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Electrophysiological studies indicate that neurons in the middle temporal (MT) area of the primate 
brain are selective for the velocity of visual stimuli. This paper describes a computational model of 
MT physiology, in which local image velocities are represented via the distribution of MT neuronal 
responses. The computation is performed in two stages, corresponding to neurons in cortical areas 
V1 and MT. Each stage computes a weighted linear sum of inputs, followed by rectification and 
divisive normalization. V1 receptive field weights are designed for orientation and direction 
selectivity. MT receptive field weights are designed for velocity (both speed and direction) 
selectivity. The paper includes computational simulations accounting for a wide range of 
physiological data, and describes experiments that could be used to further test and refine the 
model. ©1998 Elsevier Science Ltd. All rights reserved. 
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INTRODUCTION 

Visual motion perception has been the subject of 
extensive research in the fields of perceptual psychology, 
visual neurophysiology, and computational vision. It is 
widely believed that the brain contains mechanisms 
specifically devoted to the processing of motion (Maun- 
sell & Newsome, 1987; Albright, 1993), and that this 
processing occurs in a "motion pathway" consisting of at 
least two stages. The primary visual cortex (area V1) 
constitutes the first stage. Information passes from there 
to the middle temporal (NIT or V5) visual area (Dubner & 
Zeki, 1971). 

Many neurons in area MT are tuned for retinal image 
velocity; they respond vigorously to a visual stimulus 
moving with a particular speed and direction, and 
somewhat indifferent of the stimulus' spatial pattern 
(Movshon et al., 1986). An empirical link has been 
established between neural activity in area MT and the 
perception of motion (Siegel & Andersen, 1986; News- 
ome & Pare, 1988; Logothetis & Schall, 1989; Newsome 
et al., 1989; Salzman et al., 1990; Salzman et al., 1992; 
Britten et al., 1992). Area MT is also known to be 
involved in pursuit eye movements (Newsome et al., 
1985; Dursteler et al., 1986; Movshon et al., 1990). 

This paper describes a computational model for neural 
extraction and representation of visual motion. The 
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model is derived from fundamental properties of motion 
information encoded in visual signals, and consists of two 
stages, corresponding to cortical areas V1 and MT. The 
input to the model is a time-varying visual stimulus, and 
the output corresponds to the steady-state firing rates of a 
population of neurons. These values form a distributed 
representation (population encoding) of image velocity 
for each local spatial region of the visual stimulus. 

The purpose of this paper is to define a precisely 
parameterized version of this model, to investigate its 
ability to account for the known physiology of MT 
neurons, and to propose physiological experiments that 
might be used to falsify or further extend it. Some of the 
material in this article has been reported previously 
(Simoncelli, 1993; Simoncelli & Heeger, 1994; Heeger et 
al., 1996). A software implementation of the model is 
available on the Internet at http://www.cns.nyu.edu/ 
,-~ eero/MT-model.html. 

THE MODEL 

The model consists of two primary stages correspond- 
ing to cortical areas V1 and MT. The basic form of 
computation is identical in each of these two stages: a 
weighted sum of input values followed by rectification, 
squaring and response normalization. In the following 
sections, we describe these computations in detail, and 
link them to their intended physiological correlates. 

V1 simple cells 

V1 neurons have been classified into two primary 
categories: simple cells and complex cells (Hubel & 
Wiesel, 1962). There is a long tradition in which simple 

743 



744 E.P.  SIMONCELLI and D. J. HEEGER 

cell responses have been characterized using linear 
receptive fields (Hubel & Wiesel, 1962; Campbell et 
al., 1968; Campbell et al., 1969; Movshon et al., 1978b). 
In such a model, the neuronal response is a weighted sum 
(over local space and recently past time) of the local 
stimulus contrast. Linear models are commonly used to 
explain simple cell selectivity for stimulus orientation 
and spatial frequency. More recently, researchers have 
also used linear models to explain direction selectivity by 
incorporating suitable timing differences (delays) in the 
responses evoked from different parts of the receptive 
field (Fahle & Poggio, 1981; Watson & Ahumada, 1983, 
1985; Adelson & Bergen, 1985; van Santen & Sperling, 
1985; Burr et al., 1986; McLean & Palmer, 1989; 
DeAngelis et al., 1993; McLean et al., 1994). 

Typical linear receptive fields can have negative 
responses, since they combine inputs using both positive 
and negative weights, but extracellular response mea- 
surements (firing rates) are, by definition, positive. This 
deficiency is usually addressed by imposing a form of 
rectification on the linear output. Our model uses a half- 
squaring operation (halfwave-rectification followed by 
squaring) for these purposes (Heeger, 1992b). Half- 
squaring does not drastically alter the tuning properties of 
the model neuron, which are primarily determined by the 
underlying linear receptive field. This particular form of 
rectification is chosen for mathematical convenience, as 
described in the next section and in Appendix I. 

Rectified linear receptive field models do not account 
for several important simple cell nonlinearities, such as 
response saturation and cross-orientation inhibition. 
Many of these behaviors can be accounted for by 
incorporating response normalization (Robson, 1988; 
Bonds, 1989; Albrecht & Geisler, 1991; Heeger, 1991, 
1992a,b, 1993; DeAngelis et al., 1992; Carandini & 
Heeger, 1994; Carandini et al., 1997; Tolhurst & Heeger, 
1997a,b; Nestares & Heeger, 1997). In our model, this is 
achieved by dividing the half-squared linear response of 
each neuron by a quantity proportional to the summed 
activity of a pool of neurons within a corticalneighbor- 
hood". The neighborhood includes cells tuned for the full 
range of orientation, direction, and spatio-temporal 
frequency. The result is that the response of each neuron 
is normalized with respect to stimulus contrast, thereby 
limiting the dynamic range. Nevertheless, the normal- 
ization operation does not alter the relative responses of 
neurons in the pool, since they are each normalized by the 
same factor. In addition, the tuning characteristics of 
most of the neurons are unaffected by the normalization, 
since the normalization factor is constant over the full 
range of orientation, direction and spatio-temporal 
frequency. The complete simple cell model (at a single 
spatial location) is illustrated in Fig. 1. 

V1 complex cells 

Complex cells are similar to simple cells, in that they 
are selective for spatio-temporal orientation. However, 
their responses are relatively independent of the precise 
stimulus position within the receptive field. It is widely 
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FIGURE 1. Model of V1 simple cells. Each neuron computes a 
weighted sum of its inputs followed by halfwave rectification, 
squaring, and response normalization. The underlying linear receptive 
fields (depicted as monochrome images) are localized in space and 
time, and are tuned for spatio-temporal orientation. An additive 
constant, cq, is included in the summation, allowing for a spontaneous 
firing rate. The divisive normalization factor is computed as a sum of 

half-squared responses and a squared semi-saturation constant, al.  

believed that complex cells combine the responses of a 
set of underlying linear receptive field subunits (e.g., 
Movshon et al., 1978a). In particular, the "motion 
energy" model accounts for a number of properties of 
complex cell responses (Adelson & Bergen, 1985; 
Emerson et al., 1992; Heeger, 1992a; Pollen & Ronner, 
1983). In its simplest form, a motion energy neuron sums 
the responses of four half-squared, linear receptive field 
subunits with phases in steps of 90deg, but with 
otherwise identical tuning properties. In addition to 
combination over phase, Emerson et al. (1992) found that 
spatial pooling (i.e., combination of subunits distributed 
over a localized spatial region) is needed to explain some 
aspects of complex cell responses. In our model, complex 
cell responses are computed as a weighted sum of simple 
cell afferents distributed over a local spatial region, but 
each having the same space-time orientation and phase. 
There is evidence that complex cells do not receive input 
from simple cell afferents, but directly from the LGN (see 
Heeger, 1992b for review). Likewise, our model complex 
cell responses could be computed directly, although this 
essentially duplicates the processing that is performed by 
the simple cells. 

