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The ModelFest data set was created to provide a public source of data to test and calibrate models of foveal spatial contrast
detection. It consists of contrast thresholds for 43 foveal achromatic contrast stimuli collected from each of 16 observers. We
have fit these data with a variety of simple models that include one of several contrast sensitivity functions, an oblique effect, a
spatial sensitivity aperture, spatial frequency channels, and nonlinear Minkowski summation. While we are able to identify
one model, with particular parameters, as providing the lowest overall residual error, we also note that the differences among
several good-fitting models are small. We find a strong reciprocity between the size of the spatial aperture and the value of the
summation exponent: both are effective means of limiting the extent of spatial summation. The results demonstrate the power
of simple models to account for the visibility of a wide variety of spatial stimuli and suggest that special mechanisms to deal
with special classes of stimuli are not needed. But the results also illustrate the limited power of even this large data set to
distinguish among similar competing models. We identify one model as a possible standard, suitable for simple theoretical
and applied predictions.
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Introduction

Models of spatial sensitivity

Spatial pattern is one of the primary effective ele-
ments of visual stimulation. Pattern vision begins with
the ability to sense variations over space in the intensity
of the light image. Development of models of this abil-
ity has therefore been, and continues to be, a goal of much
of vision research. Early treatments of spatial sensitivity
emphasized the role of summation within a fixed area,
exemplified in such formulations as Ricco’s Law (Graham
& Margaria, 1935), and resolution, exemplified in acuity
measurements (Shlaer, 1937). Introduction of the contrast
sensitivity function (Campbell & Robson, 1968) lead to a
somewhat more general model embodied in a spatial fil-
ter (Campbell, Carpenter, & Levinson, 1969), and later
developments led to the idea of multiple spatial filters
(Blakemore & Campbell, 1969). Separately, there have
been advances in our understanding of how sensitivity
varies with eccentricity (Robson & Graham, 1981), ori-
entation (Berkley, Kitterle, & Watkins, 1975; Campbell,
Kulikowski, & Levinson, 1966), and pattern size (Robson
& Graham, 1981).
Many of the studies in this area have, with good reason,

concentrated on a single dimension of stimulus variation.
But it is desirable to have a model that is sufficiently gen-
eral to accommodate variation in all of the relevant dimen-
sions. Apart from the theoretical desire for generality, there
are also important practical applications in which such a
model would be useful.

One challenge for those seeking such a general model is
the fact that much of the data to be modeled come from
different labs, and the reports are frequently lacking in details
that would allow combination of data across labs. This diffi-
culty led to the creation of the ModelFest data set.

ModelFest

The ModelFest experiment was a collaboration among
several laboratories to collect a single set of common data
for testing and calibration of contrast detection models.
The ModelFest data set consists of a collection of contrast
thresholds for 43 stimuli from 16 observers in 10 labs
(Carney et al., 1999; Carney et al., 2000; Watson, 1999). In
Phase 1 of that effort, extending through 1999, data were
collected from nine observers. In Phase 2, data were col-
lected from an additional seven observers.

Previous analyses

Previously, one of us examined the fit of various models to
the ModelFest Phase 1 data (Watson, 2000). The data were
found to be consistent with a simple model composed of a
contrast sensitivity filter (CSF) followed by Minkowski
summation with an exponent of about 2.5. Augmenting the
model with multiple frequency channels yielded a slightly
improved fit and a higher exponent of about 3.8.
The ModelFest Phase 1 data have also been examined

in a number of other reports. Chen & Tyler (2000) ap-
plied principal components analysis to derive the receptive
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fields of putative detectors and arrived at three, which
are the following: a spot detector, a bar detector, and a
grating detector (Walker, Klein, & Carney, 1999). Carney
et al. (2000) examined relationships among subsets of
thresholds to address questions regarding spatial summa-
tion and mechanism bandwidths. None of these reports
attempted to fit the entire data set with a single model.

Present analyses

In this report, as inWatson (2000), we fit various models
to the entire set of 43 thresholds. This paper extends the
earlier report in the following ways. First, as noted above,
additional data from seven new observers have been col-
lected. Second, we have introduced and evaluated new ele-
ments to the model, notably an oblique effect and a spatial
aperture. And lastly, in this report we consider a large
number of specific functional forms for the CSF. The fits
here provide a reasonably definitive evaluation of a num-
ber of candidate forms for the CSF.
Following Watson (2000), we have used a component

model, consisting of a cascade of elements that may be in-
troduced or removed and whose parameters may be fixed
or allowed to vary. In the latter case, we create what are
called nested models, with one being a more constrained
version of the other. This component model allows some
insight into which components are most crucial to accurate
predictions, and more generally it indicates the relative
contribution to accuracy of each component. The nested
cases permit some simple statistical tests.
One result of these analyses is the specification of a

standard model for foveal contrast detection. This model is
not the best-fitting model of all we have considered, but it
provides an excellent fit with very few assumptions, pa-
rameters, and calculations. We believe it may be useful in
a variety of theoretical and applied contexts. We also be-
lieve it provides a valuable benchmark against which more
complicated models may be compared.

ModelFest experiment

Stimuli

The ModelFest stimuli have been described elsewhere
(Carney et al., 1999, 2000; Watson, 2000), but we provide
a brief summary here. The stimuli, shown in Figure 1, and
described in Table 1, consisted of 43 grayscale images,
each 256 � 256 pixels in size. Each stimulus is identified
by an index number between 1 and 43. A file containing
all of the images is included as a supplement to this paper
in the file modelfest-stimuli, which is described more
completely in Appendix A.

Each pixel was represented by an eight-bit number be-
tween 1 and 255. The stimuli were rendered, using a va-
riety of hardware and software techniques, so that pixel
graylevel g in the image was converted to luminance L on
the display according to the formula

LðgÞ ¼ L0

�
1þ c

127
ðg� 128Þ

�
ð1Þ

where c is the contrast of the stimulus and L0 is the mean
luminance. In each lab, L0 was fixed to a value in the
range 30 T 5 cd m�2. The mathematical notation used in
this paper is summarized in Appendix C.
The viewing distance was set so that each pixel sub-

tended 1/120th of a degree, and the entire image sub-
tended 256/120 = 2.133 degrees. Viewing was binocular
with natural pupils.
In the time dimension, the stimulus followed a Gaussian

time course with a standard deviation of 0.125 s. The dis-
play frame rate was at least 60 Hz.
The stimuli were presented at the center of an otherwise

uniform screen whose luminance matched the mean lu-
minance of the stimulus (L0). Fixation guides were pre-
sented continuously in the form of BL[-shaped marks at
the four corners of the stimulus image.

Methods

Contrast detection thresholds for the 43 stimuli were
collected for 16 observers in 10 labs. The labs differed
somewhat in details of procedure, but all adhered to the
following methods. Thresholds were measured using a
two-interval forced-choice method with feedback. Each
threshold was based on at least 32 trials, and measurement
of each threshold was repeated at least four times.

Data

To exclude any ambiguity regarding the data set we
have analyzed and modeled, we define a BModelFest
Baseline Dataset.[ This consists of the first four thresholds
reported for each of the 16 observers for each of the 43
stimuli. Each threshold has been expressed as log10(c),
where c is contrast as defined in Equation 1. Each value
has been rounded to three decimal places. This data set is
provided as a supplement to this paper, as the text file
modelfestbaselinedata.csv, described more completely in
Appendix B.

Descriptive statistics

Results in this paper are primarily expressed in decibels
(dB = 20 log10 c). In those units, each threshold is ts,o,r ,
where the indices refer to stimulus (s = 1,I,S), observer
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Figure 1. ModelFest stimuli. Each is a monochrome image subtending 2.133 � 2.133 degrees. The index numbers have been added for

identification and were not present in the stimuli.
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(o = 1,I,O), and replication (r = 1,I,R). The mean for
each observer over replications can be written ts,o , and
these are shown for all 16 observers in Figure 2, plotted as
a function of the arbitrary index number. Each observer is
represented by a different color. We write to for the mean
of ts,o over stimuli for each observer, and ts for the mean

over observers for each stimulus. The variability among
observers can be represented by

