘/):
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where #(x) and o (x) are the descriptive functions for the mean and vari-
ance, respectively. It is the parameters in these descriptive functions that
were estimated in the fitting process.

The probability or likelihood (L) of the measured responses is simply
the product of the probabilities of each of the measured responses:
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Maximum-likelihood estimates are obtained by maximizing L with respect
to the unknown parameters in the equations r(x) and ¢ *(x). To improve
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computational precision and speed. it is usually preferable to maximize the
logarithm of the likelihood. or equivalently to minimize —21n L,

—2InL = nmln(27m)
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Minimizing —21InL is equivalent to maximizing the likelihood be-
cause —21InL is a monotonically decreasing function of L.

Egn. (A3) can be used to estimate parameters when the data consist of
spike counts for each trial. However. for some of our experiments, only the
mean and the standard deviation of the spike count were saved. Fortu-
nately. saving the individual spike counts is unnecessary; in fact, identical
parameter estimates are obtained by minimizing the following equation,
which can be obtained from eqn. (A3) with some algebra:
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In this equation, Z(x/-) and S(x,) represent the observed mean and standard
deviation of the spike counts measured for stimulus level j.

Descriptive functions were fitted to the measured spike data by mini-
mizing cqn. (A4). using the program STEPIT (Chandler. 1969). In general,
local minima proved not to be a significant problem because the parameters
of the descriptive functions are relatively orthogonal, and because the
parameters were initialized to values typical of cortical cells. Although the
fitting process was automated. each best fit was plotted against the data and
visually inspected to ensure that both the fit and the final parameters were
reasonable.

Appendix B: The relationship between the response mean
and the response variance

Previous investigators (e.g. Tolhurst et al.. 1983: Vogels et al., 1989: Snowden
et al.. 1992: Softky & Koch, 1993) have described the relationship between
the mean and variance of cortical ncuron responses with a two-parameter
power function:

o’ =Kr" (BI)

where K is a proportionality constant. and v an exponent. The reported
average values of K typically range from 1.2 to 1.5 and the values of v
range from 1.0 to 1.2. Initially, we used eqn. (B1) to describe the mean-
variance relationship; however. we found that the two parameters. K and v,
were highly correlated, and this led us to also consider the simpler formula:

o’ =Kr (B2)

This appendix describes a detailed analysis comparing the two descriptive
functions. We show that the simple proportionality function [eqn. (B2)]
works quite well, and that there is little to be gained by using the more
complex power function [eqn. (B1)]. at least for the purposes of charac-
terizing tuning characteristics. and measuring detection, discrimination,
and identification performance.

Standard statistical techniques (Mood & Gaybill. 1963) were used to
rigorously determine whether the power function provided a significantly
better fit than the proportionality function. First, maximum-likelihood es-
timates of the proportionality constant and exponent in eqn. (B1) were
obtained for each neuron. Then, the maximum-likelihood estimates of the
proportionality constant in eqn. (B2) were obtained for each neuron. To
provide the fairest possible comparison of the two functions, we left the
means completely unconstrained (i.c. we modeled each mean as a free
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parameter). This ensured that the estimates of K and » were not influenced
by the choice of descriptive formulas for the means. Using the results of the
maximum-likelihood procedure, a y ? test was applied to determine whether
the power function provided a significantly better fit than the proportion-
ality function.

To obtain the unconstrained maximum-likelihood estimates of K and v,
the formulas for the variance [eqns. (B1) and (B2)] were substituted into
eqn. (A4). Thus, the likelihood given the two-parameter power function is

}

(B3)

—2InL = nmIn(27m)

m

2

j=1

n[S2(x;) + R (x;) — 2r;R(x;) + 7]

Kr/

{nln(Krj") +

and the likelihood given the one-parameter proportionality function is

—21InL; = nmIn(27)

m

+ 2

j=!

a[S2(x;) + R*(x,) = 2r;R(x;) + r]]
Kr,

7

}

(B4)

{n In(Kr;) +

Proportional vs. Power Relationship for Variance:

CONTRAST

SPATIAL FREQUENCY

W.S. Geisler and D.G. Albrecht

Using the minimization program STEPIT (Chandler, 1969), we obtained
simultaneous maximum-likelihood estimates of the parameters of the power-
function (K, ») and of the means (the r;s). In a scparate analysis, we
obtained simultaneous cstimates of the parameter of the proportionality
function (K') and of the means (the r;s).