M T  pattern cells 

The V1 neurons described thus far are not selective for 
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FIGURE 2. Constructien of MT pattern cell velocity selectivity via combination of V1 complex cell afferents. (A) Random dot 
field stimulus, drifting upward. (B) Fourier decomposition of the dot stimulus. The stimulus is written as a sum of drifting 
sinusoidal components of appropriate orientation and normal velocity. A small subset of these are shown. (C) Intersection of 
constraints (IOC) construction. The motion of a grating is ambiguous, since the component of velocity along the grating stripes 
produces no change in image intensity. Each arrow corresponds to the normal component of velocity for two of the gratings 
shown in (B), and the dashed lines indicate the set of velocities consistent with the motions of those gratings. The intersection 
point of these constraint lines is the only velocity consistent with the motion of all of the components, and corresponds to the 
velocity of the dot stimulus. (D) Set of V1 complex receptive fields selective for each of the components shown in (B). The 

summed responses of such V1 neurons yield a pattern MT response that is selective for this stimulus velocity. 

stimulus velocity. Rather, they are selective only for the 
component  o f  velocity orthogonal to their preferred 
spatial orientation (Adelson & Movshon,  1982). A 
velocity-selective neuron may be constructed by combin-  

ing the outputs o f  a set o f  direction-selective V 1 complex 
cells* whose preferred space- t ime orientations are 

consistent with the desired velocity, as illustrated in 
Fig. 2. This mechanism for velocity selectivity is a neural 

implementation of  the "intersection-of-constraints" con- 

struction (Fennema & Thompson,  1979; Adelson & 
Movshon,  1982), and is conceptually the same as that 
proposed by Albright (lC~84). We emphasize,  however,  
that the velocity selectivity in our model  is not an explicit 
intersection-of-constraints calculation. Al though each of  

*Not all V1 neurons are direction-selective, but there is physiological 
evidence that those V1 neurons that project to MT have this 
property (Movshon & Newsome, 1996). 

our velocity-selective (MT) neurons has a preferred 
velocity (speed and direction), it will also respond (to a 
somewhat  lesser degree) to non-optimal stimuli. 

The details of  this mechanism for velocity selectivity 
may  also be described in the spatio-temporal frequency 
domain. The power  spectrum of  a translating two- 
dimensional pattern lies on a plane (Watson & Ahumada,  
1983, 1985), and the tilt and spatial orientation o f  this 
plane depend only on the translational velocity. A model  
complex cell is selective for a localized band of  spatio- 
temporal  frequencies. A velocity-selective (MT) neuron 
is constructed by summing the responses of  a particular 
set of  V1 neurons, whose bands are bisected by a plane. 
The summation is over both orientation and spatial 
frequency. This construction is illustrated in Fig. 3, and is 
the same as that described (spatio-temporally) in Fig. 2. 
Because of  the summation over spatial frequency, the 
resulting MT neurons have broader spatial frequency 
bandwidths than the V1 neurons, consistent with 
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FIGURE 3. Construction of MT pattern cell velocity selectivity via combination of  V1 complex cell afferents, shown in the 
Fourier domain. (A) Selectivity of  a V1 neuron corresponds to a pair of  localized spatio-temporal frequency bands, 
symmetrically arranged about the origin. (B) Selectivities of  V 1 neurons tuned for four orientations and three spatial scales, each 
consistent with a common velocity. The illustrated plane corresponds to the power spectrum of a stimulus moving at this 
common velocity. Responses of these V1 neurons are summed using positive (excitatory) weights to yield an MT response 
selective for this velocity. Not shown are a set of V 1 neurons whose tuning bands lie off of  the plane: these are combined using 
negative (inhibitory) weights. Also not indicated is the fact that the summation is performed over V1 neurons with receptive 

fields distributed over a local spatial region. 

physiological data (Newsome et al., 1983). We also 
subtract the responses of V1 neurons with bands that are 
far from the plane (see Appendix I). 

In addition to the summation over spatio-temporal 
frequency illustrated in Figs 2 and 3, each MT neuron 

Linear 
Receptive 

Field 

Half-squaring [ 
Rectification 

Divisive 
Normalization ( 

Input: VI afferents 

~2 

Output: neurons tuned for 
speed and orientation 

FIGURE 4. Model of MT pattern cells. Each neuron computes a 
weighted sum of V1 complex cell afferents, followed by half-squaring, 
and normalization. The V1 afferents are weighted to give a velocity- 
selective response, as described in Figs 2 and 3. A constant, e2, is 
added to provide a spontaneous firing rate. The divisive normalization 
factor is computed as a sum of half-squared responses and a squared 

semi-saturation constant, a2. 

sums the responses of V1 neurons with receptive field 
positions in a local spatial neighborhood. This is 
consistent with physiological evidence that MT receptive 
field diameters are roughly ten times those reported at 
corresponding eccentricities in V1 (Maunsell & van 
Essen, 1987; Albright & Desimone, 1987). The exact 
range of spatial pooling in the model is not critical for this 
paper, because our experimental simulations (see Re- 
sults) are based on spatially homogeneous stimuli 
(moving and flickering gratings, plaids, and random dot 
patterns). 

The complete MT pattern cell construction is illu- 
strated in Fig. 4. In addition to the weighted sum of 
complex cell afferents, a small additive constant, denoted 
~2 is included to provide a spontaneous firing rate. 
Finally, the MT responses are half-squared and normal- 
ized, as in the V1 stage of the model. The additional 
squaring nonlinearity leads to an MT contrast-response 
function that is steeper than that of the V1 cells, 
consistent with data reported by Sclar et al., (1990). 

Mode l  implementa t ion  

This section provides the equations used to simulate 
neuronal responses. Additional mathematical details are 
given in Appendix I. A visual stimulus projected on the 
retina can be described by its light intensity distribution, 
l(x,y,t) ,  a function of two spatial dimensions (x,y) and 
time r This representation ignores the color of the 
stimulus and assumes monocular viewing, but is in all 
other respects complete. The stimulus can also be 
characterized by its local contrast, 

A(x,  y, t) = [I(x, y, t) - I ] / I ,  (1) 

where I is the average stimulus intensity (over space and 
time). This characterization is particularly relevant 
because (to first approximation) the retina produces a 
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"neural image" of local contrast (Shapley & Enroth- 
Cugell, 1984). 

The underlying linear response L,(t) of the nth simple 
cell is a weighted sum of the local contrast and a constant 
value, 0~ 1 " 

L°(t) : J J Js.(x,y, r)a(x,y,t-r)axdydr+ ,, (2) 

The weighting functions, s,(x,y,t), are a set of 
directional third derivatives of a Gaussian, with 28 
different space-time orientations, replicated at all spatial 
locations. These functions contain both positive and 
negative values corresponding to the excitatory and 
inhibitory subregions of the receptive field, and are 
similar to linear operators used in previous receptive field 
models (Gabor functions, for example). The motivations 
for this particular choice of receptive field function are 
primarily computational, and are detailed in Appendix I. 

The response of the nth simple cell, S~(t), is expressed 
as:  

K1 LL,(t)j 2 (3) 
Sn(t) 

~-] LLm(t)J 2 + 
n'L 

where al is the semi-saturation constant of the normal- 
ization, Kl determines the maximum attainable response, 
and L'] denotes the half-squaring operation: 

LL(t)J 2 - max [0,L(t)] 2. (4) 

We interpret the response, Sn(t), as the model 
equivalent of a post-stimulus time histogram (PSTH), a 
measure of the neuron's firing rate. Note that each neuron 
suppresses itself (i.e., the summation in the denominator 
includes the numerator term). Assuming 0-1 is nonzero, 
the normalized response will always be a value between 0 
and Kx, saturating for high contrasts. In our simulations, 
the responses S~(t) are computed directly, using equation 
(3). Physiologically, these responses could be computed 
via inhibitory feedback mechanisms (for example, see 
Heeger,1993; Carandini & Heeger, 1994; Carandini et 
at., 1997). 