RMS0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

SO
~
S

s¼1

~
O

o¼1

ðts;o � tsÞ2:

s
ð2Þ

Index Type Parameters

1 Gabor, fixed size 1.12 cycles/degree

2 Gabor, fixed size 2 cycles/degree

3 Gabor, fixed size 2.83 cycles/degree

4 Gabor, fixed size 4 cycles/degree

5 Gabor, fixed size 5.66 cycles/degree

6 Gabor, fixed size 8 cycles/degree

7 Gabor, fixed size 11.3 cycles/degree

8 Gabor, fixed size 16 cycles/degree

9 Gabor, fixed size 22.6 cycles/degree

10 Gabor, fixed size 30 cycles/degree

11 Gabor, fixed cycles 2 cycles/degree, bx = by = 1 octave

12 Gabor, fixed cycles 4 cycles/degree, bx = by = 1 octave

13 Gabor, fixed cycles 8 cycles/degree, bx = by = 1 octave

14 Gabor, fixed cycles 16 cycles/degree, bx = by = 1 octave

15 Gabor, elongated 4 cycles/degree, Ax = 0.05-, by = 0.5 octave

16 Gabor, elongated 8 cycles/degree, Ax = 0.05-, by = 0.5 octave

17 Gabor, elongated 16 cycles/degree, Ax = 0.05-, by = 0.5 octave

18 Gabor, elongated 4 cycles/degree, bx = 2 octave, by = 1 octave

19 Gabor, elongated 4 cycles/degree, Ax = 0.05-, by = 1 octave

20 Gabor, elongated 4 cycles/degree, bx = 1 octave, by = 2 octave

21 Gabor, elongated 4 cycles/degree, bx = 1 octave, Ay = 0.5-

22 Compound Gabor 2 and 2�2 cycles/degree

23 Compound Gabor 2 and 4 cycles/degree

24 Compound Gabor 4 and 4�2 cycles/degree

25 Compound Gabor 4 and 8 cycles/degree

26 Gaussian Ax = Ay = 30 min

27 Gaussian Ax = Ay = 8.43 min

28 Gaussian Ax = Ay = 2.106 min

29 Gaussian Ax = Ay = 1.05 min

30 Edge � Gaussian

31 Line � Gaussian 0.5 min (1 pixel) wide horizontal line

32 Dipole � Gaussian 3 pixels wide

33 5 collinear Gabors 8 cycles/degree, in phase, bx = by = 1 octave, separation = 5 Ax

34 5 collinear Gabors 8 cycles/degree, out of phase, bx = by = 1 octave, separation = 5 Ax

35 Binary noise 1 � 1 min samples

36 Oriented Gabor 4 cycles/degree, 45-, bx = by = 1 octave

37 Oriented Gabor 4 cycles/degree, 0-, bx = by = 1 octave

38 Compound Gabor 4 cycles/degree, 0- and 90-, bx = by = 1 octave

39 Compound Gabor 4 cycles/degree, 45- and 90-, bx = by = 1 octave

40 Disk 1/4- diameter

41 Bessel � Gaussian 4 cycles/degree

42 Checkerboard 4 cycles/degree fundamental

43 Natural image Image of San Francisco

Table 1. Definition and parameters of each of the 43 ModelFest stimuli. Parameters Ax and Ay are the Gaussian standard deviations in

horizontal and vertical dimensions; bx and by are the half-amplitude full bandwidths in horizontal and vertical frequency dimensions.

Unless stated otherwise, Ax = Ay = 0.05 degrees, sinusoids were modulated vertically (90- orientation) and were in cosine phase.
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This is the RMS error of a model in which threshold
for each stimulus is given by the mean over observers. It is
also the maximum likelihood estimate of the standard de-
viation of a normal distribution underlying such a model.
The value of RMS0 for these data is 3.46 dB, indicating
considerable variation among observers. Some of this var-
iance is accounted for by the different mean sensitivities of
the observers. We can construct a second measure of error,

RMS1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

SO
~
S

s¼1

~
O

o¼1

ððts;o � toÞ � ðts � t0ÞÞ2
s

ð3Þ

in which we subtract the observer means to from each
threshold ts,o , and the grand mean t0 from each stimulus
mean ts . This error has a value of 2.29 dB. The RMS error
associated with the observers,

RMSo ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RMS20 � RMS21

q
¼ 2:59dB ð4Þ

can be regarded as the standard deviation of the observer
sensitivities in dB.

When this standard deviation estimate is divided by the
square root of the number of observers, the result, 0.56 dB,
can be regarded as an estimate of the standard deviation of
the ts � t0 � (Cs � Cs), where C is the corresponding true
value. If the models were correct, the models’ predictions
would be that the C and the RMS error of the model would
be another estimate of this same standard deviation. Our
best possible model RMS error is thus 0.56 dB.

The average thresholds over all observers are shown
in Figure 3. The averages are shown both in units of dB
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Figure 2. Data from the ModelFest experiment. Each point is the mean for one observer for one stimulus, and the error bars indicate T2 SE.

Each observer is represented by a distinct color. The small pictures at the top illustrate the stimuli.
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Figure 3. AverageModelFest thresholds. Each point is themean of

16 observers, and the error bars indicate T2 SE. The small pictures

at the top illustrate the stimuli. (A) Thresholds in dB; (B) thresholds

in dBB.

Journal of Vision (2005) 5, 717–740 Watson & Ahumada 721



(Figure 3A) and in units of dBB (Figure 3B). The dBB is a
measure of the contrast energy of a stimulus, normalized
by a nominal minimum threshold of 10�6 deg�2 s�1. Zero
dBB is defined so as to approximate the minimum visible con-
trast energy for a sensitive human observer (Watson, 2000;
Watson, Barlow, & Robson, 1983; Watson, Borthwick, &
Taylor, 1997). A virtue of the dBB unit is that it takes into
account the contrast energy of the stimulus. One quick ob-
servation we may make from Figure 3B is that for the aver-
age observer, the best thresholds are about 7 dBB above
(less sensitive than) the canonical Bsensitive human ob-
server.[ Curiously, the ModelFest stimulus that the eye
sees best is not a Gabor but a small Gaussian (stimulus 28).
This differs from the classical result (Watson, Barlow, &
Robson, 1983), but that result was obtained with moving
rather than stationary targets.

The first 10 thresholds constitute a CSF as measured
with Gabor functions of fixed size. It resembles similar data
collected previously and shows the typical bandpass shape
with a minimum of�42.13 dB (7.24 dBB) at about 4 cycles/
degree. The following four stimuli (11Y14) form a CSF for
Gabor functions with a fixed number of cycles, or equiv-
alently a fixed 1 octave bandwidth. The latter thresholds
resemble similar data collected previously by Watson
(1987).

Model structure

In this paper, we investigate a class of models that
incorporate a set of sequential operations, several of which
may be inserted or removed or whose parameters may be
fixed or allowed to vary. In this section, we define the
sequence of elements and the individual elements. The
overall structure and sequence of elements of the model is
shown in Figure 4.

Input and output

The input to the model was one of the digital stimulus
images, as provided in the file modelfest-stimuli described
in Appendix A. Each image has Ny = 256 rows and Nx =
256 columns. The output of the model was a contrast
threshold.

Contrast

The stimulus grayscale image was first converted to a
luminance contrast image, defined as the luminance image,
minus the nominal mean luminance, divided by that mean.
Rearranging Equation 1 shows that this is accomplished
by subtracting the nominal mean graylevel of 128 and
dividing by 127.

Contrast sensitivity filter

The contrast image is then filtered by a radially symmetric
CSF. The filter is implemented as a discrete digital finite
impulse response (FIR) filter created by sampling a one-
dimensional CSF in the two-dimensional discrete Fourier
transform (DFT) domain. We consider a number of differ-
ent versions of the CSF, as described below. An example
digital CSF is shown in Figure 5, depicted as log gain ver-
sus spatial frequency. Note the hole in the center, corre-
sponding to the decline at low frequencies, and the decline
toward the edges, corresponding to the decline at high
frequencies.

Oblique effect filter (OEF)

The oblique effect is the well-known decline in contrast
sensitivity at oblique orientations (Campbell et al., 1966;
MacMahon & MacLeod, 2003). The ModelFest data do
not contain sufficient oblique patterns at varying frequen-
cies to effectively constrain this effect, so we have based
our oblique effect model on data from (Berkley et al.,
1975). These data are shown in Figure 6 as the log10 ratio
of thresholds for 0- and 45- oriented gratings at various
spatial frequencies.
In these linear-log coordinates, sensitivity at the oblique

orientation declines linearly with frequency, reaching a
value of about 1.6 log10 units at 25 cycles/degree. We fit a
linear function (red line) to these data but truncate it when

Figure 5. Contrast sensitivity filter (CSF). This example is for the

HPmH function, described below. In this picture the peak gain has

been arbitrarily set at unity.

Figure 4. Elements of the component model.
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the function goes above 0 log attenuation (green line).
These two lines form the frequency-dependent part of our
oblique effect model. We assume in addition that at any
given spatial frequency, sensitivity varies as a sinusoidal
function of orientation. The resulting model for the oblique
effect is then given by

O f ; �ð Þ ¼ 1�
�
1� exp

�
� f � +

1

��
sin2 2�ð Þ if f 9 +

¼ 1 if f e + ð5Þ

where + = 3.48 cycles/degree, 1 = 13.57 cycles/degree.
This function has two parameters corresponding to the
frequency at which sensitivity begins to decline (+) and
the slope of the linear-log decline (1). From this function
we can create a discrete FIR digital oblique effect filter
(OEF), as shown in Figure 7.

