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Top i ca l Rev iew

Mapping receptive fields in primary visual cortex

Dario L. Ringach

Departments of Psychology and Neurobiology, Jules Stein Eye Institute and Brain Research Institute, David Geffen School of Medicine,
University of California, Los Angeles, Los Angeles, CA 90095, USA

Nearly 40 years ago, in the pages of this journal, Hubel and Wiesel provided the first
description of receptive fields in the primary visual cortex of higher mammals. They defined
two classes of cortical cells, ‘simple’ and ‘complex’, based on neural responses to simple
visual stimuli. The notion of a hierarchy of receptive fields, where increasingly intricate
receptive fields are constructed from more elementary ones, was introduced. Since those
early days we have witnessed the birth of quantitative methods to map receptive fields and
mathematical descriptions of simple and complex cell function. Insights gained from these
models, along with new theoretical concepts, are refining our understanding of receptive field
structure and the underlying cortical circuitry. Here, I provide a brief historical account
of the evolution of receptive field mapping in visual cortex along with the associated
conceptual advancements, and speculate on the shape novel theories of the cortex may
take as a result these measurements.
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Early work on visual electrophysiology characterized the
responses of retinal neurones to the onset of bright and
dark spots of light on various locations of the receptive field
(Kuffler, 1953; Barlow, 1953; Hartline et al. 1956; Hartline
& Ratliff, 1957, 1958). These investigators described the
spatial structure of receptive fields as being divided into
‘on’ and ‘off ’ regions. ‘On’ and ‘off ’ regions of the receptive
field were defined depending whether the neurone would
respond to the onset of a bright or dark spot, respectively.
The temporal discharge patterns were also classified as
‘transient’ or ‘sustained’, depending on whether the cell
kept firing for long periods during the presence of the
stimulus, or if it only produced brief responses at times
shortly after the stimulus was switched on (Cleland et al.
1971). This body of work provided the classical description
of centre–surround organization of retinal receptive fields
in the retina, where a central area of one sign (‘on’ or
‘off ’) is surrounded by a concentric region of the opposite
sign.

Hubel and Wiesel pursued a similar line of research
when they first started recording from cat visual cortex.
In one of their early experiments, they noticed that
a cell would discharge in response to a moving line
shadow cast by the edge of a slide as it was inserted into

the ophthalmoscope (Hubel & Wiesel, 1998). They
soon realized that the cell would fire only when the
line was oriented within a narrow range. Further
measurements confirmed that many other cells were
also selective to the orientation of boundaries. Thus,
the discovery of orientation tuning – perhaps the major
transformation in the organization of receptive fields in the
early visual pathway – was accidental. Since that discovery
much research has focused on whether there are principled
ways of determining those ‘features’ of the environment to
which sensory neurones are selective.

By flashing orientated lines at various locations along
the receptive field, Hubel and Wiesel classified cortical
neurones into two distinct groups: simple and complex.
Simple cells were defined as those whose receptive fields
could be divided into separate ‘on’ and ‘off ’ subregions
(Fig. 1A), while complex cells were defined by exclusion.
They also introduced the concept of a hierarchical
organization of receptive fields. According to this proposal,
simple cells are constructed first from the convergence of
geniculate receptive fields aligned in space to produce the
observed elongation of ‘on’ and ‘off ’ subfields (Fig. 1B),
and complex cells are subsequently constructed from the
convergence of simple-cell receptive fields with similar
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orientation tuning but varying positions (or spatial
phases) to generate a field of ‘on–off ’ responses (Fig. 1C).
As we discuss below, this initial description of two neuro-
nal classes in primary visual cortex and their associated
hierarchical circuitry have shaped both experimental and
theoretical studies of cortical function.