V1 complex cell responses are computed as local 
averages of simple cell re, sponses: 

Cn(t) = Z cnmSm(t)' 
m 

where the simple cell subunits are distributed over a local 
spatial region, but have the same space-time orientation 
and phase. The weights Cnm are all positive. 

The underlying linear velocity-selective response Qn(t) 
of an MT pattern cell is expressed as: 

an(t) = ~;PnmCm(t) -~- ~2, (5)  
m 

where the Pnm are a set of weights (as illustrated in Figs 2 
and 3, and described in Appendix I), and 0~ 2 determines 
the maintained (spontaneous) response level. Note that 
the summation includes pooling over spatial position, and 
that the weights P,m assume both positive and negative 

values.* The index, n, parameterizes both the neuron's 
spatial position and velocity selectivity. 

Finally, the nth pattern MT neuron's response, Pn(t), is 
expressed as: 

g2LQn(t)J2 (6) 
Pn(t)  lO_mIt)] 2 + 

m 

where a2 and K2 are constants that determine, respec- 
tively, the semi-saturation level and the maximum 
attainable response of the MT neuron. Again, we 
interpret the response, Pn(t), as the model equivalent of 
a PSTH. 

Model parameters and simulation 

We have thus far described the basic computational 
structure of the model. The remaining details of the 
computation are determined by the following adjustable 
parameters: 

(i) The spatio-temporal frequency coverage of the full 
set of V1 simple cells. Appendix I explains this in 
detail. 

(ii) The velocity coverage of the full set of MT pattern 
cells. Again, details are provided in Appendix I. 

(iii) The spatial pooling regions used in the V1 
normalization, in the V1 complex cell summation, in 
the linear summation of the MT pattern cells, and in the 
MT normalization. For our simulations, we pooled 
over the entire stimulus region, since the stimuli are all 
spatially homogeneous. 

(iv) The constants, al and 0"2, that determine the semi- 
saturation contrast levels. 

(v) The constants, ~1 and ~2, that determine the 
spontaneous firing rates. 

(vi) The scale factors, K1 and K2, that determine the 
maximum attainable firing rates. These were set to give 
maximal firing rates of one. 

The scalar parameters were hand-adjusted to qualita- 
tively match the physiological data: 

0"1 = 0.2, ~1 = 0.07, K1 = 4 

0" 2 = 1, 0~ 2 = 0 .8 ,  K2 = 1.8 

This set of values was retained for all of the simulation 
results, except where specifically noted. 

V1 responses to some stimuli (transparent dots, square 
gratings, stochastic dot patterns, etc.) were computed by 
creating a movie of the stimulus and convolving with 
spatio-temporal filters. Time-averaged V1 responses to 
grating and plaid stimuli, on the other hand, were 
computed analytically in the Fourier domain, using 

*The spatial pooling in this summation is computationally redundant 
with that of  the V1 complex cells. As such, our implementation 
performs both summations simultaneously. 
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FIGURE 5. (A) Drifting random dot field stimulus. Arrow indicates direction of  motion. (B) Distribution of model MT neuronal 
responses. Each point in the monochrome image corresponds to an MT neuron with a different preferred velocity. Intensity is 
proportional to the neuron' s response. For example, the intensity at the center of  the figure corresponds to the response of  an MT 
neuron tuned for zero motion and the intensity at the top-right corner of  the figure corresponds to the response of  an MT neuron 

tuned for motion upward and to the right. 

expressions for the frequency responses of the V1 
receptive fields. Responses to drifting dot fields are also 
computed analytically in the Fourier domain. These 
simulations were checked for consistency by performing 
simulations on movies of the same stimuli. Simulations 
are quite efficient owing to the choice of linear operators 
(see Appendix I): simulation times are typically in the 
order of seconds or minutes, even for full population 
responses such as those shown in Figs. 5-8. 

Distribution of responses 

A single MT neuron cannot encode stimulus velocity. 
First, in addition to velocity, a neuron's response depends 
on stimulus contrast and spatial pattern. Second, even for 
a fixed contrast and spatial pattern, there are families of 
velocities (arranged in concentric contours around the 
preferred velocity) that evoke the same response. Thus, 
the representation of velocity in our model is implicitly, 

encoded in the simultaneous responses of a population of 
neurons. The responses of this population may be 
interpreted as discrete samples of a continuous two- 
dimensional response distribution. 

Figure 5 shows such a response distribution for a 
drifting dot field stimulus. Each point in Fig. 5(B) 
corresponds to an MT neuron with a different preferred 
velocity; intensity in the figure is proportional to the 
neuron's response. The location of the response distribu- 
tion peak corresponds to the stimulus velocity. Note that 
the breadth of this response distribution does not imply a 
poor ability to distinguish different pattern velocities 
based on the population response, just as the broad 
spectral sensitivity of human photoreceptors does not 
imply poor ability to distinguish monochromatic lights. 

The collection of MT neuronal responses provides a 
population code for local image velocity, similar to those 
that have been studied in motor areas. For example, 

Vv 

A B 
V× 

FIGURE 6. (A) Drifting sinusoidal grating stimulus. (B) Distribution of model MT neuron responses (same format as Fig. 5). 
The distribution is elongated because the stimulus velocity is inherently ambiguous. 
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FIGURE 7. (A) Plaid stimulus composed of two drifting sinusoidal gratings. (B) Distribution of model MT neuron responses 
(same format as Fig. 5). 

population coding of motor commands has been 
investigated by Sparks et al. (1976) for saccadic eye 
movements, by Groh et aL (1995) for pursuit eye 
movements, and by Georgopoulos et al. (1986) for ann 
movements. 

Figure 6 shows the distribution of MT responses for a 
drifting sine grating stimulus. Note that the response 
distribution is elongated: such an elongation will occur 
for any one-dimensional stimulus pattern (e.g., an 
extended edge, grating, or striped pattem) because the 
two-dimensional velocity of any such pattern is inher- 
ently ambiguous. The ambiguity of one-dimensional 
patterns has been termed the "aperture problem", since 
the motion of a moving one-dimensional pattern viewed 
through a small circular aperture is ambiguous. Of 
course, the problem is not really due to the aperture, but 
to the one-dimensional structure of the stimulus. 

Figure 7 shows that the motion is disambiguated when 
there is more spatial structure. A sine grating plaid 
stimulus is composed of two moving gratings. Each 

grating, displayed by itself, would evoke an elongated 
(ridge-shaped) response distribution. When the two 
gratings are superimposed to produce a plaid, there is a 
peak in the response distribution at the intersection of the 
two ridges. We note, however, that the individual ridges 
associated with the two gratings are still visible. 