Because both the CSF and the OEF are applied in se-
quence to the image, they may be combined to form a
single contrast sensitivity and oblique effect filter (CSOEF)
as shown in Figure 8.

Aperture

Contrast sensitivity declines rapidly with eccentricity,
and the rate of decline increases strongly with spatial
frequency (Robson & Graham, 1981). However, in this mod-
eling exercise we have chosen to test only a frequency-
independent decline (an aperture). Our rationale was that
the region under consideration (2.133 � 2.133 degrees) is
relatively small, and we were interested in testing simple
models. The form we have chosen for the decline in sensi-
tivity with eccentricity is a Gaussian,

AðrÞ ¼ exp

�
� r2

2A2

�
ð6Þ

where r is the distance from fixation in degrees, and A is
the standard deviation of the Gaussian (which we also
refer to as its size), also in degrees. This function was
chosen primarily for mathematical convenience: its rate of
decline is easily controlled and it never goes to zero. The
peak value of the Gaussian is 1, so that the aperture
defines the attenuation of sensitivity relative to that at
the point of fixation. The Gaussian aperture multiplies the
image produced by the CSF and OEF elements of the
model. The aperture was centered on the image, which
corresponds to an assumption that the observer fixated the
center of each target.

Channels

There is considerable physiological and psychophysical
evidence that the visual system partitions spatial informa-

Figure 6. Data and model for the oblique effect. The points are

reductions in sensitivity for targets at 45- orientation, relative to that

at 0-, as a function of spatial frequency (Berkley et al., 1975). The

red line is a linear fit in these linear-log coordinates. The green

line is at zero attenuation. The lower envelope of the two lines is

the relative attenuation prescribed by the model for patterns at an

orientation of 45-.

Figure 7. Oblique effect filter (OEF) with parameters + = 3.48 cycles/

degree and E = 13.57 cycles/degree.

Figure 8. Combined contrast sensitivity and oblique effect filter

(CSOEF).
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tion into a number of parallel channels, each selective for a
band of spatial frequency and orientation. Consequently,
spatial frequency channels are a common feature of
modern models of spatial vision (Watson & Solomon,
1997). As in (Watson, 2000), we implement a set of chan-
nels with Gabor receptive fields. We reproduce Table 2
from that paper to specify the parameters of the channel
stage of the model. These are implemented as a set of
digital FIR filters in the DFT domain. Channel responses
are down-sampled in proportion to frequency (pyramid
sampling). For a given value of the Minkowski summa-
tion parameter " (see below), the channel gains were
adjusted to yield approximately flat contrast sensitivity
over frequency. This means that variations in contrast
sensitivity over frequency are controlled primarily by the
CSF. In this report, we did not vary any of the parameters
of the Gabor channel component.

Pooling

The final stage in the component model is a pooling over
space and, if present, over channels. Following long
precedent, we implement this pooling as a Minkowski
metric (Graham, 1977; Quick, 1974; Robson & Graham,
1981; Watson, 1979). Note that all stages in this model
prior to pooling are linear, and that the pooled response is
assumed to equal 1 at threshold, so we write this as

1 ¼
"
~
Ny

y¼1

~
Nx

x¼1

pxpyjcTrx;yj"
#

1="

ð7Þ

or

cT ¼
"
~
Ny

y¼1

~
Nx

x¼1

px pyjrx; yj"
#�1="

ð8Þ

where cT is the contrast threshold, rx,y are the processed
pixel values, prior to pooling, to a stimulus of unit peak
contrast, and px and py are the width and height of each
pixel in degrees. These latter terms are introduced to
make the result independent of the specific resolution at
which the calculation is performed.

The Minkowski formulation is useful because it encom-
passes a number of pooling models, including energy
summation ( " = 2) probability summation ( " ¨ 3), and
peak detection ( " = 1) (Watson, 1979).
When channels are present, the calculation of Equation 8

is performed within each channel q, and the results are
combined over the Q channels,

cT ¼
"
~
Q

q¼1

c
�"
T ;q

#�1="

: ð9Þ

Contrast sensitivity filters

The CSF element of the model has been described
above. Here we describe the various forms of this element
that we considered. Because the CSF is bandpass in form,
many of the candidate functions are composed of a high-
frequency lobe minus a low-frequency lobe. We have
avoided a profusion of symbols by using the same
parameter names in different functions. Many of the
functions share parameters playing approximately the
same role; for example a parameter f0 that scales
frequency in the high-frequency lobe, a parameter f1 that
scales frequency in the low-frequency lobe, and a
parameter a that determines the weight of the low-
frequency lobe. Note that f0 and f1 may also be thought
of as specifying widths of subtractive center and surround
components of the space domain convolution kernel
corresponding to the filter (which is in turn sometimes
thought of as the receptive field corresponding to the
filter). Because many of the Blobe[ functions (exp,
Gaussian, sech) have a value of 1 at f = 0, the DC gain
is in these cases equal to 1 � a.
Each CSF also has a multiplicative gain parameter

that is not shown. Each CSF is identified by a
symbolic name (DoG, HSmG, etc.) that we use in
the remainder of the paper. In the descriptions and in
Table 3, we indicate the number of parameters embodied
in each function.

Log-sensitivity interpolation (LSI)

The LSI function is constructed by linear interpolation
between log-sensitivity values at each of the 10 spatial fre-
quencies used in the Gabor function stimuli 1Y10. In addi-
tion, a parameter value is assigned at 0 cycles/degree. (A
further fixed value of �50 dB is assigned at a frequency
of 256 cycles/image to bound the interpolation.) This
function thus has 11 parameters. It is the least constrained
of all the CSF functions considered here. It is included to
provide a CSF that embodies few assumptions about
functional form.

Number of frequencies 11

Number of orientations 4

Number of phases 2 (odd and even)

Bandwidth 1.4 octaves

Highest center frequency 30 cycles/degree

Lowest center frequency 0.9375 cycles/degree

Frequency spacing 1/2 octave

Orientation spacing 45-

Pyramid sampling Yes

Table 2. Gabor channel model parameters.
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Constant

This function is a constant at all spatial frequencies. It is
introduced to illustrate the effect of the presence or absence
of the CSF. The function has only one parameter (gain),
and is written

Sconstantð f Þ ¼ 1: ð10Þ

DoG

This function is a difference of Gaussians. It is a good
description of the sensitivity of individual retinal gangli-
on cell receptive fields (Enroth-Cugell & Robson, 1966;
Enroth-Cugell, Robson, Schweitzer-Tong, & Watson,
1983; Rodieck, 1965). Including gain, it has four
parameters:

SDoGð f ; f 0; f 1; aÞ ¼ exp
�
� ð f=f 0Þ

2
�

�a exp
�
� ð f=f 1Þ2

�
: ð11Þ

EmG

This consists of an exponential minus a Gaussian:

SEmG ð f ; f 0; f 1; aÞ ¼ exp½�f=f 0� � a exp
�
� ð f=f 1Þ2

�
: ð12Þ

The exponential is suggested by the nearly linear decline
in sensitivity at high frequencies on a log-linear plot
(Campbell et al., 1966). This CSF was earlier suggested
as a good fit to the fixed size Gabor ModelFest stimuli
(Carney et al., 2000). Including gain, it has four parameters.

HmG

This function consists of a hyperbolic secant minus a
Gaussian:

SHmGð f ; f 0; f 1; aÞ ¼ sech ½ f=f 0� � a exp
�
� ð f=f 1Þ2

�
: ð13Þ

This function does not appear to have been used previously
to model the CSF. Including gain, it has four parameters.

HPmG

This is the same as HmG, except that the scaled frequency
argument of the hyperbolic secant is raised to a power:

SHPmGð f ; f 0; f 1; a; pÞ ¼ sech
�
ð f=f 0Þp

�
�a exp

�
� ð f=f 1Þ2

�
: ð14Þ

This function was suggested by Christopher W. Tyler
(personal communication, March 12, 2004). Including gain,
it has five parameters.

HmH

This function is a difference of hyperbolic secants:

SHmHð f ; f 0; f 1; aÞ ¼ sech ½ f=f 0� � a sech ½ f=f 1�: ð15Þ

This function does not appear to have been used
previously to model the CSF. This is the same as HmG,
with the Gaussian replaced by a hyperbolic secant.
Including gain, it has four parameters.

HPmH

This is a hyperbolic secant whose scaled frequency is
raised to the power p minus a hyperbolic secant:

SHPmHð f ; f 0; f 1; a; pÞ ¼ sech
�
ð f=f 0Þp

�
� a sech

�
f= f 1

�
: ð16Þ

This is the same as HPmG, with the Gaussian replaced
by a hyperbolic secant. This function does not appear to
have been used previously to model the CSF. Including
gain, it has five parameters.