Admittedly, much has been achieved by manually
mapping receptive fields with simple dots, lines and
edges. Using this method, Hubel and Wiesel not only
discovered orientation tuning in single neurones, but also
described the columnar organization of ocular dominance

Figure 1. The classical hierarchical model of simple and complex
cells
A, simple cells have segregated ‘on’ and ‘off’ subregions (examples A
and B are geniculate (receptive fields). B and C, classical model of
simple and complex receptive fields. B elongated ‘on–off’ subregions
in simple cells were proposed to be constructed by the convergence of
geniculate receptive fields aligned in space. C, complex cells are in
turn constructed by the convergence of simple cells.

and orientation preferences in the cortex, and explored
the consequences of cortical development during sensory
deprivation, among many notable findings (Hubel &
Wiesel, 1962, 1968, 1977). However, as evident from the
discussion that follows, quantitative methods of receptive
field mapping have contributed significantly to refine these
initial concepts. The goal of this review is to provide a
description of the main methods that have been developed
over the years to map receptive fields along with the new
theoretical concepts that accompany them.

The linear–non-linear model and the reverse
correlation method

Arguably, one of the first influential concepts was the
idea that some visual receptive fields could be viewed as
a spatio-temporal filter acting on the stimulus followed
by rectification (the so-called linear–non-linear model),
which originated in the study of retinal ganglion cells
(Rodieck & Stone, 1965a,b; Enroth-Cugell & Robson,
1966). Rodieck and Stone successfully used the model to
explain the responses of retinal ganglion cells to a variety
of static and moving stimuli from the measurements of
neural responses to flashing dots. This work yielded an
understanding of ganglion cell receptive fields as a linear
combination of a centre and surround mechanism that was
delayed in time. Similar ideas were, in fact, implicit in the
earlier work of Kuffler, Hartline, Barlow and coworkers
(Barlow, 1953; Kuffler, 1953; Hartline et al. 1956; Hartline
& Ratliff, 1958). For example, Kuffler discussed the origin
of transient responses as a combination of ‘on–off ’ delayed
mechanisms, so he was well aware of the importance
of spatio-temporal inseparability of the receptive field
(Kuffler, 1953).

Mathematically, the model can be described as follows.
The visual stimulus, defined as the spatio-temporal
distribution of luminance across the receptive field, is
summarized in a vector x(t) representing the stimulus
within the time interval (t – T , t). The assumption is that
the neurone has finite memory, so that the response at time
t is not influenced by stimuli at times t ′ < t – T . Normally,
in primary visual cortex, a selection of T ≈ 300 ms
ensures that all the relevant history of the stimulus is
encoded in the vector x(t). The linear–non-linear model
postulates that the spike train is an inhomogeneous
Poisson process with instantaneous mean rate given by
λ(t) = ϕ(wT x) (Hunter & Korenberg, 1986; Chichilnisky,
2001; Nykamp & Ringach, 2002; Marmarelis & Marmarelis
1978). Here, wT x describes the linear operation of the filter,
and ϕ(•) is a static non-linearity (typically monotonically
increasing).
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One efficient way to measure the ‘kernel’, w, is by
cross-correlation with spatio-temporal white noise (see
Chichilnisky, 2001 for a recent review). To the best of my
knowledge, the first recording of the full spatio-temporal

Figure 2. Reverse correlation measurements of simple-cell receptive fields in cat and monkey V1
A and B, schematic diagram of the apparatus used by Erich Sutter to measure, for the first time, the full spatio-
temporal receptive field of simple cells in cat area 17 (see text for details). C, two examples of simple-cell receptive
fields measurements from Jones & Palmer (1987b). D, analysis of the distribution of receptive field shapes in
macaque and cat primary visual cortex. The parameter nx represents the width of the receptive field relative to the
period of the underlying grating in a Gabor fit. This number is proportional to the effective number of subregions
in the receptive field. Similarly, ny represents the length (elongation) of the receptive field relative to the period of
the underlying grating. Open circles are data from macaque V1, crosses are from cat area 17 (Figure 2C reproduced
with permission from the American Physiology Society; Jones & Palmer, 1987a).

kernel of a simple cell in cat visual cortex was reported
by Erich Sutter in 1975 using a rather elegant apparatus
(Fig. 2A and B) (Sutter, 1975). Because this work appears to
be relatively unknown, it is appropriate to briefly describe
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it here. The stimulus was produced by feeding white
noise to the position, (x,y), and intensity, z, inputs of an
oscilloscope. These signals were generated by playing the
different tracks of a single tape (Fig. 2A, left recorder).
Sutter arranged a second tape recorder (Fig. 2A, right
recorder) so its head was a distance d apart from the
first tape recorder. This second recorder received the tape
from the first one and recorded the signals arriving from a
microelectrode on another track of the tape. Thus, the
temporal relationship between the stimulus and the
response was preserved. At any one location on the tape,
one can find recorded the neural response and the stimulus
that preceded it by d/v seconds. Here, d is the distance
between the heads of the tape recorders and v is the linear
velocity of the tape.

