Data Presentation, Analysis, & Statistics

Data Management

- Develop a hypothesis
- Design a study
- Collect data
- Graph data

Look for levels and trends

Describe the results (descriptive statistics)

Look at distributions and relationships

Describe the results (descriptive and inferential statistics)

Presentation of Data

- Graphic presentation of data
 - Frequency distribution
 - Graphs
 - Box Plots
- Key elements
 - Title, axis labels, legend
 - Major axis divisions, axis number formats
- Optional elements
 - Values, variation/error bars
 - Secondary axes

Why is it Important to Graph?

Graphing in Excel
Graphing in Excel

Questions to Ask

• Is the graph appropriate for the data?
 - Bar chart, pie chart, line graph, etc.
• Is the data scaled correctly?
 - Raw or normalized data
• Is the graph scaled properly?
 - Consistent if multiple graphs
 - Zero-baseline versus arbitrary baseline

Data Analysis

Types of Data

• Nominal
 - Categorical data without order or value
 - Example: classifications such as etiology, foot type, etc.
• Ordinal
 - Rank ordered (i.e., from a large value to a small value)
 - Difference among values unknown
 - Example: Survey responses such as "happy," and "no preference"
• Interval
 - Rank ordered
 - Difference among values the same
 - Zero does not correspond to minimum value
 - Example: Fahrenheit temperature scale
• Ratio
 - Rank ordered
 - Difference among values the same
 - Zero corresponds to minimum value
 - Example: time or percent correct

Visual Analysis

• Inter and intra-phase analysis
• Level changes
 - Mean
 - Median
• Slope changes
 - Slope of trend line
 - Hand-draw (i.e. split-middle technique)*
 - Compute (i.e. regression fit)
• Other issues
 - Immediate change
 - Latency - a delay in the desired effect

* Richards et al. "Single Subject Research" p. 272

* Richards et al. "Single Subject Research" p. 272
Visual Analysis

- Different methods of visual analysis
 - Mean, median, range, etc.

Visual Analysis

- Complexity of real data

Visual Analysis

- Split-middle technique

Group Statistics

Key Elements

- Statistical analysis tests hypothesis
- Stats do not prove results
 - Statistical analysis performed on NULL hypothesis
- Statistics usually make assumptions
 - Type of distribution (i.e. normal dist.)
 - Independence of variables
 - Variability of the dataset(s)

Types of Statistics

- Descriptive statistics - Characterization of distribution, central tendency, and variability of data
 - Shape of the distribution (i.e., skewness)
 - Frequency of results (i.e., histogram)
 - Central tendency (i.e., mean, median, or mode)
 - Variability (i.e., standard deviation or standard error)
- Inferential statistics - Estimation of population characteristics based upon sampled data
 - Probability (i.e., p-value)
 - Confidence (i.e., confidence interval)
 - Hypothesis testing (i.e., t-test, ANOVA, Chi-Square, etc.)
Descriptive Statistics

• Used to characterize a single dataset
 • Measures of central tendency
 - Mean
 - Median
 - Mode
 • Measures of variability
 - Range
 - Variance
 - Standard deviation

Measures of Central Tendency

• Mean
 - The average number or score in a dataset

• Median
 - The number or score in a dataset above and below which 50% of all other numbers or scores are located

• Mode
 - The number or score that occurs most often in a dataset

Measures of Variability

• Range (R)
 - Distance between the highest and lowest measure
 \[R = x_{\text{max}} - x_{\text{min}} \]

• Percentiles
 - The location of a score within a dataset

• Quartiles
 - The location of the score based on 25% increments

• Variance (V)
 - Average of the squared deviations from the mean
 \[V = \frac{\sum (x - \bar{x})^2}{N-1} \]

• Standard deviation (σ)
 - Square root of variance
 - Often used to represent variability in means
 \[\sigma = \sqrt{V} \]
Measures of Variability

- Variance (V)
 - Average of the squared deviations from the mean
 \[V = \frac{\sum (x_i - \bar{x})^2}{N-1} \]

- Standard deviation (σ)
 - Square root of variance
 - Often used to represent variability in means

\[\sigma = \sqrt{V} \]

Correlation

- Defines the linear relationship between variables
- Correlation coefficients range from +1.0 to -1.0
 - +1.0 = perfect positive correlation
 - 0.0 = no correlation
 - -1.0 = perfect negative correlation

Correlation Coefficient

- Pearson’s Coefficient (r)
 - Most popular measure of correlation
 - Applicable to Ratio/interval data
 - Assumes normal distribution
 - Correlation measured with r-statistic
 \[r = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum (x_i - \bar{x})^2 \sum (y_i - \bar{y})^2}} \]
 - Available in Microsoft Excel