Figure 8 shows the response distribution for a 
transparent motion stimulus composed of two texture 
fields moving in different directions. Large responses are 
evoked in two different subsets of velocity-selective MT 
neurons, each tuned for one of the texture velocities. We 
do not address the interpretation of population responses 
in this paper, but bimodal responses such as this suggest 
that interpretation of sensory population codes might be 
different from that of motor populations. In particular, 
there is experimental evidence that the mean of the 
response distribution (also known as the "vector 
average") of a motor population ultimately determines 
the motor activity (see references above). Since stimuli 
such as that of Fig. 8 are known to produce multiple 

Vv 

V× 

FIGURE 8. (A) Transparent rcLotion stimulus composed of a sum of two random texture fields moving in different directions. (B) Distribution of 
model MT neuron responses (same format as Fig. 5). The bimodal population response distribution represents both motions. 
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FIGURE 9. Component-motion selectivity and pattern-motion selectivity. (A, B, C, D) Direction tuning curves of a real V1 
neuron (re-plotted from Movshon et al., 1986) and a model V1 neuron. Stimuli are drifting gratings, and plaid patterns 
composed of two gratings. Response is plotted radially and the direction of stimulus motion is indicated by the angular 
coordinate. Circles indicate the spontaneous firing rates. The direction tuning for plaids is bimodal, indicating that these neurons 
respond separately to the motions of the two component gratings. (E, F, G, H) Direction tuning curves for a real MT neuron (re- 
plotted from Movshon et al., 1986) and a model MT neuron. The direction tuning curves for plaids are unimodal, indicating that 
these neurons respond to the combined motion of the entire plaid pattern, not to the motions of the component gratings. Pattern- 
motion selectivity arises in the model because each model MT neuron combines inputs from several V1 afferents, each selective 

for a different component motion (see main text). 

motion percepts (i.e., motion transparency) in human 
observers, condensing the population response to a single 
peak or mean value may be inappropriate. It seems 
plausible that the full response distribution might be 
propagated forward to later stages of processing and 
ultimately used to drive behavior (i.e., psychophysical 
judgments). 

RESULTS 

As described in the previous section, the model is 
designed to represent velocity via the relative responses 
of neurons within a population. Thus, the most direct 
method of examining the model' s behavior is to compute 
responses of all neurons in the population to a single 
stimulus. In order to compare with single-cell electro- 
physiological data, however, we must examine the 
responses of a single model neuron to a parameterized 
set of stimuli. This section reviews the single-cell 
physiology of MT neurons and compares the behavior 
of model cells with that of real cells. 

Direction tuning 

A V1 neuron will respond to complex stimuli contain- 
ing multiple oriented components when any one of the 
components is near the neuron's preferred orientation and 
direction of motion (Movshon et al., 1986; Gizzi et al., 
1990). Figure 9(A) and Fig. 9(B) show polar plots of 
direction tuning for a particular V1 neuron using two 

stimuli: (1) drifting sinusoidal gratings; and (2) drifting 
plaid patterns composed of two gratings. The direction 
tuning curve for gratings is unimodal, but the direction 
tuning curve for plaids shows two distinct lobes. Each 
lobe corresponds to one of the plaid's component 
gratings. Movshon et al. (1986) used the phrase 
"component-motion selective" to characterize this beha- 
vior, which was common to all of the V1 neurons in their 
sample. Model V1 neurons behave similarly, as shown in 
Fig. 9(C) and Fig. 9(D). 

In area MT, Movshon et al. (1986) found that roughly 
one-third of the neurons were component-motion selec- 
tive. However, another third exhibited a different 
behavior, in which the direction tuning curves for grating 
and plaid stimuli were similar. They used the phrase 
"pattern-motion selective" to describe this behavior. An 
example is shown in Fig. 9(E) and Fig. 9(F). This MT 
neuron responded to the motion of the entire plaid pattern 
rather than to the motions of the individual component 
gratings. Figure 9(G) and Fig. 9(H) show that an example 
model MT pattern neuron behaves similarly. In order to 
match the spontaneous rate of the model neuron to this 
particular real neuron, we had to use a modified value for 
the additive constant: ~2 = 0.15. 

Albright (1984) classified MT neurons into two types 
using an alternative criterion. Both types are selective for 
the direction of motion of a dot field and for the 
orientation of a (flashed, stationary) bar. For Type I 
neurons, the preferred dot direction is perpendicular to 
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FIGURE 10. (A, C, E) Speed tuning curves of MT neurons (re-plotted from Rodman & Albright, 1987) for bar stimuli moving in 
the preferred (closed symbols) and anti-preferred (open symbols) directions, after subtracting the spontaneous firing rate. The 
three neurons exhibited different speed tuning characteristics: "speed-tuned", "low-pass", and "high-pass", respectively. (B, D, 
F) Speed tuning cur~es of model MT neurons, tuned for three different speeds. V1 afferents in D/F are tuned for spatial 

frequencies four times lower/higher than those in B (see Appendix I). 

the preferred bar orientation. For Type II neurons, 
however, the preferred dot direction is parallel to the 
preferred bar orientation. Rodman & Albright (1989) 
demonstrated that the Type II classification is highly 
correlated with Movshon and colleagues' pattern-motion 
classification. The behavior of Type II neurons is also 
consistent with the velocity selectivity of our model MT 
neurons; the neurons "interpret" a stationary bar as if it is 
moving parallel to its orientation. 

Speed tuning 

The speed tuning properties of MT neurons have been 
measured by a number of researchers (e.g., Maunsell & 
van Essen, 1983a; Lagae et al., 1993). Rodman and 
Albright (1987) divided MT neurons into three distinct 
classes based on their speed tuning properties. Figure 
10(A, C, and E) show speed tuning curves of representa- 
tive neurons. The first neuron [Fig. 10(A)] was broadly 
tuned for speed when the stimulus moved in the preferred 
direction; the tuning width is approximately three octaves 
at half-height. This is comparable with tuning widths 
measured in other labs (e.g., Maunsell & van Essen, 
1983a,b), although for both real and model neurons the 

tuning width depends on the particular neuron being 
examined. In addition, this neuron was suppressed by 
motion in the anti-preferred (opposite) direction; the 
suppression was strongest when the stimulus moved in 
the opposite direction at roughly the preferred speed. 

The other two neurons [Fig. 10(C and E)] responded to 
motion in both preferred and anti-preferred directions. 
One of them [Fig. 10(C)] exhibited a preference for low 
speeds in both directions. The other [Fig. 10(E)] 
responded to high speed stimuli in both directions. In 
addition to the behaviors depicted here, Mikami et al. 
(1986) reported that some MT neurons are suppressed by 
motion in the preferred direction, but at non-preferred 
speeds. 

The model is capable of producing quite similar speed 
tuning curves, as illustrated in Fig. 10(B, D and F). The 
shapes of the simulated speed tuning curves are most 
easily explained in the Fourier domain. Each model MT 
neuron receives excitatory input from a particular set of 
V1 neurons with preferred spatio-temporal frequency 
lying on a plane in the Fourier domain. Each MT neuron 
also receives inhibitory input from V1 neurons with 
preferred spatio-temporal frequency lying off the plane. 
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(B) Simulated responses of a model MT neuron. 

This subtractive inhibition is responsible for the suppres- 
sive effects observed in Fig. 10. The two stages of 
response normalization in the model have little effect on 
speed tuning, since changing the speed of the stimulus 
does not significantly alter the total activity of the 
neurons in either of the two normalization pools. 

The Fourier planes corresponding to low speed 
motions in opposite directions are both close to the 
ogt = 0 plane, and thus close to each other. This means that 
a model MT neuron with a low preferred speed in one 
direction [e.g., Fig. 10(D)] will also respond to low speed 
stimuli moving in the opposite direction. Such a neuron 
will be suppressed by fast stimuli (in either direction). 
Similarly, a neuron with a high preferred speed in one 
direction [e.g., Fig. 10(F)] will be excited by fast stimuli 
moving in the opposite direction and also by flickering 
stimuli, but will be suppressed by slow stimuli in either 
direction.* 

Response vs motion signal strength 

Newsome and colleagues (Newsome et al., 1989; 
Salzman et al., 1990, 1992; Britten et al., 1992) recorded 
activity of MT neurons in response to stimuli consisting 
of a field of coherently moving dots superimposed on a 
field of randomly moving dots. The strength of the 
motion signal was controlled by varying the ratio of 
coherent to random dots. 

Figure 11 shows the response of an MT neuron as a 
function of motion signal strength (percentage of 
coherently moving dots). In both the real and simulated 
data sets, the response function of most cells rises nearly 
linearly with stimulus coherence for motion in the 
preferred direction, and falls nearly linearly with stimulus 
coherence for motion in the opposite direction. 