To analyse the data, the arrangement in Fig. 2B was used.
The recorder on the left played the audio track with the
response of the neurone, while the one of the right played
the stimulus. Because the role of the tape recorders is now
reversed, and if the distance between the two recorders is
d, the audio signals from both tape recorders represent the
stimulus and response that occurred at the same instant
in time. To vary the time lag between the stimulus and the
response to be analysed one can simply set the distance
at d + δd, which would represent a time lag of τ = δd/v.
Once a time lag is selected, the stimulus is re-played
on the oscilloscope such that the location signals (x,y)
were unchanged, but the intensity signal was multiplied
by a brief pulse sequence indicating the presence or
absence of a spike in the response audio track. The stimulus
was therefore multiplied by the response, and the resulting
images were added photographically by having a camera
with an open shutter pointed at the oscilloscope screen.
One picture was taken for each t and thus the entire spatio-
temporal receptive field was computed. This initial study
showed the feasibility of applying such methods in visual
receptive fields. A careful analysis of their shapes in a large
population of cells came at a later stage.

Simple receptive fields have Gabor-like shapes, but
not all Gabor-like shapes are receptive fields

Movshon et al. (1978) first demonstrated that simple-
cortical cells exhibit spatio-temporal summation within
their receptive fields. They observed that the spatial profile
of the receptive field compared well with synthesized
profiles resulting from measurements in response to
drifting sinusoidal gratings, indicating that simple-cells
showed linear summation up to the spike rectification
stage. Jones and Palmer used sparse stimulation with
bright and dark ‘dots’ to measure receptive fields of

simple cells in cat area 17 (Jones & Palmer, 1987b).
By cross-correlating the evoked spikes and with the
positions and times of occurrence of the stimuli, they
estimated the spatial impulse response at a fixed time lag
(50 ms). Some of their original measurements are shown
in Fig. 2C. This study provided the first measurements of
simple-cell receptive field measurements over a population
of neurones and established that their shapes were
well approximated by two-dimensional Gabor functions
(Jones & Palmer, 1987a). Using a similar method, the full
spatio-temporal kernel in cat area 17 was measured by
DeAngelis et al., who also studied their development in
kittens (DeAngelis et al. 1993b).

In macaque primary visual cortex, I used a
modification of the reverse correlation method where the
receptive field is probed with a fast sequence of gratings
and found that the receptive field shapes were similar to
those seen in cat (Ringach, 2002). Figure 2D shows that
the distribution of these shapes in monkey (open circles)
and cat (crosses; data from Jones & Palmer, 1987a). The
parameters nx and ny provide a measure proportional to
the width and length of the receptive field, respectively, in
units of the period of the grating in a two-dimensional
Gabor fit to the kernel. Blob-like receptive fields are
mapped to points near the origin. Receptive fields with a
number of elongated subfields are mapped to points away
from the origin. The distribution of (nx , ny) appears to lie,
approximately, on a one-dimensional curve and cat and
monkey data are comparable. The results indicate that
a particular family of filter shapes is present in primary
visual cortex. Furthermore, current theories of simple-cell
receptive fields (Olshausen & Field, 1996; Bell & Sejnowski,
1997; van Hateren & Ruderman, 1998), based on ‘optimal’
linear representations of the image, fail to account for this
distribution (Ringach, 2002). Finding out what is special
about this family from a computational point of view may
yield clues about their function.

The importance of the output non-linearity
and its measurement

Reverse correlation provides a measure of the front-end
filter (Chichilnisky, 2001). However, it should be clear that
the tuning properties of a linear-nonlinear (LN) system
(such as its orientation or spatial frequency bandwidth)
do not depend solely on its linear kernel; they will also
be influenced by the static non-linearity in the spike
generation mechanism, represented by ϕ(•). For example,
it has been suggested that both direction and orientation
tuning can be sharpened significantly by thresholding or
by an accelerating non-linearity (Reid et al. 1987, 1991;
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Jagadeesh et al. 1993; DeAngelis et al. 1993a,b; Anzai et al.
1999). Thus, estimating ϕ(•) is clearly important when
comparing the tuning properties of the model to tuning
curves obtained with drifting sinusoidal gratings.

