Homework 2 Solutions

 

Page 39, #6

 

Class width = 5

 

                                                                            Tree Height

 

Class      Frequency             Class Boundaries                Midpoint                Cumulative Frequency

16-20                100                            15.5 - 20.5                               18                                      100

21-25           122                            20.5 – 25.5                              23                                      222

26-30           900                            25.5 – 30.5                              28                                      1122

31-35           207                            30.5 – 35.5                              33                                      1329

36-40           795                            35.5 – 40.5                              38                                      2124

41-45           568                            40.5 – 45.5                              43                                      2692

46-50           322                            45.5 – 50.5                              48                                      3014

 

 

Page 41, #18

 

# Classes: 5

 

 

Round up to 4 to get final class size

 

                                                                            Pungencies

 

  Class                    f               Midpoint                Relative Frequency             Cumulative Frequency

32 – 35                    2                    33.5                               .1250                                           2

36 – 39                    6                    37.5                               .3750                                           8

40 – 43                    5                    41.5                               .3125                                           13

44 – 47                    2                    45.5                               .1250                                           15

48 – 51                    1                    49.5                               .0625                                           16

 

Class with greatest frequency: 36 – 39

 

Class with smallest frequency:

48 – 51

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Page 42, #26

 

Saturated Fat Intake (in grams)

 


Class        Class Boundaries      Frequency     Cum. Frequency

16 – 24              15.5 – 24.5                    3                              3

25 – 33              24.5 – 33.5                    8                              11

34 – 42              33.5 – 42.5                    7                              18           

43 – 51              42.5 – 51.5                    0                              18

52 – 60              51.5 – 60.5                    2                              20

 

 

 

 

 

 

 

 

 

 

Page 52, #18

 

Stem-and-Leaf Display

for Hay (lbs)

Stem unit:

10

 

 

29

 8

30

 5

31

 9

32

 7

33

 

34

 5

35

 1

36

 

37

 

38

 

39

 0 3

40

 3 9

41

 0 5 9

42

 

43

 

44

 6 8 9

45

 0 5

46

 0 5

47

 9 9

48

 

49

 1

50

 3

 

 

 

 

 

Page 53, #22

 

 

 

Page 63, #18

 

(a)

 

Duration (min) power failure

 

 

Mean

61.15

Median

55

Mode

80, 125

 

(b)

 

Class        Frequency       Cumulative Frequency

12 – 30            4                                      4

31 – 49            6                                      10

50 – 68            2                                      12

69 – 87            3                                      15

88 – 106          3                                      18           

107 – 125        2                                      20

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                  21          40        59        78        97        116

 

 

To answer this part of the question, I created a frequency table (using 6 classes) and made a histogram.  While there are two modes in the upper range of the data (at 80 and 125), the frequency table shows that the class 31-59 has the most data values.  From the histogram, it appears that the data are right-skewed; this is supported by the fact that the mean is greater than the median. The median represents the most “typical” value, since the mean appears to be influenced by extreme values in the right tail.

 

 

Page 63, #20

 

(a)     The mean and median cannot be calculated because the data are ordinal. 

The mode is “Watchful.”

 

        (b)  The mode is the only measure we were able to calculate.

 

 

 

 

 

 

Page 65, #32

To get the mean score for class, use the formula:

 

=82

 

Details: 

Major

w

grade

w*x

sum(w*x)

xbar

Engineering

8

83

664

1968

82

Business

11

79

869

 

 

Math

5

87

435

 

 

 

 

 

 

Page 65, #34

 

First, find the midpoint of the frequency distribution; this is the x value.  Use the formula:

 

=70.14

 

Details:  

Height

f

Midpoint

f*x

sum(f*x)

xbar

63-65

2

64

128

1473

70.14

66-68

4

67

268

 

 

69-71

8

70

560

 

 

72-74

5

73

365

 

 

75-77

2

76

152

 

 

 

 

 

 

 

 

Page 66, #38

 

A histogram created in Excel showed the data to be right, or positively skewed.

 

 

Page 79, #18

 

(a)

                                    Dallas                            Houston

 

Range                                        18.1                                 13

                                                   

Variance                                   37.33                               12.26

 

Standard Deviation                  6.11                                 3.50

 

 

(b)  The data show that there is more variability in the Dallas employees’ salaries than those from Houston.  There is a wider range of in the size of salary among municipal employees in Dallas than in Houston.  Also, two other measures of dispersion support this claim.  It can be seen from the table in part (a) above that the variance is more than three times as large for Dallas employees than for Houston, and the standard deviation for Dallas salaries is nearly twice as large as that for Houston.

 

 

Page 80, #22

 

(a)           (i) has the greatest standard deviation (more values away from the mean), (iii) has the least (most values clustered around the mean).

 

 

(b)  all data sets are centered between 3 & 7, with the same sample size—they differ in their variability about that center.

 

 

Page 81, #26

 

Using the empirical rule, we know that 95% of the data lie within 2s of the mean.  Therefore, we can find the points between which 95% of the data lie using the formula . 

 

               

 

95% of the data lies between $500 and $1900.

 

 

 

 

 

 

 

 

 

Page 81, #28

 

Using k = 2 and applying Chebychev’s Theorem, 75% of the data lie between 48.07 seconds and 56.67 seconds.

 

We find the points between which 75% of the data lie using the same method as in the problem above.  Then, apply Chebychev’s formula to find that of the data fall between the two points.

 

 

Page 91, #16

 

(a)     and (b)

 

Q1 = P25 = 28

Q2 = P50 = 29

Q3 = P75 = 32

 

 

 

(d) One-half of the secondary school teachers who obtained tenure were between the ages of 28 and 32.