LP

This function is a parabola in a graph of log-sensitivity
versus log-frequency (Ahumada & Peterson, 1992;
Rohaly & Owsley, 1993). Including gain, it has four
parameters. On the low-frequency side, it is truncated at a
value of a:

SLPð f ; f 0; b; aÞ ¼ 10
�

�
log10ð f=f 0Þ

b

�
2

¼ 1� a f G f 0 and sLP G 1� a: ð17Þ

MS

This function was introduced by Mannos & Sakrison
(1974) in their pioneering work on image quality. It is the
product of what might be called a generalized Gaussian
(with exponent other than two) and a linear function of
frequency, which serves to enhance high frequencies rel-
ative to low:

SMSð f ; f 0; a; pÞ ¼
�
1� aþ f

f 0

�
exp

�
�ð f=f 0Þp

�
: ð18Þ

Including gain, it has four parameters.
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YQM

This function was derived from a model of con-
trast sensitivity by Yang, Qi, & Makous (1995). Like
EmG, it includes an exponential decline at high fre-
quencies, with an additional divisive term to attenuate low
frequencies:

SYQM ð f ; f 0; f 1; aÞ ¼
exp½�f=f 0�
1þ a

1þð f=f 1Þ2
: ð19Þ

Including gain, it has four parameters.

Model implementation
and optimization

The model was implemented in the Mathematica pro-
gramming language (Wolfram, 2003). Parameters of each
version of the model were estimated by means of general
optimization routines. To insure the accuracy of the results,
we occasionally used three different optimization routines.
These were the built-in Mathematica functions FindMinimum
and NMinimize and the GlobalSearch function provided
by Loehle Enterprises (2004). Note that no optimization
procedure is guaranteed to yield the absolute minimum
of an arbitrary function; consequently, all errors reported
must be regarded as provision upper bounds on the min-
imum achievable error.
Filtering operations, such as those employed by the CSF,

the oblique effect, and the channels, were implemented by
cyclic convolution in the frequency domain. Border effects
were minimized by the Gaussian apertures used by all
ModelFest stimuli.
The measure of error that we use is RMS error in dB. If

both mean thresholds tj and model predictions mj are
specified in dB, and the number of stimuli is J, this is
given by

RMS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

J
~ðtj � mjÞ2

r
: ð20Þ

Model fits

Effect of components

The component model presents a very large number
(264) of configurations to be tested, depending upon the
choices made regarding the CSF (11), the OEF (2: present
or not), the aperture (2: present or not), channels (2: present
or not), and pooling (3: " = 2, " = free, " = 1). For each

tested configuration, we estimated all free parameters and
recorded the residual error. We have not evaluated the fit
of every possible configuration but have rather tried to
understand the contribution of each component, the best
version of each option, and the best obtainable overall fit.
Figure 9 illustrates one trajectory through the error space

of the component model. Moving from left to right, each
point shows the error as we add one additional compo-
nent to the model. At each point, all free parameters are
re-optimized.
The first point shows the error that results from a model

in which all of the model components have been turned off.
This consists of a constant CSF followed by peak detection
( " = 1). Alternatively, we may say that it has no CSF, no
pooling, no oblique effect, no aperture, and no channels. It
has a single parameter (sensitivity) and assumes a target is
detected whenever its peak contrast equals a certain value.
While not a reasonable model, it provides a useful error
benchmark, of about 8 dB, against which other fits may be
compared.
The second point shows the error of a model consist-

ing of the LSI CSF, followed by a peak detector. The 12
parameters of the LSI function have been optimized.
Addition of a CSF thus reduces the error by almost a fac-
tor of two but still leaves a poor fit with an RMS error of
about 4.5 dB.
When peak detection ( " = 1) is replaced with energy

detection ( " = 2), the error is again reduced by about a
factor of two to a value of about 2 dB, as shown by the
third point in the series. Allowing the pooling exponent to
vary ( " = free), which we call generalized energy, results
in yet another drop in error by about a factor of two, as
shown by the fourth point. The RMS error at this point is
in the neighborhood of 1, which we can characterize as a
Bgood[ fit (see below).

Figure 9. Decline in RMS error as individual model components is

added.
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The fifth point shows a further small reduction in er-
ror as a result of adding the oblique effect, and adding
the aperture reduces error by a similarly small amount,
yielding an error of less than 1, as shown by the sixth point.
The final point shows the further reduction in error due

to the addition of channels. The reduction is substantial but
modest relative to the contribution of elements such as the
CSF or energy detection. We will return to this point below.
This trajectory is just one of many we might have taken,

but it serves to illustrate the relative magnitude of the
contribution to the reduction of error yielded by the various
model components. In the following sections, we consider
in more detail the effect of several of the individual com-
ponents on the overall error.

Predictions of best-fitting models

To illustrate the quality of fit of the best-fitting models, we
plot in Figure 10 the predictions for each stimulus along with
the corresponding average thresholds, for the best channel
model (point labeled Bchannels[ in Figure 9) and the best
no-channel model (point labeled BAperture[ in Figure 9).
The greatest difference between the two fits and the largest
error for the no-channel model occur at stimuli 35 and 43,
which are the noise sample and the natural image,
respectively. We will return to this observation below.

Graphic conventions

To assist the reader in comprehending the results in the
remainder of this paper, we have adopted some graphics
symbol conventions. An open symbol indicates the use of
an aperture, while a filled symbol indicates the absence of
an aperture. A square symbol indicates that " = 2, while a
circular symbol indicates that " was free to vary. Finally,
when channels are included, a dashed line is use to con-
nect the points.

Contrast sensitivity functions

All of the results in Figure 9 were obtained with the LSI
CSF, which consists of a linear interpolation between points
on a graph of log sensitivity versus spatial frequency. An
example of this function is shown in Figure 11. For com-
parison, the mean empirical sensitivity (inverse of thresh-
old) at each frequency is also shown in red. The close
agreement shows that although the LSI CSF is optimized
relative to the entire data set, it nevertheless provides a very
close fit to the subset of Gabor data.
Note that the LSI function was designed to be a Bmodel-

free[ CSF, whose shape is free to vary to best match the
data. It has 11 parameters, one for each Gabor spatial fre-
quency and one for 0 cycles/degree. Because it embodies
few constraints, we expect it to be the best-fitting (lowest
error) CSF, and thus a useful benchmark of the achiev-

able fit, and a useful comparison with the other CSF
functions.
In addition to the LSI CSF and the constant CSF, we

have considered the nine specific CSFs defined in Contrast
Sensitivity Filters. Here we assess the performance of these
functions in the context of the no-channel model. The
result of adopting each variant CSF into this condition is
shown by the black symbols in Figure 12. The functions,
their numbers of parameters and corresponding RMS
errors are also enumerated in Table 3.
With the exception of the DoG and constant, all the

functions fit reasonably well and differ in their fit by less
than two tenths of a decibel. The best-fitting formula is
HPmH, pictured in Figure 13. We plot it along with the
parameter points from the LSI function (black circles
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Figure 10. Plot of average thresholds (red points), best-fitting

model (black line), and residual error (red line and gray area).

(A) The best channel model has an RMS error of 0.76 dB.

(B) The best no-channel model has an RMS error of 1.02 dB.

The vertical axis is in units of dBB, which are a measure of the

contrast energy of the stimulus, normalized by a nominal

minimum threshold of 10�6 deg�2 s�1 (Watson, 2000; Watson

et al., 1997).
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from Figure 11) to illustrate that the continuous, analytic
five-parameter HPmH function is a close match to the
unconstrained 11-parameter LSI function.
In Figure 14 we show all nine functions. The purpose

of this figure is to show that all of the functions are in
close agreement, with the possible exception of DoG and
MS. The latter falls rapidly at low frequencies, while the
former is much more Bflat topped[ than the best-fitting
curves. Given the roughly equal performance of the func-
tions, other considerations may influence selection of a

function for either applied or theoretical purposes. The two
best-fitting curves have five parameters, but some functions
with only four parameters perform almost as well. The
functions YQM and EmG have inflections near to zero,
which may be a concern in some applications. LP has a
sharp corner on the low-frequency side, which may also
be objectionable, and MS is not well behaved at low fre-
quencies. Some of these attributes are evident in a plot of
the derivative of each function in the vicinity of zero, as
shown in Figure 15. Both EmG and YQM are negative at
zero, and MS climbs rapidly as it approaches zero.
We should note, however, that in applications or simu-

lations in which the CSF is applied to a digital image, the
lowest frequency in the image (apart from zero) is 1 cycle/
image. For an image subtending D degrees, this lowest fre-

CSF Parameters RMS error (dB)

LSI 11 1.0243

HPmH 5 1.0329

HPmG 5 1.0468

YQM 4 1.0694

EmG 4 1.0755

LP 4 1.0916

HmG 4 1.0959

HmH 4 1.1104

MS 4 1.2009

DoG 4 1.7830

Constant 1 5.8607

Table 3. Contrast sensitivity filter (CSF) functions. For each function,

we indicate the number of parameters and the residual error. Other

conditions: no channels, fixed oblique effect, Gaussian aperture, " = free. Figure 12. Fit of various contrast sensitivity filter (CSF) functions.