- Spearman Rho (r_S)
 - Applicable to ordinal/nominal data

Correlation in Excel

Step 1: Create chart & input data
Step 2: Compute coefficient
Syntax: =pearson(a1, a2)

Step 3: Evaluate coefficient
Analyze the correlation coefficient

Inferential Statistics

- Also known as “predictive statistics”
- Used to compare n datasets
- Inferential stats allow:
 - Scientifically test a hypothesis
 - Make inferences onto a larger population
 - Influenced by a study design and analysis choices
 - Sample size
 - Data variability
 - Desired probability
 - Potential error
- Inferential statistics depend on collected data
 - Parametric
 - Non-parametric
Statistical Tests

(from Lunsford and Lunsford, 1996)

Probability

- Statistics assess probability
- Level of significance
 - α level, α
 - The probability a measured difference is due to chance
 - $\alpha = 0.05$ (5%) is the typical level of significance
- Power
 - The likelihood of finding true differences
 - Influences on statistical power
 - Sample size
 - Effect size (i.e., "the magnitude of the difference")
 - Data variability
 - Level of significance
 - Power often used to estimate sample size
 - Need effect size, variability, level of significance

Error

- Type I Error
 - A measured significant difference is really due to chance
- Type II Error
 - When no measured difference is really present

Type of data/test

<table>
<thead>
<tr>
<th>Parametric</th>
<th>Non-parametric</th>
</tr>
</thead>
<tbody>
<tr>
<td>Two samples (related)</td>
<td>Paired T-test</td>
</tr>
<tr>
<td>Two samples (independent)</td>
<td>Independent T-test</td>
</tr>
<tr>
<td>Three samples</td>
<td>ANOVA</td>
</tr>
<tr>
<td>Correlation</td>
<td>Pearson correlation coefficient</td>
</tr>
<tr>
<td>Frequency analysis</td>
<td></td>
</tr>
</tbody>
</table>

T-test

- Most common statistical test and most misused
- Used for only two datasets
 - Related samples
 - Independent samples

Basic Statistics in Excel

Step 1: Input data & create chart
Step 2: Compute means (i.e., average)

Note: T-Test can be done in Microsoft Excel
Basic Statistics in Excel

Step 3: Compute median values
Syntax: \(\text{median}(n_1, n_2, n_3, \ldots, n_k) \)

Step 4: Compute T-test p-value
Syntax: \(\text{ttest}(a_1, a_2, \text{tails}, \text{type}) \)

Step 5: analyze data
5a) Compare the means
5b) Compare the medians
5c) Analyze the p-value

Analysis of Variance

- Three or more datasets
- Significance requires follow-up ("post-hoc") test
 - Tukey Honestly Significant Differences (HSD)
 - Neuman-Kuels Test
 - Scheffe Test
 - Bonferroni Correction

Note: ANOVA can be done in Excel, but post-hoc test requires additional software or knowledge of appropriate formulas

Significance

- Statistical significance
 - Proper study design
 - Proper statistical analysis
 - Requires interpretation
 - What does significance mean?
 - Is statistical significance clinically relevant?

- Clinical significance
 - A difference that promotes a clinical change
 - Moves a patient outside daily fluctuations
 - Unfortunately, we do not often know daily changes
 - 5 - 10% is likely a good estimation

Suggested Reading

- Portney & Watkins
 - Chapter 17 – Descriptive Statistics
 - Chapter 18 – Statistical Inference
 - Chapter 19 – the T-Test
 - Chapter 20 – Analysis of Variance
 - Chapter 21 – Multiple Comparison Tests
 - Chapter 22 – Nonparametric Tests for Group Comparisons
 - Chapter 23 – Correlation
 - Chapter 24 – Regression
 - Chapter 25 – Measures of Association for Categorical Variables (Chi-Square)
 - Chapter 26 – Statistical Measures of Reliability
 - Chapter 27 – Statistical Measures of Validity
 - Chapter 28 – Epidemiology: Measuring Risk
 - Chapter 29 – Multivariate Analysis
 - Chapter 30 – Data Management

- Richards et al.
 - Chapter 13 – Methods for Analyzing Data

For Next Week

- Class Discussions
 - Use rubric as template

- Discussion schedule (30 min each)
 - 5/07 – Megan, Emily
 - 5/14 – Frances, Jed, Chatelaine
 - 5/21 – Sarah, Stephen, Jennifer

- Final proposal
 - Due no later than Friday, June 1st, 5pm
 - Electronic copies