A useful property of maximum-likelihood estimation is that the results
can be used to test whether one model provides a significantly better fit to
the data than another model. Specifically, the difference in the minimum
value of —2In L (obtained with the proportionality and power functions) is
asymptotically chi-square distributed with 1 deg of freedom. under the null
hypothesis that the functions are equivalent (Mood & Gaybill, 1963):

x7, = min{-21InL} — min{—21nL,} (BS)
If the computed value of y7, is significantly greater than 1.0, we can
conclude that the power function provides a better fit.

Fig. 14 shows the frequency histograms of the y7, values for all the
cells. The first bin (for cat and monkey) represents the number of cells
which differed at the 0.05 level. For approximately 19% of the monkey
cells and 21% of the cat cells, the power function was significantly better;
for the remaining cells it was not. If the two functions were cquivalent. one
would expect (by chance) 5% of the cells to be fit significanty better by
the power function. Thus. the power function fitted some of the cells better

Chi-Square Test
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Fig. 14. Chi-square test of mean-variance relationship. Histograms showing the significance levels for a chi-square test of the null
hypothesis that the simple proportionality function and the power function provide equivalent descriptions of the relationship between
the mean and the variance of cortical cell responses. The first bin (for monkey and cat) represents the number of cells which were better
fitted by the power function, at the 0.05 level (approximately 20% averaged across all dimensions and all cells).
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than would be expected by chance alone. However. even for those cells
where the power function provided a significantly better fit. the visual
goodness of fit was usually only marginally improved. Further, we have
computed detection, discrimination. and identification performances for all
the cells using both the proportionality function and the power function;
generally, there was very little difference in the computed performances.
We conclude that the simple proportionality function is the more parsimo-
nious description of the relationship between the mean and the variance of
cortical neuron responses.

As shown in the results (see Figs. 2—4), the value of K remains rela-
tively constant within and across dimensions. The one exception was that
for approximately half of the cells K tended to increase at lower temporal
frequencies. Fig. 15 shows the value of K as a function of temporal fre-
quency, averaged across all cells. The solid curve shows the best-fitting
hyperbolic function:

K{w) = C (B6)

— +
w+ B

where A, B, and C are free paramecters and w is temporal frequency. As can
be seen, K is relatively constant except at lower temporal frequencies. Wc
have analyzed this relationship using trials consisting of a fixed amount of
time, as well as a fixed number of cycles; the increase in K at low temporal
frequencies was observed for both methods of analysis.

To quantify the magnitude of the variation in K. eqn. (B6) was fitted to
each cell individually using the maximum-likelihood method, and then the
value of K at 1.5 Hz was divided by the value of K at 15 Hz. The inset in
Fig. 15 shows the distribution of this index. The dark bars indicate the cells
for which the hyperbolic function provided a significantly better fit than a
flat line, by a chi-square test.

Variance Proportionality Constant vs.
Temporal Frequency
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Fig. 15. Average K and temporal frequency. The variance proportionality
constant, K, plotted as a function of temporal frequency, averaged across all
of the cells. The smooth curve is the best-fitting hyperbolic function [see
cqn. (B6)]. The histogram shows the magnitude of the effect for each cell
considered individually: the value of K at 1.5 Hz divided by the value at
15 Hz. The black bars are the cells for which the variation in K was
significant at the 0.05 level.
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Appendix C: Descriptive function method
versus standard method

The methods we used to measure detection, discrimination, and identifi-
cation performance require much less data than standard methods. This
cfficiency derives from the fact that all of the computations are based upon
descriptive functions for the mean and variance. All that is required to
measure an entire discrimination function, plus an entire set of identifica-
tion confidence regions, is an amount of darta sufficient to estimate the few
parameters of a descriptive function.

An obvious question is how well the descriptive function method com-
pares with more standard methods. We addressed this question in two
ways. The first was to examine the robustness of the method to violations
of the assumption that the pulse-number distributions can be approximated
as normal distributions. The second was to compare discrimination func-
tions derived from the same raw spike trains using the descriptive function
method and a standard method.

The pulse-number distributions of cortical cells are not always well
approximated by normal distributions. Typically, at low spike rates the
distributions are skewed to the right (unlike the normal distribution). whereas
at high spike rates they become more symmetric (like the normal distri-
bution). The Poisson distribution has this same property and hence it is a
good comparison distribution for evaluating the error introduced by the
assumption of normality.” We computed discrimination functions, certainty
functions, and identification confidence regions using Poisson pulse-
number distributions and normal distributions that had the same means and
variances as the Poisson distributions. We also computed population per-
formance using the ¢’ summation formula [eqn. (3)]. The results showed
that the functions obtained for the two distributions were very similar—the
errors were almost always under 5%.