The black points are for a fixed oblique effect, the red points are

for no oblique effect. Other conditions: no channels, Gaussian

aperture, " = free.

Figure 13. Plot of the HPmH contrast sensitivity filter (CSF). The

black points are the estimated parameters of the LSI CSF for

comparison. Other conditions: no channels, fixed oblique effect,

Gaussian aperture, " = free.

Figure 11. LSI contrast sensitivity filter (CSF). The black circles

show estimated sensitivity values at the spatial frequencies

employed in the ModelFest fixed size Gabor targets (stimuli

1Y10), plus a value for 0 cycles/degree, which we plot arbitrarily

at 0.1 cycles/degree. The LSI sensitivity function is linearly

interpolated between these points. This example is the best-fitting

version for the case of no channels, an aperture, an oblique effect,

and " free to vary. This corresponds to the point labeled

Baperture[ in Figure 9, and the overall fit shown in Figure 10B.

The red points are the mean sensitivities (inverse thresholds,

shifted vertically by an arbitrary factor of 2) from the ModelFest

data set for fixed size Gabor targets (stimuli 1Y10).
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quency will be 1/D cycles/degree. If the image is small,
for example the 2.13 degrees used in the ModelFest ex-
periment, then this lowest frequency will be 0.47 cycles/
degree, and what happens to the function between 0 and
0.47 will not be manifest in the digital filtering.

Oblique effect

As noted above, the ModelFest data set does not contain
enough oblique signals at varying frequencies to allow us
to use it to estimate the oblique effect, and we have there-

fore derived parameters for the effect from prior data. Here
we examine the effect of including or excluding that fixed
oblique effect. The black points in Figure 12 are for the no-
channel model that includes the oblique effect, while the
red points are for the same model when the oblique effect
is removed. As elsewhere in this paper, each point reflects
a re-estimation of all parameters. The figure shows that
the oblique effect reduces error uniformly over CSFs by
about 0.1 dB. Of course, we might expect that inclusion
of stimuli at oblique orientations at high spatial frequencies
(where the effect is strongest) would yield much larger
differences.

Pooling exponent ""

For the no-channel model, estimated values of the pool-
ing exponent " ranged between 2 and 3. Among high
quality fits (error G 1.2 dB), the mean " was 2.58 (SD =
0.18, n = 21). As we will see in greater detail below,
estimates of " interact with the presence and size of the
spatial aperture. Without an aperture, high quality fits of
" average 2.7 (SD = 0.02, n = 7) while with an aperture
the average was 2.52 (SD = 0.19, n = 14).
In their early study of spatial summation, Robson &

Graham (1981) found that both foveal and peripheral re-
sults were predicted best with an exponent of 3.5. The
reason for the discrepancy between their result and ours is
not clear; although they did not include an aperture, they
used empirical estimates of the decline in sensitivity with
eccentricity, which have a similar effect.
The estimates of " do vary somewhat with the CSF. In

Figure 16 we show the summation exponents " estimated
for the no-channel model for each CSF, plotted versus the
estimated size, A. For all except the poorly fitting DoG,
the variations in " are modest. But the reciprocity be-

Figure 14. Best-fitting version of each contrast sensitivity filter

(CSF). Other conditions: no channels, fixed oblique effect,

Gaussian aperture, " = free.

Figure 15. Derivatives of the nine contrast sensitivity filter (CSF)

functions in the neighborhood of zero.
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tween these two parameters " and A is striking. We return
to this reciprocity in the following section.

Spatial aperture

The best fit of the no-channel model is obtained when an
aperture is included, as shown by the black open circles in
Figure 17. However, the fit is only slightly degraded when
the aperture is removed (filled red circles). However, the
removal of the aperture results in a change in estimate of
" from 2.39 to 2.70 (averaged over all CSF functions
except DoG; SD = 0.06 and 0.02, respectively). This
suggests that the aperture and a higher " both serve to
reduce the efficiency of spatial summation. This notion is
confirmed when " is fixed at 2. The absence of an aperture
now causes a marked increase in error (red filled squares),
while the presence of an aperture yields a fit which is only
slightly poorer than when " is free to vary (black open
squares).
This observation is also consistent with the behavior

of the estimated values of the aperture size A, when " is
free or when it is fixed at 2. In the latter case, inefficient
summation must rely on the aperture, so a relatively small
size is estimated (A = 0.364 degrees, SD = 0.003), while
in the former case a " greater than 2 can do the same job,
so a larger aperture is found (A = 0.615 degrees, SD =
0.06) (in both cases, averaged over all CSFs except DoG).
A final observation on the trade-off between " and A

is provided in Figure 18. Here we have fit the standard
model, but fixed " at a particular value between 2 and 3,
and re-estimated all remaining parameters. We plot the
parameter A and the error. This shows that as " increases,

the estimated value of size A also increases, so that at a
" of 3 the aperture is effectively absent. This is further
evidence that " and A both act to limit the efficiency of
spatial summation.
To reiterate, the results show that the visibility of large

targets relative to small is less than would be predicted by
simple energy summation. This discrepancy can be cor-
rected in two ways: either by using a summation exponent
larger than 2 or by introducing a spatial aperture. This
observation has both theoretical and practical implica-
tions. From a theoretical point of view, it suggests that
at least some of the theoretical justification for higher ex-
ponents may have been misplaced, and that consequently
models (such as template matching) that assume an expo-
nent of 2 may be more tenable than previously supposed.
We will return to this point in the discussion.
From a practical point of view, an exponent of 2 lends

itself to mathematical and computational efficiencies, and
these results suggest it can work almost as well as a higher
exponent, provided that a smaller aperture is used.
Although the spatial aperture yields the best model

fits, we may ask how it compares to prior estimates of
the decline in sensitivity with eccentricity. As noted
earlier, this decline is highly dependent upon the spatial
frequency of the target. Robson & Graham (1981) show
that the decline is approximately 0.5 dB per cycle,
independent of frequency. When " is free to vary, the
average size of the aperture is 0.615 degrees. This
corresponds to a decline by a factor of 2 in 0.724 degrees.
This rate of decline is consistent with Robson and
Graham’s rule at a spatial frequency of 16.6 cycles/
degree. This is well within the range of ModelFest
frequencies, which suggests a compromise between a
larger aperture (suitable for lower frequencies) and a
smaller one (suitable for higher frequencies).

Figure 17. Effect of contrast sensitivity filter (CSF), aperture, and "

on RMS error for the no-channel model. Other conditions: fixed

oblique effect.

Figure 18. Trade-off between summation exponent " and the

aperture size, A. The value of " was fixed and other parameters

re-estimated. The estimated value of aperture size A is plotted

against the fixed value of ". Other conditions: HPmH contrast

sensitivity filter (CSF), fixed oblique effect, no channels.
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This outcome may be the result of the absence in the
ModelFest data set of any large stimuli. They therefore
cannot constrain the summation behavior outside of a
degree or two. Combined with the evident reciprocity
between " and size A, a reasonable conclusion is that
parameter estimates of either " or A should be adopted
with caution. Further research will be required to
constrain better these two mechanisms for restricting
foveal summation.

Channels

In the preceding sections we considered aspects of the
fit of the no-channel model; here we consider models that
include channels. Figure 19 shows the RMS error for var-
ious combinations of channels, an aperture, and the pooling
exponent ". Before discussing this figure further, we note
that if the channels consist of an orthonormal transform,
whose individual kernels were orthogonal and whose joint
effect has no influence on contrast energy, then when " = 2,
introduction of channels can have no effect. The Gabor
channels that we use do not quite meet these conditions,
but approximate them, so we should expect little effect of
channels when " = 2. And indeed, the square symbols in
Figure 19 confirm this expectation.
The square symbols for " = 2 also reaffirm the

observation made above regarding the trade-off between
" and the aperture: either an aperture or " 9 2 is required
to produce a good fit. If both are absent (solid red squares),
the error doubles from about 1 to 2 dB.