Britten et al. (1993) explain that an opponent motion 
energy neuron would behave similarly, provided that its 
spatio-temporal frequency bandwidth is broad enough. 

*The definitions of "fast" and "slow" depend on the relative spatial and 
temporal frequency tuning of the underlying population of V1 
neurons. 

The linear increase/decrease in response arises because 
the distribution of spectral power depends on stimulus 
coherence. For 100% coherence, the spectral power is 
concentrated on a plane in the spatio-temporal frequency 
domain. For 0% coherence, the spectral power is 
distributed uniformly throughout the frequency domain. 
Between these two extremes, the percentage of spectral 
power in the plane is proportional to the coherence level. 
Thus, the response of an energy neuron will be 
proportional to stimulus coherence. 

The suppression of response below the spontaneous 
rate is due primarily to the inhibitory region of the MT 
receptive field. The slight bend in the model response 
curves is due to the squaring and normalization of the MT 
stage of the model, The V1 normalization factor depends 
very little on coherence level: although the distribution of 
spectral power varies with coherence level, the total 
power does not. 

There is a minor discrepancy between the real and 
simulated data in Fig. 11. Most MT neurons respond well 
above their spontaneous rate for the 0% coherence 
stimulus. For model MT neurons, the spontaneous rate 
and the 0% coherence rate are equal. In our current 
implementation, the excitatory and inhibitory weights in 
the MT receptive fields are exactly balanced. Since the 
0% coherence stimulus has a fiat power spectral density, 
it will excite all of  the V1 neurons equally, and thus will 
provide equal amounts of excitation and inhibition to 
each MT cell. One could introduce a model parameter to 
control the balance between excitatory and inhibitory 
weights, in order to try to fit these data quantitatively. 

Suppression by non-preferred motions 

A number of physiological experiments conclude that 
opponency (mutual inhibition and/or suppression be- 
tween cells tuned for opposite directions of  motion) is an 
essential aspect of the behavior of MT neurons (Mikami 
et al., 1986; Rodman & Albright, 1987; Snowden et al., 
1991; Qian & Andersen, 1994). Snowden et al., for 
example, investigated this suppression by recording MT 
neuronal activity in response to superimposed pairs of 
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preferred dots. (B) Simulated responses of a model MT neuron. 

drifting dot fields. One dot field moved in the preferred 
direction and the other dot field moved at the same speed 
in the anti-preferred (opposite) direction. The curves in 
Fig. 12 show the response of an MT neuron as a function 
of the density, or number, of  dots drifting in the preferred 
direction. Each curve corresponds to a different density 
of anti-preferred dots. Tlae responses of  both real and 
model MT neurons show ~mppression in the presence of a 
dot field drifting in the ariti-preferred direction. 

The computation embodied in our model includes two 
types of  motion opponency: subtractive (due to the 
underlying weighting of V1 afferents in the MT stage of 
the model) and divisive (clue to the normalization in both 
stages of  the model). Both of these types of motion 
opponency contribute to the suppressive behavior 
observed in Fig. 12(B). The change in gain (slope) of 
the curves is due to divisive opponency, as was suggested 
by Snowden et  al. (1991) The suppression below the 
spontaneous firing rate for stimuli containing mostly anti- 
preferred motions is primarily due to the inhibitory 
portion of the MT receptive field weights. This behavior 
is not seen in the real neuron. But, as in the previous 

simulations, the model behavior could be adjusted by 
introducing a parameter to vary the balance of  excitatory 
and inhibitory weighting. 

Figure 13 demonstrates motion opponency in another 
manner. The dashed horizontal line indicates the 
response to a dot field moving in the preferred direction. 
The solid curve shows the effect of  superimposing a 
second (mask) dot field. The response of the neuron was 
suppressed by the presence of a second field moving in a 
non-preferred direction. 

Figure 14 demonstrates this suppression in yet a third 
manner. Snowden et al. (1991) measured the direction 
tuning for drifting dot fields. They repeated the direction 
tuning measurements in the presence of a second 
(masking) dot field moving in the anti-preferred direc- 
tion. Responses in the presence of this masking stimulus 
(open symbols) are suppressed below those of the 
original direction tuning curve (closed symbols). 

Finally, there is some evidence that suppression 
contributes to the speed and direction tuning of MT 
neurons (Mikami et al., 1986; Rodman & Albright, 
1987). As discussed above (see S p e e d  tuning),  suppres- 
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sion does indeed contribute to simulated tuning curves. 
For some model MT neurons, the suppression is strongest 
at the preferred speed, but in the opposite direction [Fig. 
10(B)]. For other model MT neurons, the suppression is 
strongest for motion in the preferred direction at non- 
preferred speeds, either too fast [Fig. 10(D)] or too slow 
[Fig. 10(F)]. 

DISCUSSION 

The simulations of the previous section demonstrate 
that the proposed model is consistent with a variety of 
physiological data. This section reviews several aspects 
of the physiology that have not been addressed in the 
simulations, examines some failures of the current model 
along with potential solutions, compares the model to 
models proposed by other researchers, and describes a set 
of physiological experiments that are motivated by the 
model. 

Unmodeled results 

Early nonlinearities. According to the model, V1 
complex cells combine the responses of a set of 
underlying linear receptive field subunits. Hence, we 
have implicitly assumed that LGN neurons have linear 
receptive fields. This assumption does not hold for the 
relevant LGN neurons. In particular, although parvocel- 
lular neurons are quite linear, magnocellular neurons 
exhibit significant nonlinearities (Derrington & Lennie, 
1984; Shapley, 1990; Benardete et al., 1992). Parvocel- 
lular neurons constitute approximately 90% of the LGN 
in monkeys, but the majority of MT afferents appear to be 
magnocellular in origin (Tootell et al., 1988; Maunsell et 
al., 1990). 

This contradicts the precise structure (anatomy) of the 
present model, but may not have a substantial effect on 
the simulated physiological responses. The nonlinearity 
in magnocellular neurons appears to be a gain-control 
mechanism analogous to the contrast normalization in the 
V 1 stage of the model (Carandini, 1996). Thus, some of 
the effects of normalization that we have attributed to 
cortical interactions could be occurring in earlier stages. 

Spatio-temporal frequency tuning. For V1 neurons, 
spatial-frequency tuning (measured with drifting grating 
stimuli) is largely independent of stimulus temporal 
frequency (e.g., Hamilton et al., 1989), a property that 
has been referred to as "separability" of spatial- and 
temporal-frequency tuning. Since speed is the ratio of 
temporal frequency to spatial frequency, this means that a 
V1 neuron's preferred speed depends on the spatial 
structure of the stimulus. 

For our model V1 neurons, however, the preferred 
speed remains constant under changes in spatial fre- 
quency (at least over the relatively narrow range of 
spatial frequencies to which the neuron responds). This is 
due to the particular linear receptive field weights 
underlying the V1 responses. These receptive field 
weights were chosen for mathematical and computational 
convenience, but alternate receptive fields with separable 
spatio-temporal frequency tuning curves could be used 
instead (see Appendix I). 

Our model MT neurons also have inseparable spatio- 
temporal frequency tuning, since they are designed to 
have a constant preferred speed, regardless of the 
underlying spatial structure of the stimulus. This is 
consistent with physiological data indicating that some 
MT neurons maintain a constant preferred speed over a 
broad range of spatial and temporal frequencies (News- 
ome et al., 1983). 