A more direct test of the adequacy of a new method is to compare it
with an accepted standard method on the same set of spike data. Geisler
et al. (1991) used standard methods to measure contrast discrimination
functions for three cortical cells. In that analysis, each stimulus contrast
was presented on 200 separate occasions to provide a reasonable estimate
of the pulse-number distribution for each contrast. These measured distri-
butions were then used to determine neurometric functions. The contrast
discrimination thresholds (the 70% correct points on the neurometric func-
tions) are shown as the solid symbols in Fig. 16. In comparison, the solid
curves show the contrast discrimination functions obtained using the de-
scriptive function method. For this latter analysis, the first 40 presentations
of the same data set were used to estimate the parameters which describe
the response as a function of contrast. As can be seen, there is good
agreement between the two methods. The deviations seen at saturating
contrasts are due to the fact that the location along the contrast axis where
threshold increases steeply is very sensitive to the exact shape of the
contrast response function in the region of saturation. Because the descrip-
tive function method smoothly interpolates all the data in the saturation
region it may be more accurate.

Appendix D: Contrast-gain exponent model

A model of cortical simple cells [the Contrast-Gain Exponent (CGE) model]
was used to obtain responses to the complex image in Fig. 13. This model
(see Fig. 12) is similar to those proposed by Heeger (1991) and Albrecht
and Geisler (1991, 1994), and is consistent with the descriptive functions
in Table 1 (i.e. the model predictions are described by the formulas in
Table 1. for sine-wave stimuli). The equations and parameters defining the
model are given here. For a related psychophysical model sec Foley (1994).

For this model, the mean response of a cortical cell is given by the
following equation:

? Although the Poisson distribution is asymmetric for small means.
similar Lo cortical cells, it does not provide a sufficiently general model for
cortical cell variability because the variance proportionality constant, XK.
can only be 1.0.
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Descriptive-Function & Standard
Discrimination Methods Compared
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Fig. 16. Comparison of methods to measure discrimination performance.
Comparison of two different methods for estimating contrast discrimina-
tion performance, using the same set of measurements on three separate
cells (from Geisler et al., 1991). For the standard method (solid symbols),
200 repeated presentations at each contrast were utilized to estimate the
pulse-number distributions and neurometric functions. For the descriptive
function method (solid lines). only the first 40 repeated presentations at
each contrast were utilized to estimate the mean and the standard deviation
as a function of contrast. As can be seen, the two methods provide similar
results.

W.S. Geisler and D.G. Albrecht

max(z ('(x,.y,)h(’x,,»\‘,),O)”

i

= Fmax - + D1
F= T &+ ok o (D)

where c(x;.y,) is the effective contrast of the ith image point {e.g. pixel).
h(x.v) is a lincar weighting function, ¢ is the Jocal mean contrast, 1oy, is
the maximum response to the optimal sine-wave grating, cso is the half-
saturation contrast, » is the response exponent, and ry is the base rate. Note
that applying the max function in the numerator, with the second argument
sct to zero, is cquivalent to half-wave rectification.

The linear weighting function. 4 (x,y). describes the linear receptive-
field properties of the neuron; it determines the basic spatial frequency and
orientation selectivity of the cell. (Temporal selectivity and direction se-
lectivity can be incorporated into the model by including the dimension of
time in the weighting function.)

The effective contrast is defined by the following equation:

clx; ) = ALIERI A (D2)

where /(.x,, v;) is the luminance of the ith image point (c.g. pixel), { is the
local mean luminance, and /5o is the light-adaptation constant. This defi-
nition of effective contrast incorporates muitiplicative and subtractive light-
adaptation into the model. These adaptation mechanisms are needed to
account for the fact that cortical cells primarily respond to contrast rather
than luminance. Examination of eqn. (D2) shows that the multiplicative
adaptation factor is 1/(I + Isg): the subtractive adaptation factor is I+
ls) (assuming subtractive adaptation occurs second).

The local mean luminance. /. is defined by
I fla vl y) (D3)

where f(x.v) is a nonnegative weighting function describing the spatial
extent over which the local mean luminance is determined. Similarly. the
local mean contrast, ¢, is defined by

c= \E [glxy)e(x.v)] (D4)

where g(x.Vv) is a nonncgative weighting function describing the spatial
extent over which the local mean contrast is determined.'?
The variance of the response is given by

g =Kr (D5)

where K is the variance proportionality constant, and r is the mean re-
sponse from eqn. (D1).