When " is free to vary (circular symbols), the addition
of channels produces a modest but significant improve-
ment in the fit. The error declines by 0.26 dB when the
aperture is present (open red circles), and about 0.18 dB
when it is not (solid red circles). The estimated values
of " are higher when channels are present (2.87 with ap-
erture, 3.40 without) than when they are absent (2.40 with
aperture, 2.71 without) and also show some of the trade-
off between " and aperture.
The results in Figure 19 are for the LSI CSF. The same

general pattern is observed for the other CSF functions,
although the advantage provided by the channels depends
somewhat on the CSF. Error as a function of CSF is
plotted in Figure 20 for four models: the channel model
with " free or fixed at 2, and the no-channel model with "
free or fixed at 2, in all cases with an aperture. As noted
above, when " = 2, we expect little difference between
channel and no-channel models (red and black squares)
and this is borne out here.
When " is free to vary, addition of channels results in a

reduction of error for the best CSFs of about 0.25 dB
(black versus red circles).
Some insight into the role of channels in reducing

the error is gained from Figure 10, where it can be seen
that the biggest change is for stimuli 35 (noise) and 43
(natural image). The advantage of channels for these two
stimuli may be that they are broadband, and that channel
models correctly exhibit inefficient summation over
frequency.
We should note that no effort has been made to optimize

the channel parameters of the channel model; the parame-
ters used were consensus values drawn from the literature
(Table 2). One aspect of the particular channel model used
should also be noted. Although channels are implemented
that extend as low as 0.9375 cycles/degree, there is no
channel at 0 cycles/degree. Thus, targets such as the
Gaussian blobs must be detected by channels centered

Figure 19. The role of channels, aperture, and pooling exponent "

in fit of models. Other conditions: fixed oblique effect and LSI

contrast sensitivity filter (CSF). All effects of ", and all differences

at " = free, are significant at the 0.005 level (Appendix E).

Figure 20. Error for channel and no-channel models. Other

conditions: fixed oblique effect and Gaussian aperture.
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at nonzero frequencies. It is possible that a channel model
with a channel at zero frequency would provide a still
better fit.

Normalized RMS error

To this point we have expressed performance of each
model in terms of RMS error. A measure which takes into
account the number of parameters is given by the norma-
lized RMS error, defined here as

NRMS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

J � N
~ðtj � mjÞ2

r
: ð21Þ

where N is the number of parameters of a model. In us-
ing this measure, we do not treat the addition of channels or
the oblique effect as adding a parameter because no param-
eters were estimated in those cases. When comparisons are
based on this measure, the best-fitting models are gener-
ally those with channels, a fixed oblique effect, a Gaussian
aperture, and " 9 2. To allow additional comparisons, the
fifty conditions yielding the lowest NRMS values are shown
in Table 4.

Discussion

Theoretical issues

In this discussion we draw a distinction between a
metricVby which we mean a particular computational for-
mula for predicting target thresholdsVand a modelVby
which we mean a theoretical conjecture about particular
mechanism or mechanisms that play a role in detecting
the targets. To this point we have focused exclusively on
metrics. Now we attempt to draw some connections be-
tween models and metrics.
Models for visual detection have proposed a great va-

riety of mechanisms: optical blurring, cone sampling, trans-
ducer noise, transducer nonlinearities, multiple channels
of precortical filtering (e.g., magno- versus parvo-cellular
and off- versus on-center), and oriented, narrow-band re-
ceptive fields at the cortical level. Mechanisms may vary
according to eccentricity, and they may include noise with
a nonwhite spectrum and noise that is stimulus related.
Models have also adopted various mechanisms for cat-
egorizing the stimuli into those that contain a signal and
those that do not. For example, the observer may make
the optimal decision based on the corrupted sensory in-
formation available, or may have uncertainties about the
stimuli or have other nonoptimal decision processes, such
as template noise, noisy category boundaries, and subop-
timal summation. In most models, particular mechanisms

have been proposed to account for particular empirical
results, but the need for the mechanism in the presence of
other mechanisms has rarely been demonstrated.
The image-based metrics we have tested can say little

about the need for any of the above mechanisms, because
other mechanisms can substitute in particular situations, as
demonstrated by the trade-off between aperture and spatial
summation exponent shown above.
On the other hand, some proposed models do predict

that one of the metrics we have tested will predict contrast
thresholds. Such models must have contrast sensitivity
frequency effects represented by an initial linear filter but
may differ as to whether they need channels and what sum-
mation rule is required. The latter is usually a variant of
four general types: peak detectors, probability summation,
energy detection, and template matching.

Channels

Of the metrics we have evaluated, the best fit is provided
by the Gabor channel metric, especially when combined
with the Gaussian aperture. We speculate that an even
better fit might be provided by an aperture size that differs
for each channel (Robson & Graham, 1981). We have
noted above that channels may improve the fit by reduc-
ing the efficiency of summation over frequency for broad-
band targets, such as the noise image and natural image.
The channels here may also be helping to account for the

effects of unrelated mechanisms. Position uncertainty, for
example, causes low-frequency Gabor images to be de-
tected more efficiently than high-frequency Gabor targets
of equal size (Ahumada, 2002; Burgess & Ghandeharian,
1984). The channel model can account for this effect
through linear summation within a small, high-frequency
mechanism and weaker summation across several such
mechanisms.
The Gabor channel metric might also mimic the effects

of other types of channels, such as line or local edge de-
tectors. Note that while both models of Figure 10 predict
that the edge (30) should be more detectable than the line
(31), the actual thresholds are nearly identical.

Energy detection

A metric in which " = 2 is generically described as
an energy model. Energy models predict that at threshold
all targets have the same filtered contrast energy. Such
models can arise from several different mechanisms. In the
energy-only model (Manahilov & Simpson, 2001), tar-
gets are filtered, their energy collected, and noise added
to account for the variability of detection. Manahilov &
Simpson (2001) have shown that the energy-only model
is consistent with their data on summation between Gabor
patches with frequencies a factor of three apart. As we
have shown, the energy metric (without an aperture) is not
consistent with the ModelFest data. The energy metric
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Oblique Aperture Channels " CSF RMS N NRMS

Fixed Gaussian Gabor Free HPmH 0.772 7 0.844

Fixed Gaussian Gabor Free LP 0.787 6 0.848

Fixed Gaussian Gabor Free LSI 0.763 13 0.914

Fixed Gaussian Gabor Free HPmG 0.867 7 0.948

Fixed Gaussian Gabor Free EmG 0.881 6 0.950

Fixed Gaussian Gabor Free YQM 0.966 6 1.041

Fixed Gabor Free LSI 0.903 12 1.064

Fixed Gaussian Gabor Free HSmG 1.024 6 1.104

Fixed Gaussian Gabor Free MS 1.036 6 1.117

Fixed Gaussian Free HPmH 1.033 7 1.129

Fixed Gaussian Gabor Free HmH 1.050 6 1.132

Fixed Gaussian Free HPmG 1.047 7 1.144

Fixed Gaussian Gabor 2 LP 1.080 5 1.148

Fixed Gaussian Free YQM 1.069 6 1.153

Fixed Gaussian Free EmG 1.075 6 1.159

Fixed Gaussian Gabor 2 HPmH 1.083 6 1.168

Fixed Gaussian Free LP 1.092 6 1.177

Fixed Gaussian Free HSmG 1.096 6 1.181

Fixed Gaussian Gabor 2 EmG 1.111 5 1.181

Fixed Free HPmH 1.098 6 1.183

Fixed Free HPmG 1.098 6 1.184

Fixed Free EmG 1.122 5 1.193

Fixed Gaussian Free HmH 1.110 6 1.197

Fixed Free LP 1.133 5 1.206

Fixed Gaussian 2 HPmH 1.122 6 1.209

Fixed Gaussian 2 YQM 1.139 5 1.211

Fixed Gaussian Gabor 2 YQM 1.149 5 1.222

Fixed Gaussian Free LSI 1.024 13 1.226

Fixed Free YQM 1.154 5 1.227

Fixed Gaussian 2 HPmG 1.142 6 1.231

Fixed Gaussian 2 HSmG 1.157 5 1.231

Fixed Gaussian Gabor 2 LSI 1.046 12 1.232

Fixed Gaussian 2 HmH 1.162 5 1.236

Gaussian Free HPmH 1.137 7 1.242

Fixed Gaussian Gabor 2 HSmG 1.171 5 1.246

Fixed Free HSmG 1.189 5 1.264

Fixed Gaussian 2 EmG 1.191 5 1.266

Gaussian Free EmG 1.175 6 1.267

Gaussian Free YQM 1.176 6 1.267

Fixed Gaussian Gabor 2 HmH 1.198 5 1.274

Fixed Free LSI 1.083 12 1.275

Gaussian Free LP 1.184 6 1.276

Fixed Gaussian 2 LP 1.207 5 1.283

Fixed Free HmH 1.215 5 1.293

Fixed Gaussian Free MS 1.201 6 1.295

Fixed Gaussian 2 LSI 1.100 12 1.296

Gaussian Free HSmG 1.203 6 1.297

Fixed Gaussian 2 MS 1.230 5 1.309

Gaussian Free HmH 1.217 6 1.312

Table 4. The fifty conditions yielding the lowest values of NMRS. Empty cells indicate that a component was absent. CSF = contrast

sensitivity filter.
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with an aperture, while not as good a fit as the channel
model, is still consistent with the data.
Manahilov & Simpson’s (2001) results were for patches

placed 7.5 degrees above fixation and are in disagreement
with those from foveal studies (Graham & Nachmias,
1971; Graham & Robson, 1987; Watson, 1982; Watson &
Nachmias, 1980). It is possible that their peripheral results,
because they are from a more homogeneous region of
retina, do not require an aperture.