MT component motion cells. MT neurons have been 
categorized into two distinct classes: component-motion 
selective and pattern-motion selective neurons (Movshon 
et al., 1986). Although we have discussed only the latter 
category in this paper, MT component cells could also be 
included in our model, either as an intermediate stage 
before the pattern cell computation, or as an independent 
parallel computation. Such a model for component cells 
is illustrated in Fig. 15. These model neurons combine V1 
afferents over spatial position and spatial frequency, but 
not over orientation. Thus, they are orientation- and 
speed-tuned, but with a broad spatial frequency band- 
width. Model MT pattern cell responses could potentially 
be computed as a weighted sum of these component cell 
responses. 
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FIGURE 15. Model of MT component cells. Each neuron computes a 
weighted sum of V1 complex cell afferents, followed by half-squaring, 
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field locations. A constant, ~, is added to provide a spontaneous firing 
rate. The divisive normalization factor is computed as a sum of all of 
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Second-order motion. "First-order" motion perception 
models determine velocffy primarily from the distribu- 
tion of power in the Fourier domain. Our model MT 
neurons, for example, are designed to respond when 
spectral power is concentrated on a plane through the 
origin in the spatio-temporal frequency domain. 

There are, however, a number of stimuli, known as 
"non-Fourier" or "second-order" motion stimuli, whose 
appearance is inconsistent with a first-order motion 
model (Chubb & Sperling, 1988, 1989; Cavanagh & 
Mather, 1989; Fleet & Langley, 1994). In the most 
standard examples, human subjects see movement 
despite the fact that the spectral power of the stimulus 
is directionally balanced. This observation has been used 
to refute simple energy models of motion perception. 

The role of MT neurons in the perception of second- 
order motion is unclear. Albright (1992) found that many 
MT neurons respond to second-order motion stimuli, and 
that their selectivity for second-order motion is similar to 
their selectivity for first-order motion. O'Keefe et al. 
(1993), using a different suite of second-order motion 
stimuli, found that very few MT neurons respond in a 
direction-selective manner to second-order motion. 

Current models of second-order motion perception are 
based on the first-order motion models. They include an 
additional early nonlinearity (typically a form of 
rectification) which tran,;forms the second-order motion 

signal into a first-order motion signal. Many of the 
models also include another linear filter prior to the 
nonlinearity. A motion response is subsequently com- 
puted via an appropriate first-order motion computation 
(Chubb & Sperling, 1988, 1989; Cavanagh & Mather, 
1989; Fleet & Langley, 1994; Wilson et al., 1992; Wilson 
& Kim, 1994). In a similar fashion, our model may be 
extended to properly compute motion of second-order 
stimuli by inserting an additional (nonlinear) stage of 
computation. 

Motion coherence. The motion of plaid stimuli, formed 
via superposition of two drifting periodic gratings, can be 
perceived as coherent (i.e., as a single moving pattern) or 
non-coherent (as two separate component gratings), 
depending on a variety of stimulus parameters (e.g., 
Adelson & Movshon, 1982; Movshon et al., 1986; Stoner 
et al., 1990). As shown in Fig. 8, our model can produce a 
bimodal response distribution for some types of trans- 
parently combined stimuli. However, the current model 
cannot directly explain the numerous psychophysical 
observations concerning coherent vs non-coherent mo- 
tion. 

Stoner and Albright (1992) performed the only 
published physiological study comparing MT responses 
for coherent and non-coherent motion stimuli. They used 
three square-wave plaid patterns, differing only in the 
intensity of the diamond-shaped regions at the intersec- 
tions of the dark bars of the two gratings. One of these 
intensities corresponded to an additive combination of 
the gratings, and another to a multiplicative combination. 
The multiplicative pattern appeared non-coherent, and 
the other two patterns appeared coherent (to human 
observers). Consistent with this percept, MT direction 
tuning curves were more component-like for the multi- 
plicative plaids (i.e., the responses in the component 
directions were larger, and the response in the pattern 
direction was smaller). 

Stoner et al. (1990) explain that a model based on 
stimulus Fourier components predicts that the additive 
plaid should appear most transparent. Our model also 
makes this prediction. The response distribution for an 
additive plaid stimulus is shown in Fig. 7. Note the faint 
ridges emanating from the peak in the population. 
Increasing or decreasing the luminance of the grating 
intersections is equivalent to superimposing a stimulus 
composed of a moving pattern of diamonds. These 
moving diamonds are a strong stimulus for an MT 
neuron. Superimposing this pattern on the plaid stimulus 
sharpens the response peak (and suppresses the faint 
ridges), resulting in a sharper direction tuning curve. The 
point of maximal transparency could be shifted toward 
the multiplicative plaid by including an early compres- 
sive nonlinearity in the model (e.g., a logarithm) that 
would convert the multiplicative signal combination into 
an additive one. 

Disparity-dependent suppression. MT neurons are also 
selective for binocular disparity (Maunsell & van Essen, 
1983b), but we have not included binocular tuning in the 
current model. In some MT neurons, suppression occurs 
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mainly between motion signals with similar disparities 
(Bradley et al., 1995). This type of behavior could be 
replicated by incorporating disparity tuning, and by using 
separate normalization pools for each range of preferred 
disparities. 

M T  surround antagonism. The behavior of some MT 
neurons can be greatly influenced by stimuli outside the 
classically defined receptive field. Stimuli in these 
surrounding regions do not by themselves evoke a 
response, but can strongly modulate the response to a 
stimulus within the receptive field (Allman et al., 1985a; 
Allman et al., 1985b; Tanaka et al., 1986; Born & 
Tootell, 1992). The most common effect is a suppression 
of the response to optimal stimulation of the classical 
receptive field when the surround is stimulated by motion 
in the same direction. For some of these neurons, 
surround motion in the opposite direction enhances the 
response to stimulation in the classical receptive field. 

Our model currently does not address center-surround 
antagonism. Suppression in the MT stage of our model is 
both subtractive (due to the linear combination of V1 
afferents) and divisive (due to normalization). Both forms 
of suppression are spatially restricted to the classical 
receptive field. The simplest means of incorporating 
surround antagonism would be to enlarge the scope of the 
normalization pool to include neurons with surrounding 
receptive fields and with direction preferences opposite to 
the preferred direction in the center. This would produce 
a divisive interaction between the center (classical 
receptive field) and the surround, and yet stimulation of 
the surround in isolation would not evoke a response. 

Relationship to other models 

A number of models have been proposed to describe 
visual motion computations performed in area MT. The 
present model incorporates many concepts from these 
previous models. Below, we describe some of the 
similarities and differences. 

Adelson and Bergen (1985) developed a two-dimen- 
sional (x-t)  spatio-temporal energy model based on 
space-time oriented quadrature pairs of linear filters. 
They subtracted rightward from leftward motion energy 
to produce an opponent energy response, and demon- 
strated that this response could be made identical to that 
of an elaborated Reichardt detector (van Santen & 
Sperling, 1985), given a suitable choice of filters for 
each model. Our model shares much of the conceptual 
framework of the Adelson/Bergen work. In particular, 
our complex cells compute a form of motion energy, and 
the linear weighting function in the MT stage of our 
model has both positive and negative lobes, and therefore 
may be viewed as computing a form of opponent motion 
energy. An essential difference is that our model includes 
an additional spatial (y) dimension, thus allowing 
orientation tuning in V1 neurons, and an intersection- 
of-constraints calculation (i.e., summation over orienta- 
tion) in the MT neurons. In addition, we use a set of third- 
derivative spatio-temporal filters, and include response 
normalization. 

A number of authors (e.g., Albright, 1984; Heeger, 
1987; Grzywacz & Yuille, 1990; Smith & Grzywacz, 
1993) have used neural implementations of the intersec- 
tion-of-constraints construction to describe the behavior 
of MT neurons. Heeger (1987) and Grzywacz and Yuille 
(1990) developed and implemented models for pattern 
velocity computation based on spatio-temporal energy 
computed via quadrature pairs of Gabor filters. The 
present model is conceptually similar, although quite 
different in implementation. In addition to the use of both 
subtractive and divisive opponency, we have used 
directional derivatives for our V1 receptive fields so that 
responses may be properly interpolated from a small set 
of neurons. This provides an unbiased velocity repre- 
sentation (Simoncelli, 1993), and allows efficient simula- 
tion (see Appendix I). 