One strategy to measure the output non-linearity in the
LN system is to perform a two-step analysis (Anzai et al.
1999; Chichilnisky, 2001; see also Hunter & Korenberg,
1986). First, measure the linear kernel using reverse
correlation, then generate a scatter plot of the linear
prediction wT x against the actual response and smooth
it to obtain an estimate of the static non-linearity. If we
know that the non-linearity can be approximated by some
functional family, such as a half power-law rectifier, then a
more efficient method can be used where the parameters of
the non-linearity are found by matching the input–output
moments of the model to the data (Nykamp & Ringach,
2002).

Spatio-temporal inseparable receptive fields
and direction selectivity

The concept of the receptive field as a spatio-temporal
entity was instrumental in advancing our knowledge
of receptive field function (Adelson & Bergen, 1985;
Reid et al. 1987; Emerson et al. 1992; DeAngelis et al.
1995). First, it clarified that ‘on’ and ‘off’ responses at
various locations of the receptive field could be inter-
preted within the framework of the LN model (DeAngelis
et al. 1995). Second, it demonstrated how non-trivial
computations, such as direction selectivity, may arise from
linear mechanisms if the receptive field is inseparable in
space and time (Reid et al. 1987, 1991).

A receptive field is spatio-temporal separable if it
its structure can be written as a product of a spatial
and temporal function, w(x,y,t) = h(x,y)g(t). Spatio-
temporal inseparability of receptive fields was first shown
to be involved in the generation of direction selectivity by
measuring the response of the cells with contrast reversing
gratings as a function of spatial phase (Enroth-Cugell &
Robson, 1966; Hochstein & Shapley, 1976a,b; Reid et al.
1987). Full measurements of the spatio-temporal receptive
fields in both cat and monkey confirmed these early
reports and showed a characteristic tilt of ‘on’ and ‘off’ sub-
regions in the space–time plane (DeAngelis et al. 1993a,b).
Such tilt in the space–time plane endows the neurone with
an asymmetric receptive field that causes the response to be
larger when the stimulus moves in one direction than the
other. Experimentally, the linear prediction of direction
selectivity matches very well the preferred direction of the
neurone but underestimates its magnitude by about 1/3
(Reid et al. 1991). Intracellular measurements (Jagadeesh

et al. 1993) have demonstrated that linearity holds very
well when one considers the membrane voltage of the
neurones, but that thresholding contributes significantly
to making the spike responses better tuned than the intra-
cellular voltage demonstrating, once again, the importance
of the output non-linearity in the LN system when
predicting the tuning properties of spike responses (but
see Baker, 2001).

The gain control model

One of the recent advances in the field has been the
realization that the LN model of simple cells fails to account
for a number of phenomena (Albrecht & Geisler, 1991;
Geisler & Albrecht, 1991; Robson, 1991; Heeger, 1992;
Carandini et al. 1997; Tolhurst & Heeger, 1997). First,
measurements of response as a function of orientation
show saturation at different levels. This would not be
expected from a system where the maximum spike rate
saturates due to a fixed output non-linearity. Second,
the responses of neurones are suppressed by stimuli that,
by themselves, do not cause the cell to fire. A well-
documented example is the suppression caused by adding
a stimulus orientated orthogonally to the preferred
orientation of the cell, a phenomenon referred to as cross-
orientation inhibition (Morrone et al. 1982, 1987; Bonds,
1989). Third, in response to drifting gratings, the response
to increasing contrast does not simply scale but advances in
time. In other words, the responses become faster, while a
LN model predicts no change in the temporal structure
of the response. Fourth, the spatial summation of cells
changes with the contrast of the stimulus (Polat et al. 1998;
Kapadia et al. 1999; Sceniak et al. 1999); the higher the
contrast, the smaller the degree of spatial summation. A LN
model would predict no change in spatial summation with
contrast. Albrecht et al. (2003) provide a recent review of
these and other non-linear response properties of cortical
neurones.