Probability summation

The generalized energy metric, without channels but with
" 9 2, may be regarded as the prediction of a probability-
summation-only model, where the probability of detection
is the probability that any of the noisy outputs of the filter
is greater than a constant (Quick, 1974; Robson & Graham,
1981). Note that the probability summation model uses
the maximum rule (summation with " = 1) but the pre-
dictive metric for the model has " G 1.
With an aperture, this is the best-fitting no-channel met-

ric. However, its advantage over the energy metric with
an aperture is modest (Figure 17). And we have noted that
this advantage may arise due to the inclusion of complex
stimuli for which a template cannot be formed.

Peak detection

These data provide conclusive evidence that a simple
peak detector on the filter output is not a tenable metric for
foveal contrast detection. This is evident in the point
labeled BCSF[ in Figure 9, which shows that CSF filter
followed by a peak detector yields an error of about
4.5 dB, over five times the error of the best-fitting model.
The Gabor channel metric with a peak detector has an
RMS error of 2.43 dB, indicating that even the addition
of these other elements cannot redeem the peak detector.
Models with peak detectors must include noise before
this stage so that the metric beta is less than infinity.

Template models

Models that are indifferent to the particular target pre-
sented have been previously rejected because they do not
perform as well as human observers in the presence of noise
(Eckstein, Ahumada, & Watson, 1997) and they do not pre-
dict the classification images that result (Shimozaki, Eckstein,
& Abbey, 2005).
In contrast, template models assume that the observer

constructs one or more templates representing the signal
and compares the internal representation of the stimulus
with the templates.
If the matching rule is computing the dot product of

stimulus and a single template and comparing the result
with a criterion, and if the noise is additive white Gaussian
and if the templates all correlate equally well with their

associated signals, then the stimulus energy will predict the
detectability. (When the correlations are one, the template
model procedure is the ideal observer for a signal known
exactly.) That is, like the energy-only model, a template
model can predict that thresholds will be at a constant fil-
tered contrast energy.
Perhaps the first explicit description of the template

or matched filter as a model of contrast detection is due
to Hauske (1974; Hauske, Wolf, & Lupp, 1976), who
noted that it could explain results of subthreshold sum-
mation of lines, edges, and bars. Recent work on classi-
fication images has given additional credence to the
template model (Abbey & Eckstein, 2002; Eckstein &
Ahumada, 2002; Levi & Klein, 2002; Murray, Bennett,
& Sekuler, 2002; Solomon, 2002), as have experiments
on perceptual learning (Beard & Ahumada, 1999; Lu &
Dosher, 2004).
The template models suggest that there should be diver-

gences from the energy metric in the ModelFest data. As
mentioned above, position uncertainty for high-frequency
narrow band stimuli essentially means that both the sine
and cosine phase Gabor templates are needed and that there
will be a drop in performance for these stimuli relative to
lower frequency stimuli. It also seems unlikely that the
observer would construct a template for the noise stim-
ulus that correlates as well with the noise itself as other
templates do with their images, so worse performance
would also be expected for the noise stimulus.
When no aperture is included, the energy metric has a

significantly worse fit than either channel or generalized
energy metrics (Figure 17). When both the energy and the
probability summation metrics have an aperture, the energy
metric fits slightly worse (see Table 6), and the best-fitting
exponent is still greater than 2. Within the template
framework, multiple explanations are possible for this re-
sult: more templates could be used, resulting in increased
uncertainty (Eckstein et al., 1997); the template could cor-
relate worse with the signal image, an effect known by the
term sampling efficiency (Legge, Kersten, & Burgess, 1987);
or the template might be noisier (McIlhagga & Paakkonen,
1999), possibly from slower learning (Beard & Ahumada,
1999). We conclude that a template model, with an aperture
and with caveats regarding the perfection of the templates,
is a plausible explanation of the ModelFest results.
Channels, which are supported by physiological data

(De Valois, Albrecht, & Thorell, 1982; Ringach, Hawken,
& Shapley, 2002), can coexist with a template model: the
template is formed through suitable weighting of channel
outputs. In this case, the channels would play no role in
the detection except perhaps in the template sampling
efficiency. One nice feature of the contrast energy metrics
is that they can be computed in other domains, such as
Fourier, DCT, or wavelets. Even nonorthogonal domains
like the Gabor channels give essentially the same results
(note the similarity of the " = 2, channel and no-channel
curves in Figure 20).

Journal of Vision (2005) 5, 717–740 Watson & Ahumada 734



A template model can also coexist with a probability
summation model: for relatively compact and simple
stimuli, a template is formed and energy summation is
observed, while for complex or dispersed stimuli (over
time or space) for which a template cannot be formed,
probability summation is observed. This raises the question
of limits on template formation, which are a subject for
further study.

Limitations of ModelFest data set

It is important to remember that the analyses presented
here depend on the selection of stimuli adopted in the
ModelFest experiment. For example, we have noted that
broadband stimuli are difficult to fit without a channel model;
removing these stimuli, or adding many more, could have
altered our conclusions. Likewise we have noted that a
template model is likely to be less sensitive to complex
targets (such as a noise sample); including fewer or more
of these would bias conclusions towards or away from
such a model.
In addition, the ModelFest stimuli do not adequately

test or constrain certain aspects of a complete model of con-
trast detection. For one, the stimuli were confined to 2.13 �
2.13 degrees and thus do not test spatial summation (or
the nature of the aperture) beyond a narrow foveal range.
Second, as we have noted above, the data do not constrain
the oblique effect very well.
Another drawback of the ModelFest stimuli is that they

largely confounded size and eccentricity: stimuli were al-
ways centered on fixation, and when enlarged, they grew
into the periphery. Furthermore, except for the disk, they
were always windowed by a Gaussian aperture. This led
to the confounding of the spatial aperture of the metric
and the summation exponent in our results. This confound
might be removed by, for example, exploring summation
among annular rings of a given frequency.
A further omission of the ModelFest group was the fail-

ure to report individual trial data. The shape of the psy-
chometric function may be diagnostic for some models.
For example, uncertainty is associated with a steepening
of the psychometric function. Although single threshold
runs do not usually have enough data to estimate psycho-
metric function slopes, good estimates might have been
obtained from multiple runs.
Because there are so many mechanisms involved

in the possible models, and so few dimensions of varia-
tion in the stimuli, measurements of particular mechanism
properties must be confounded. The addition of a small
amount of background noise would have helped uncon-
found these measurements (Pelli, Levi, & Chung, 2004). A
striking aspect of the data is the 10-dB range of observer
sensitivities. We cannot say whether this is mainly due to
internal noise variations, sampling efficiency variations,
uncertainty variations, or variations in other mechanisms.
Finally, we note that these data do not address visibility

of moving or rapidly varying targets, whose sensitivity

is known to differ systematically from stationary targets
(van Nes & Bouman, 1967), nor do they address variations
in sensitivity with changes in background illumination
(van Nes, Koenderink, Nas, & Bouman, 1967).

Contrast sensitivity functions

We have found that a range of specific CSF formulae is
about equally good in fitting the average ModelFest data.
For well-fitting no-channel models, these functions have a
peak value of about 220 at 3.34 cycles/degree (" free) or
290 at 3.44 cycles/degree (" = 2) (Table 5). Note that
these values, especially the peak gain, are not independent
of the other parameters used in the metric.
Because we have only considered fits to the average

data, we make no claims about fits to individual observers.
Elsewhere, a curve that fits the average well has been found
to be poor at fitting many individuals in a population of
older observers (Rohaly & Owsley, 1993).
We also note that the CSF employed here is used to

construct a two-dimensional filter that is then used to filter
the stimulus image. In addition, it operates in conjunction
with other model elements, such as the oblique effect, the
spatial aperture, and nonlinear pooling. As such, it cannot
be directly compared to previous curve fits to grating or
Gabor thresholds on a plot of contrast versus spatial fre-
quency. Nonetheless, we note that the resulting functions
(e.g., HPmH) clearly do provide a good curve fit to fixed
size Gabor thresholds (Figures 11 and 13).
Some caution is warranted in using the parameters de-

rived here to describe a larger population of observers.
The collection of 16 ModelFest observers were not selected
to be representative of any particular population. Exami-
nation of Figure 2 and of the RMS0 value of 3.46 dB
(Equation 2) shows that there is considerable variation
with the ModelFest population.