Eqns. (D1)~(D5) are the formulas used to generate the predictions of
the model. Consider the relationship of these formulas to the diagram in
Fig. 12. The curve within the “contrast gain box™ of Fig. 12 is the contrast
normalization function, which describes how the multiplicative contrast
gain factor varies as a function of the Jocal contrast. Inspection of egn. (D1)
shows that this function is of the form

1
pl(e) = ———— (D6)

"z
Ve + ey

The curve within the “linear summation box” of Fig. 12 represents the
Fourier transform of the linear receptive field, A(x,y) (only one spatial
dimension is represented). The curve within the “response exponent box”

19 A more general version of the model would allow the contrast signal,
¢{x.v). which feeds the contrast normalization mechanism, to be filtered
prior to averaging. This would allow the model to incorporate spatial or
temporal tuning of the normalization.
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of Fig. 12 is the response exponent function. which describes how the final
response varies with the input from the prior stage. This curve is a power
function with an exponent of n:

vix) =x" (D7)

Finally, the curve within the “multiplicative noise box” of Fig. 12 repre-
sents the relationship between the response variance and the response
mean: it is a linear function with a slope of K and an intercept of 0.0."
To generate the predictions in Fig. 13, we first constructed a large array
of model cortical cells. The locations of the receptive-ficld centers fell on
a regular grid with a spacing approximately equal to the spacing of on-
center midget ganglion cells in the human eye (Curcio & Allen. 1990:
Geisler & Banks, 1995). Each grid location contained 12 randomly gen-
crated cortical cells. For each model cortical cell. the half-saturation con-
trast, the response exponent, and the receptive-field orientation were
randomly sampled from probability distributions based upon published
frequency histograms for these parameters and the data summarized in
Table 2 (Seay et al.. 1996). The linear receptive-ficld weighting functions
were sine-phase Gabor functions with a circularly symmetric envelope and
bandwidth of 2 octaves. Because of the variation in the response exponent
the effective bandwidths of the neurons ranged from less than 1 octave to
greater than 2 octaves. We only generated predictions for the population of
neurons with a peak spatial frequency of 16 cpd at the center of the fovea
(i.e. for cells carrying detailed form information). Adding a wide range of
peak spatial frequencies resulted in plots that were too cluttered to be casily

' One possible objection to this version of the CGE model is that the
final response exponent appears in the contrast normalization function.
However, there arc essentially equivalent versions of the model that do not
have this property. For example. we have found that a normalization func-
tion of the form:

1 —eof

ule) = ——=—

gives nearly identical fits to single cell data (although the final response
exponent is a little larger). We chose to use eqn. (D6) for historical reasons
and to keep the CGE model consistent with the descriptive formulas in

Table 1. The descriptive contrast response function used with the above
normalization function is

r (() = (1 —e )"
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interpreted. To represent retinal/cortical magnification effects, the peak
spatial frequency varied inversely with the grid spacing (i.e. the spacing of
the ganglion cells). The local weighting functions for luminance and con-
trast were taken to be the envelope of the linear receptive field, e(x.y),
normalized appropriately:

flry) = =20 (D8)
T S ety

(D9)

(The V2 factor scales the local mean contrast so that it agrees with the
Michelson contrast for sine-wave gratings.) The peak response to sine-
wave gratings, royq. was set to 10, and the base rate, ry. to 0.0. The number
of spikes produced by each cell in a 200-ms analysis interval was computed
by randomly sampling from a normal distribution with a mean given by
eqn. (D1), and a variance given by eqn. (DS) with K = 1.4,

Although some simplifying assumptions were made in generating the
responses shown in Fig. 13, they should have no effect on the major
conclusion: even though individual cortical neurons are broadly tuned and
quite noisy, they do provide good identification information about local
image features when they produce responses at or above 50% of ry,, (i-e.
5-10 spikes).!?

12 Results similar to those in Fig. 13 were obtained when we set all of
the parameters, except orientation. to the mean values reported in the
literature, rather than randomly sampling from distributions. One minor
difference was that fewer low contrast contours were detected (because the
average value of cso was approximately 0.4). Note, however, that this
version of the model does not account for other results in the report (e.g.
Figs. 10 and 11).