A number of investigators proposed to extend the LN
model by adding a gain control mechanism (Albrecht
& Geisler, 1991; Bonds, 1991; Heeger, 1992; Carandini
& Heeger, 1994; Tolhurst & Heeger, 1997; Carandini
et al. 1997). The idea is that the output of the linear
filter is divided (or ‘normalized’) by the overall activity
in a population of cortical cells that represent the
‘normalization pool’ (Fig. 3A). The model attributes
the selectivity for orientation entirely to the linear
filter; it is only the gain that is determined by the
normalization signal. The gain control model explains
saturation because the activity of the local population,
and therefore the normalization signal, increases with
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contrast. It also explains cross-orientation inhibition
because the normalization signal includes signals that
are also tuned to the orthogonal orientation. It has
also been recently extended to include the surround
from the classical receptive field to explain changes in
spatial summation as a function of stimulus contrast
(Cavanaugh et al. 2002). However, it is likely that a single
gain control mechanism may be insufficient to explain
the change of contrast–response curves in a variety of
suppression phenomena (Sengpiel et al. 1998; Carandini
et al. 2002).

Mathematically, a general form of the gain-control
model of a simple cortical cell is:

λ(t) = ϕ

(
wT x√

σ 2 + xT Hx

)

Here, wT x describes the linear operation of the filter,
we require xT Hx ≥ 0 for all x (in which case the
matrix H is called a positive semidefinite matrix), σ

Figure 3. Gain control and
sharpening of tuning
A, the gain control model of simple cells.
The gain of the front-end filter is divided
by the summed activity of a
‘normalization pool’ (Carandini et al.
1997; copyright 1997 by the Society for
Neuroscience). B, gain control can
sharpen tuning in the Fourier domain.
The panel on the left shows a simulated
Gabor-like receptive field in space. The
two panels on the right illustrate the
tuning of the neurone in the Fourier
(frequency) domain (with the origin at
the centre of the panel). The result of
gain control is to ‘carve away’ the activity
near the origin resulting in a more
localized region that produces response
enhancement. The gain control signal is
untuned for orientation and low-pass in
spatial frequency, nevertheless, it can
sharpen tuning. C, tuning in the Fourier
domain for three sample cells in macaque
V1 (Ringach et al. 2002). The two
examples on the left are consistent with a
gain control signal untuned for
orientation, but the one on the right
shows maximal (net) suppression at
oblique angles, implying a tuned
suppressive signal (see also Shapley et al.
2003 for a review).

is the semisaturation constant, and ϕ(•) is a static
non-linearity usually selected to represent a power-law
rectifier: ϕ(x) = xβ if x > 0 and zero otherwise. A full
identification of this model requires that we estimate the
linear filter w, the semisaturation constant σ , the exponent
β, and the matrix H . The gain control model is attractive
because it explains a set of interesting phenomena in a
parsimonious way (Carandini et al. 1997; Cavanaugh
et al. 2002). Furthermore, Simoncelli and colleagues have
put forward an interesting theoretical framework for
gain control (Simoncelli & Olshausen, 2001; Schwartz &
Simoncelli, 2001). Within this framework gain control
works to increase the degree of independence between
neural responses when the system is stimulated with
natural signals. It is also worth noting that mechanisms
for gain control were also described in classes of retinal
(Shapley et al. 1972; Shapley & Victor, 1978, 1979) and
geniculate neurones (Kaplan et al. 1987; Purpura et al.
1988; Benardete et al. 1992; Benardete & Kaplan, 1999).
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One should consider that at least part of the cortical effects
may originate from non-linearities in the LGN inputs (see
discussion in Carandini et al. 1997).