Standard metrics

A simple metric of the visibility of foveal contrast
patterns would be valuable in a wide variety of applica-
tions. In such a metric, simplicity of implementation and
application must be balanced with accuracy. While the
channel metric provides the most accurate results, the
magnitude of improvement, especially when compared to
the variability among observers (Figure 2), is modest.
Further, the channel metric involves considerably more
computation (about 3�) and is less robust, in the sense
that its performance may depend upon detailed aspects of
the implementationVfor example, the treatment of bor-
ders and the zero frequency signal.
For these reasons we propose a no-channel metric as a

standard. In particular, we propose the no-channel metric
that includes a Gaussian aperture, the fixed oblique ef-
fect, the HPmH CSF, and " 9 2. The parameters of this
metric are shown in one line of Table 5 and are la-
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beled Standard A. Because it provides nearly as good a fit,
and is computationally much simpler, we also provide
second Standard B in which " = 2 (orange highlighting).
The user’s particular application will determine which of
these two standards is appropriate. We hope that these
standards will provide useful benchmarks for both future
theoretical modeling as well as practical calculations of
foveal spatial pattern thresholds.

Conclusions

We have explored the quality of fit yielded by a wide
range of models and parameter settings. We have shown
that the ModelFest data set can be fit quite well with rel-
atively simple models. Over the entire set, the residual
error for the best model is 0.76 dB. This best model
includes a spatial aperture, an oblique effect, a summation
exponent of about 2.9, Gabor channels, and a CSF that is
a linear interpolation between 11 discrete values.
We have found that a range of specific formulae for the

CSF fits nearly as well as the linear interpolation CSF, but
with many fewer estimated parameters.
We have found that models which lack channels fit less

well, but that the increase in error is small. This suggests that
practical models may dispense with the added com-
plexity of channels.
We have found a profound trade-off between the sum-

mation exponent " and the sizes of the spatial aperture.
About the same fit is obtained by including a spatial aper-
ture, or an exponent grater than 2. We interpret this as a
consequence of both serving to restrict the efficiency of
spatial summation.
The success of models with exponents at or near 2 (when

combined with an aperture) provides support for a template
model of pattern detection.
We have proposed a particular standard metric for foveal

contrast detection, which includes an oblique effect, a spe-
cific CSF formula, a Gaussian aperture, a spatial pooling
exponent greater than 2, but no channels. We also propose
a second metric in which the spatial pooling exponent is
equal to 2. We hope these standards will provide useful mea-
sures in practical applications and an informative bench-
mark for theoretical analyses.

Appendix A: ModelFest stimuli

We have provided a file modelfest-stimuli containing
all of the stimuli used in this experiment. The images
are provided in a single binary file of 43 � 256 � 256 =
2,818,048 bytes. The ordering of bytes with respect to
pixels is left to right, top to bottom, and image 1 to im-
age 43.

Appendix B: ModelFest data

The file modelfestbaselinedata.csv contains the Model-
Fest Baseline Dataset. The file is in text form, in comma-
separated-value (CSV) format. This format is easily read
by many applications such as Microsoft Excel. The struc-
ture of the file is one line per subject. The first value in
each line is the observer initials; the remainder of line
is 172 numbers, corresponding to four thresholds for
each of the 43 stimuli. The numbers indicate the log10 of
the threshold contrast and are rounded to three decimal
places.

Appendix C: Notation

Here we provide a summary of the notation used in this
paper.

Term Definition Units

L(g) Luminance as a function

of gray level g

cd/m2

L0 Mean luminance cd/m2

c Contrast

g Digital graylevel

ts,o,r Threshold for stimulus s,

observer o, and

replication r

dB contrast

O(f,�) Oblique effect filter

f Spatial frequency cycles/degree

� Orientation radians

+ Oblique effect parameter cycles/degree

1 Oblique effect parameter cycles/degree

A(r ) Aperture

r Radial distance from fixation degree

A Size (standard deviation)

of Gaussian aperture

degree

" Summation exponent

px, py Width and height of each pixel

in the input image

degree

Nx, Ny Number of rows and columns

in the input image

pixels

rx,y Processed pixel value

S(f ) CSF

f0 High-frequency scale, used in

several CSFs

cycles/degree

f1 Low-frequency scale, used

in several CSFs

cycles/degree

a Parameters used in several

CSFs, usually attenuation

at low frequencies

p Parameter used in several CSFs
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Appendix D: Model parameters

Here we provide parameters for the no-channel model with various CSF formulae. We show both metrics in which " was
estimated and in which it was fixed at 2. Within these two categories, conditions are sorted by NRMS. The proposed
standards A and B are highlighted. See the definition of each CSF for a definition of the parameters. We also show two
derived parameters for each function: the peak gain (max) and the peak frequency ( fmax).

Standard CSF RMS NP NRMS Gain f0 f1 a " p A fmax max

A HPmH 1.0329 7 1.1288 373.08 4.1726 1.3625 0.8493 2.4081 0.7786 0.6273 3.45 217.3

HPmG 1.0468 7 1.1440 289.45 5.3459 1.9793 0.7983 2.4054 0.8609 0.6311 3.32 221.8

YQM 1.0694 6 1.1529 466.38 7.0629 0.6951 7.7712 2.3557 0.5790 3.32 219.8

EmG 1.0755 6 1.1594 360.24 7.5237 1.8972 0.8155 2.4725 0.7071 3.18 218.4

LP 1.0916 6 1.1767 214.46 3.2316 0.7127 2.4902 0.8081 0.7118 3.50 213.6

HmG 1.0959 6 1.1814 258.17 6.8432 1.7483 0.7778 2.3277 0.5579 3.20 225.3

HmH 1.1104 6 1.1970 271.71 6.7770 1.0461 0.8082 2.2950 0.5311 3.39 223.8

MS 1.2009 6 1.2946 551.29 1.7377 1.0465 2.3643 0.6937 0.5702 3.06 215.0

DoG 1.7830 6 1.9222 272.74 15.3870 1.3456 0.7622 1.9960 0.3548 2.90 261.2

B HPmH 1.1216 6 1.2091 501.20 4.3469 1.4476 0.8514 2 0.7929 0.3652 3.62 289.0

YQM 1.1387 5 1.2113 621.38 7.0856 0.7285 8.0721 2 0.3656 3.46 284.0

HPmG 1.1416 6 1.2307 359.87 6.0728 1.9505 0.7931 2 0.9186 0.3655 3.37 292.0

HmG 1.1572 5 1.2310 329.93 6.9248 1.8045 0.7827 2 0.3662 3.29 286.6

HmH 1.1620 5 1.2361 345.78 6.7581 1.1210 0.8128 2 0.3688 3.52 279.4

EmG 1.1905 5 1.2664 504.43 7.6399 1.9788 0.8163 2 0.3635 3.30 302.0

LP 1.2065 5 1.2835 299.21 3.3578 0.7193 2 0.8009 0.3612 3.50 298.9

MS 1.2301 5 1.3085 707.51 2.4887 0.9846 2 0.7748 0.3596 3.41 273.6

DoG 1.7830 5 1.8967 271.70 15.3852 1.3412 0.7615 2 0.3563 2.89 260.3

Appendix E: Statistics

Where two variants of the component model differ only in that in one (M1), a parameter is free to vary while in the other
(M0) it is fixed, we say that the two models are nested, in that M1 is a more general version of (and includes) M0. In such
cases, it is possible to construct simple statistical tests.
If we write SS for the sum of squares of the residual error for each hypothesis, then the statistic.

q ¼
�
SS0 � SS1

df 0 � df 1

�
= SS1df 1

ðA1Þ

will have the F ratio distribution with 1 and df1 degrees of freedom. In the table, we provide 1 � p values for various nested
comparisons. All except the final test are significant at the .05 level.

M0 M1 1 � p Channels Aperture " CSF Figure

" = 2 " free .039 No Yes LSI 17

" = 2 " free .015 No Yes HPmH 17

" = 2 " free 0 Yes Yes LSI 19

" = 2 " free .039 No Yes LSI 19

" = 2 " free 0 No No LSI 19

" = 2 " free 0 Yes No LSI 19

A = inf A free 0 No 2 LSI 17

A = inf A free .002 Yes Free LSI 19

A = inf A free .07 No Free LSI 19

A HPmH 1.0329 7 1.1288 373.08 4.1726 1.3625 0.8493 2.4081 0.7786 0.6273 3.45 217.3

B HPmH 1.1216 6 1.2091 501.20 4.3469 1.4476 0.8514 2 0.7929 0.3652 3.62 289.0

Table 5. Parameters and error for the no-channel model with nine contrast sensitivity filter (CSF) functions. Other conditions: fixed oblique

effect, Gaussian aperture. The proposed standards A and B are highlighted. NP is number of parameters, max is the maximum value of the

CSF, and fmax is the frequency at which the peak occurs.

Table 6. Statistical tests of nested comparisons. Columns 4Y7 indicate features shared by both M0 and M1. Column 8 indicates the figure in

which the comparison may be found. CSF = contrast sensitivity filter.
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