Sereno (1993) and Nowlan and Sejnowski (1995) 
adopted two-stage architectures similar to our own, in 
which V1 neurons compute motion energy, and MT 
responses are computed from a linear combination of V1 
afferents. Unlike our model, the underlying linear 
receptive fields of these MT model neurons were 
determined via an artificial neural network learning 
algorithm. In addition, the dynamic range of neurons in 
these models is limited by static sigmoidal nonlinearities, 
that produce behaviors inconsistent with physiological 
data (see Model  for citations). An important contribution 
of the Nowlan and Sejnowski model is that it performs 
simultaneous motion estimation and motion-based seg- 
mentation. 

A number of authors have devised biological models 
based on the "gradient constraint" that is commonly used 
in computer vision for motion estimation (e.g., Wang et 
al., 1989; Johnston et al., 1992; Young & Lesperance, 
1993). This constraint provides a relationship between 
local image velocity and the spatial and temporal 
derivatives of image intensity. Gradient-based velocity 
estimation may be written in terms of normalized 
opponent motion energy computations (Adelson & 
Bergen, 1986; Simoncelli, 1993), similar to those used 
in our model. But whereas our model represents both 
speed and direction implicitly (via a population code), the 
models referenced above represent speed (and in some 
cases, direction) explicitly. The resulting MT responses 
increase monotonically with stimulus speed, inconsistent 
with speed tuning curves such as those depicted in Fig. 
10(A or C). 

Wilson et al. (1992, 1994) developed a model with two 
parallel pathways that compute Fourier motion (via a 
Reichardt detector) and non-Fourier motion (via a 
Reichardt detector preceded by rectified oriented filter- 
ing). These pathways include a type of divisive normal- 
ization. The MT stage of the model combines the 
responses of these two pathways. Competitive inhibition 
allows the most active neurons to encode the motion 
direction. This model differs markedly from our own. 
The Reichardt motion detectors are spatially one- 
dimensional, and there are two parallel computations 
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which are fused in the output. Most importantly, these 
model neurons encode direction, but not speed. 

Qian and Andersen (19!)4) observed that MT responses 
are strongly suppressed by super-imposing drifting dot 
fields, particularly when the dots moving in opposite 
directions were "paired". The authors explained these 
results using a two-dimensional (x-t) opponent motion 
energy model, in which they incorporated either 
subtractive or divisive opponency. Our model differs by 
incorporating a second spatial (y) dimension, by using a 
different set of spatio-ternporal filters, and by incorporat- 
ing both subtractive and ,divisive opponency. 

Proposed experiments 

An important role for a computational model of this 
type is to provide a framework for experimentally 
characterizing the physiological behavior of an MT 
neuron. For example, responses of an MT neuron to 
drifting sinusoidal gratings of varying spatio-temporal 
frequency could be used to estimate MT receptive field 
weights (including the subtractive inhibitory regions). 
This could be checked for consistency against the 
velocity tuning of the cell, as measured with texture 
stimuli drifting at a range of speeds and directions. In 
addition to providing this type of characterization 
framework, a number of predictions are made by the 
model which could be examined experimentally: 

The model predicts that MT pattern cells should 
have bimodal direction-tuning curves for gratings 
moving significantly slower than the preferred 
speed. Albright (1984) made a similar prediction, 
but subsequent investigations (Rodman & Albright, 
1987) did not find the predicted behavior in a 
sample of 13 "Type II" neurons. Rubin and 
Hochstein (1992) concluded from these findings 
that IOC-motivated models of MT neurons were 
probably incorrect, and proposed an alternative 
strategy. But the stimuli in the Rodman and 
Albright (1987) experiments were moving bars, 
rather than gratings. Preliminary data using drifting 
sine gratings (Simoncelli et al., 1996) indicate that 
some MT pattern cells clearly exhibit the predicted 
bimodality. 

The model also predicts that component motion 
cells (both V1 complex cells and MT component 
cells) should have unimodal direction tuning curves 
for gratings of all speeds, and bimodal direction 
tuning curves for rapidly moving texture patterns. 
This behavior is typical of complex cells in cat area 
17 (Hammond & Reck, 1980; Hammond & Smith, 
1983). Preliminary data (Simoncelli et al., 1996) 
indicate that some MT component cells exhibit this 
behavior. 

• The model predicts that speeds evoking the 
maximal suppression should vary inversely with 
the preferred speed for MT neurons. That is, 
neurons with high preferred speeds should be 
suppressed most by slow stimuli moving in the 
anti-preferred direction, and vice versa. In addition, 
neurons with high preferred speeds should give an 
excitatory response to fast stimuli in the "anti- 
preferred" direction, and show some suppression for 
slow stimuli in the preferred direction. Similarly, 
neurons with slow preferred speeds should respond 
to slow stimuli in the opposite direction, and should 
be suppressed by high speeds in the preferred 
direction. This is due to the construction of the MT 
linear weights. As shown in Fig. 10, this behavior is 
consistent with some data (Rodman & Albright, 
1987; Lagae et aL, 1993), but is has not been 
studied systematically. 

• The model predicts that broadband stimuli (such as 
drifting dots) shouM elicit the strongest responses 
from pattern cells, but that sinusoidal stimuli (of 
equivalent spectral power) should produce more 
effective suppression. This is due to the linear 
weighting of our model MT neurons, which 
subtracts spectral power lying off the plane. A 
broadband stimulus moving in the anti-preferred 
direction will simultaneously contribute some 
suppression and a small amount of excitation. A 
sinusoidal stimulus moving in the anti-preferred 
direction will only contribute suppressively. 

Conclusions 

We have presented a two-stage physiological model 
for local image velocity representation in visual area MT. 
The model is functionally motivated, and its behavior is 
determined by a small number of free parameters. The 
computations are simple enough that one can understand 
and make predictions about its behavior. An additional 
feature is the commonality of computation in the two 
sequential stages. It is often noted that neocortical areas 
throughout the cortex exhibit common structure: the 
types, arrangements, and connections of neurons are 
highly stereotyped. Despite its simplicity, the model is 
able to account for much of the physiology of MT 
neurons. 

One drawback of this simplicity is that the population 
of model neurons is unrealistically homogeneous. For 
example, the underlying linear receptive field of each V 1 
cell is perfectly anti-symmetric, and there are identical 
collections of neurons at each spatial position (i.e., in 
each "hypercolunm" of V1 and MT). Receptive fields of 
real neurons are quite irregular in comparison. Hetero- 
geneity could be incorporated into the model (at great 
computational expense) without altering the overall 
functionality. We could, for example, use a different 
collection of linear receptive fields for each patch of the 
visual field. Each new collection of linear receptive fields 
would be related to our current collection of linear 
receptive fields via an invertible linear transformation, 
and would thus represent the same information in a 
modified format. 

In addition to the potential model enhancements 
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described in Unmodeled results, we note that the squaring 
nonlinearities could be replaced by fullwave-rectification 
(Pollen & Ronner, 1983), or an exponent greater than 2 
(Albrecht et al., 1984; Sclar et al., 1990; Albrecht & 
Geisler, 1991), if warranted by the physiological data. 
Such modifications would make the simulations more 
expensive computationally, and would induce small 
quantitative changes. However, the qualitative behavior 
of the model would be unaffected. 

One notable deficiency of the model is the lack of 
realistic temporal dynamics. In the current implementa- 
tion, outputs correspond to steady-state firing rates. The 
model should be extended to include more realistic 
temporal behavior. For example, one might try to model 
adaptation by including a slow temporal average in the 
computation of the normalization factor. Experimental 
examination of neuronal response dynamics may provide 
evidence for both the functional form and the imple- 
mentation of these computations (Carandini, 1996). 