Gain control and intracortical sharpening of tuning

The gain control signal appears to be broadly tuned for
orientation, spatial frequency and temporal frequency
(DeAngelis et al. 1992). It has often been assumed that,
because of its broad tuning, the gain control signal cannot
sharpen the tuning conferred by the linear filter. This is
not entirely correct, and Fig. 3B provides an example of
how a gain control signal that is untuned in orientation
and low-pass in spatial frequency can enhance the tuning
of the neurone in the Fourier domain (Ringach et al. 2002).
The leftmost panel illustrates the spatial kernel of a Gabor
receptive field, the two panels on the right show the tuning
of the neurone in the Fourier domain in two conditions:
with and without gain control. Clearly, the tuning of
both spatial frequency and orientation can be enhanced
because the gain control signal is ‘carving away’ the
responses near the origin in the Fourier plane (Ringach
et al. 2002). The result is that the most responsive region in
the Fourier domain is shifted away from the origin relative
to the response of the linear filter alone. The angular extent
of the response enhancement region is reduced. Thus,
in cases where the original filter has significant power
at low spatial frequencies, gain control can have the net
effect of enhancing both spatial frequency and orientation
selectivity.

Examples of tuning in the Fourier domain for
three macaque V1 cells are shown in Fig. 3C. Over
the population, such measurements show a correlation
between the degree of suppression and tuning in both
orientation and spatial frequency, suggesting the same
circuitry involved in gain control could be responsible for
enhancing tuning selectivity. In some instances, when large
stimulus patches are used so both the classical receptive
field and its surround are stimulated, it is sometimes
possible to see a suppressive signal that is tuned in
orientation (Fig. 3C, right panel), consistent with a role
of suppression in enhancing tuning selectivity (Ringach
et al. 1997, 2002, 2003).

Complex cells and the energy model

Most quantitative models of complex cells derive from the
original formulation of Hubel and Wiesel who proposed
that they result from the convergence of inputs from a
number of simple cells sharing the same preference for
orientation (Spitzer & Hochstein, 1985, 1988; see Martinez
& Alonso, 2003 for a recent review). One instantiation of

this circuit, known as the energy model, considers a pair of
linear filters, tuned for orientation and spatial frequency,
arranged in quadrature (Adelson & Bergen, 1985). The
outputs of the filters are squared and added together to
produce a response. The response can be considered a
measure of the local signal energy (within a frequency
band), therefore the term ‘energy model’. Clearly, a LN
model applied to a complex cell would not work.

A recent approach used to model complex cells is to learn
the input–output function by a two-layer neural network
(Lau et al. 2002). This method, models the instantaneous
rate of firing as

λ(t) =
M∑

i=1

ϕ
(

wT
i x

)

Here, ϕ(•) is a sigmoidal non-linearity (a hyperbolic
tangent was used in this case). The model is, in effect,
an instantiation of the Hubel–Wiesel feed-forward model,
as each term can be considered the response of a simple
cell. The back-propagation algorithm was used by Lau et al.
(2002) to minimize the mean-square error on a training
dataset and the performance of the model evaluated
on a different dataset. The stimulus was a sequence of
black/white bars orientated optimally for the cell. Some
of the disadvantages of back-propagation are well known:
it can settle into local minima and convergence can be
rather slow. Nevertheless, the models estimated using this
approach, which involves recording the response to flashed
bars, were reasonably good at predicting other properties
of the neurones, such as the direction selectivity index to
a drifting sinusoidal gratings (Lau et al. 2002).

A more efficient approach that is yielding interesting
results is to study the spike-triggered covariance of
the stimulus in response to spatio-temporal Gaussian
white-noise. Here, one estimates the covariance matrix
Cspike = E{x xT |spike} and compares it to the prior
Cprior = E{x xT}. Because this matrix is supposed to
represent the central second order moment, the result
obtained from the spike-triggered average must be
subtracted from all the stimuli first (Simoncelli et al.
2004). To select directions in stimulus space that appear
relevant to establishing the cell’s response one computes
the eigenvalues of Cspike and determines which of these
are significantly different from the null distribution of
eigenvalues of Cprior . Both bootstrap methods (Touryan
et al. 2002) and analytical results (Everson & Roberts,
2000) can been used to determine the statistical
significance of the eigenvalues. Once this is done, the
associated eigenvectors provide a subspace of interest that
may be further studied by modelling how the neural
response depends on the projection of the stimulus
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onto the ‘relevant subspace’. If an eigenvalue of Cspike is
significantly larger than expected by chance, the associated
eigenvalue is said to lie within the ‘excitatory’ sub-
space. Similarly, if an eigenvalue of Cspike is significantly
lower than expected its eigenvector denotes a direction
in stimulus space that suppresses the cell’s response.
Therefore, the eigenvector is said to lie within the
‘inhibitory’ subspace.