Finally, we believe this model should be able to 
account for a number of psychophysical findings. 
Previous incarnations of the model have been used to 
account for biases in the perception of speed and 
direction of plaid patterns (Simoncelli & Heeger, 1992; 
Simoncelli, 1993; Heeger & Simoncelli, 1993). In order 
to use the current model for such purposes, one must 
compute an estimated (or "perceived") velocity from the 
responses of the MT population. 
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APPENDIX I 

This appendix describes additional mathematical and implementa- 
tional details of the model. 

V1 linear receptive fieM weights. The linear receptive field weights 
underlying the V1 responses are designed to satisfy two fundamental 
constraints: 

1. The sum of the V1 responses (as a function of stimulus spatio- 
temporal frequency) should be roughly constant over a desired 
frequency range. This function corresponds to the spatio- 
temporal frequency sensitivity of the overall system. We refer 
to this as the tiling property. 

2. The set of V1 neurons includes receptive fields tuned for a 
predetermined set of space-time orientations, but the response of 
a V1 neuron tuned to any intermediate space-time orientation 
may be precisely interpolated from this set. In other words, the 
information represented by the V1 neurons does not depend on 
the specific choice of space-time orientations. We refer to this as 
the interpolation property. 

These two constraints are, in fact, independent. Both constraints are 
satisfied by linear receptive fields that are directional derivatives of a 
differentiable function, g(x,y,t). For example, the first derivative taken 
in the direction of a unit vector fi may he written as: 

Og(x,y,t) Og(x,y,t) +utOg(x,y,t) 
Du{g(x,y, t)} : Ux Ox +- Uy ~, , Ol 

where the {ux,uy,Ut} are the components of the unit vector ft. This 
equation states that the partial derivative in an arbitrary direction fi is a 
linear combination of the partial derivatives in the x, y, and t directions. 
In other words, it is possible to interpolate any directional first 
derivative as a linear combination of a fixed set of three derivatives. 

The tiling property of the first derivatives is easily seen in the 
frequency domain. Computing a partial derivative (of space or time) 
corresponds to multiplication by a linear ramp function in the 
frequency domain. For example, the Fourier transform of the x 
derivative of g(x,y,t) is: 

~ ~ Og(x,y, t) ~ -ioJxG(oox, o9,. oot), 
' t Ox j= 

where i is the imaginary number, and G(ogx,~Oy,Ogt) is the Fourier 
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FIGURE A1. Distribution of the Fourier power spectra corresponding 
to our population of 28 V1 neurons. The spectra lie on the surface of a 
sphere in the spatio-temporal frequency domain, and correspond to 
space-time oriented linear receptive fields. The vertical line at the top 

indicates the teraporal frequency axis. 

transform of g(x,y,O. Summing the power spectra of the derivatives in 
the (x,y,t) directions gives: 

Iogxa( ogx , ~y , ~Ot ) l 2 + IogyG( O)x, O~y , Ogt ) ] 2 + Icota(~ox, ogy, o9,)12 

= ÷  ,/12 = 

where Ogr = ,J~o~ 2 + o9~ + ~ ,  the radial frequency. A suitable choice 
of g(x,y,t) cala give nearly any desired coverage of spatio-temporal 
frequency. For example, G(cox,*Oy,Ogt) = l/~or produces uniform cover- 
age of the entire spatio-tempor, d frequency domain. 

The tiling and interpolation p:roperties extend to higher-order (either 
separable or directional) derivatives (Freeman & Adelson, 1991). 
Higher-order directional derivatives have narrower directional tuning 
curves than the first derivatives, and require a larger set to tile and 
interpolate all space-time oriei|tations. In particular, in three dimen- 
sions, (x,y,t), a full set of Nth-order directional derivatives is of size 
(N+ 1)(N+2)/2. The interpolation property also extends to the 
squared directional derivatives (Simoncelli, 1993), but one needs to 
use an even larger set. 

The V1 linear receptive fields in our current model are third 
derivatives of a spatio-temporM Gaussian.* The derivative order is 
chosen to match the typical orientation bandwidths of V1 neurons (e.g., 
see Fig. 9). Receptive fields at different scales are formed by adjusting 
the variance of the underlying Gaussian by factors of 2. The full set of 
V1 receptive fields includes 28 space-time orientations that are evenly 
distributed on the surface of a sphere in the spatio-temporal frequency 
domain, as illustrated in Fig. A1. The tiling region is approximately a 
spherical annulus, with bandwidth of roughly 1.5 octaves, and with 

*See Koenderink and van Doom (1987) for a general characterization 
of receptive fields in terms of differential operators. 

reduced sensitivity near the temporal frequency axis. Frequency units 
are fixed such that the peak of the annulus crosses the temporal 
frequency axis at ~ot = 8 cycles/sec and the spatial frequency axes at 
o~x = 0.5 cycles/deg. The spatial frequency intercept was increased/ 
decreased by a factor of 4 to give the results shown in Fig. 10(D/F), 
respectively. 

Note that the choice of a Gaussian function for g(x, y, t) is 
computationally convenient, as it allows separable convolution 
computations. However, it has three clear disadvantages. First, 
Ganssian derivatives at different scales produce an uneven tiling of 
the Fourier domain. Second, the resulting spatial and temporal 
frequency tuning curves are not separable; in fact, the spatio-temporal 
frequency responses are polar-separable. As mentioned in the 
Discussion, this is inconsistent with V1 physiology. This problem 
may be partially ameliorated by substituting a function, g(x, y, t), that is 
temporally low-pass but spatially band-pass. Such a change might 
affect the other aspects of model behavior and we have not, as yet, 
systematically examined this issue. Third, Gaussian derivative 
receptive fields are non-causal (i.e., the response depends both on 
past and future stimulus intensities). This problem can be alleviated by 
introducing a time delay, but a more appropriate solution is to use 
recursive (i.e., feedback-based) temporal derivative filters (e.g., 
Adelson & Bergen, 1985; Fleet & Langley, 1995). 

MT linear receptive field weights. Each MT neuron linearly 
combines a set of V1 afferents such that the MT response is 
velocity-selective. In particular, an MT neuron with preferred velocity 

sums the responses of four V1 neurons at the following space-time 
orientations: 

~1 = y / v ~  + s 2, ~2 = / s ,  

U3 = [~1 ÷ U2]/V/-~,/44 = [Ul -- /~2]/V~, 

where s = I v ] = ~ .  These four space-time orientations are 
equally distributed around a plane in the spatio-temporal frequency 
domain, as illustrated in Fig. 3, and the sum of the underlying V1 
receptive field power spectra forms a smooth annular ring. Since the 
fixed population of V1 neurons might not include these particular 
space-time orientations, the responses corresponding to the desired 
space-time orientations must be interpolated as described earlier. The 
interpolated V1 responses are linear sums of the fixed set of V1 
responses, which can be combined together such that the full MT linear 
response is expressed as a weighted linear sum of the fixed set of 28 V 1 
neurons. 

Finally, the MT neuron subtracts the responses of Vl  neurons that do 
not lie near its preferred velocity plane. This is accomplished by 
subtracting the mean of the 28 weights from each of the weights (thus 
producing an overall set of weights with zero mean). These 28 zero- 
mean weights correspond to the final linear receptive field weights of 
the MT neuron. The resulting spatio-temporal frequency response 
function is smooth and depends only on the Euclidean distance to the 
plane. The weighting could be adjusted if warranted by physiological 
data (see Proposed experiments). For the MT normalization pool, we 
used a population of 19 MT neurons that approximately tile the 
velocity space. One neuron is tuned for zero velocity, six for moderate 
speeds (16 deg/sec), and 12 for high speeds (120 deg/sec). 