An example of this method applied to complex cells in
cat area 17, from the work of Dan and colleagues, is shown
in Fig. 4A. In this example, the eigenvectors associated
with the two significant (excitatory) eigenvalues are tilted
in space–time, as expected from one of the opponent
pathway in the energy model of a directional complex
cell (Adelson & Bergen, 1985). However, the eigenvectors
only provide a basis for the ‘relevant subspace’ and should
not be assigned a particular physical significance, such as
that they represent simple-cell inputs to the cell. Both
excitatory and inhibitory subspaces were observed in a
similar study in macaque V1 by Rust et al. (2004) (Fig. 4B).
In this directional cell, the eigenvectors for the excitatory

Figure 4. The spike-triggered
covariance method
A, results from a complex cell in cat area
17. Only two eigenvalues (excitatory) are
significant and the associated
eigenvectors (right) show orientated
structure in space–time (Touryan et al.
2002; copyright 2002 by the Society for
Neuroscience). B, results from a
directional complex cells in monkey V1
(reprinted from Rust et al. 2004,
copyright 2004, with permission from
Elsevier). Both excitatory and inhibitory
subspaces can be identified. Eigenvectors
within each subspace have a similar
orientation in space–time but they have
opposite preferences of motion.

and inhibitory subspaces preferred opposite directions of
motion, suggesting a role for active suppression in the
generation of direction selectivity. The results of Rust et al.
(2004) in complex cells suggest that the quadrature-pair
model can be refined in two ways. First, more than a pair
of filters may be required to characterize the excitatory
subspace. Second, a suppressive subspace appears to be
required to appropriately model the responses of complex
cells.

Estimating the ‘relevant-subspace’
with non-Gaussian signals

If both the prior and spike-triggered distributions are
Gaussian, the spike-triggered covariance has a nice inter-
pretation in terms of the average information provided
by the response about the stimulus (de Ruyter van
Steveninck & Bialek, 1988; Chechik et al. 2004). Sharpee
et al. (2003) has proposed a method to extend these
ideas to non-Gaussian signals, such as naturalistic image
sequences. The model put forward is a Markov chain,
x → PSx → P(spike), where the probability of spiking
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depends solely on the projection of the input onto
a ‘relevant subspace’, denoted here by PSx. The sub-
space is identified by maximizing the mutual information
between PSx and the neural response. The method may
be considered a special case of the information-bottleneck
technique (Tishby et al. 1999), where the coding of the
stimulus is constrained to be linear. The scheme involves
the optimization of a function with a large number
of parameters, which can be a slow process and it is
not guaranteed to converge. The main advantage of the
technique is that it can be applied in situations where the
signals are non-Gaussian.

Simple/complex cells, the hierarchical model,
and theories of cortical function

The original description of simple and complex cells and
the associated hierarchical model proposed by Hubel and
Wiesel have had a strong impact in shaping theories
of V1 function. This framework led many investigators
to first develop theories of how simple cells represent
the image, deferring the question about the function
of complex cells (Maffei & Fiorentini, 1973; De Valois
et al. 1979; Kulikowski & Bishop, 1981; Olshausen &
Field, 1996; Bell & Sejnowski, 1997; Olshausen, 2001;
Simoncelli & Olshausen, 2001; Hurri & Hyvarinen, 2003).
The hierarchical model has also encouraged the search for
coding principles that, when applied layer after layer in a
hierarchy, will develop simple and complex-like behaviour
(Rao & Ballard, 1997, 1999; Hyvarinen & Hoyer, 2001;
Hoyer & Hyvarinen, 2002).

It has been recently suggested, however, that ‘simple’
and ‘complex’ cells may represent the ends of a continuum
instead of two-discrete classes of neurones (Chance et al.
1999; Abbott & Chance, 2002; Mechler & Ringach, 2002).
First, it has been demonstrated that the bimodality of
the spike modulation ratio (or the F1/F0 ratio), taken
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