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STAT 542: MULTIVARIATE STATISTICAL ANALYSIS
1. Random Vectors and Covariance Matrices.
1.1. Review of vectors and matrices. (The results are stated for

vectors and matrices with real entries but also hold for complex entries.)

An m x n matrix A = {a;;} is an array of mn numbers:

a1 ... Qin
A=
Am1  --- Omn
This matrix represents the linear mapping (= linear transformation)
A:R" —=R™
x — Az,

(1.1)

where x € R"™ is written as an n X 1 column vector and

n
ain ... Qip T D et 0155

Ax = cR™.

Am1 .- Qmn T, 2?21 Ui T
The mapping (1.1) clearly satisfies the linearity property:
A(az + by) = aAx + bBy.
Matrix addition: If A = {a;;} and B = {b;;} are m x n matrices, then
(A+ B)ij = aij + bi;.

Matrix multiplication: If A is m x n and B is n x p, then the matriz
product AB is the m x p matrix AB whose ij-th element is

n

(12) (AB)Z] = Zaikbkj.

k=1

Then AB is the matrix of the composition R? B rn A R™ of the two
linear mappings determined by A and B [verify]:

(AB)x = A(Bx) Vx € RP.
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Transpose matrix: If A = {a;;} is m x n, its transpose is the n x m
matrix A’ (sometimes denoted by A’) whose ij-th element is a;;. That is,
the m row vectors (n column vectors) of A are the m column vectors (n
row vectors) of A’. Note that [verify]

(1.3) (A+B) =A + B,
(1.4) (AB) = B'A’ (A:m xn, B:nxp);
(1.5) (A~Y = A)H)! (A :n x n, nonsingular).

Rank of a matrix: The row (column) rank of a matrix S : m X n is the
dimension of the linear space spanned by its rows (columns). The rank of
A is the dimension 7 of the largest nonzero minor (= r x r subdeterminant)
of A. Then [verify]
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5 E
33
S

-~
3
N
-

-

column rank(A

A

IAIAIA

:sgsa
=%
3
3

rank
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Furthermore, for A:m x n and B : n X p,
rank(AB) < min(rank(A), rank(B)).

Inverse matrix: If A : n x n is a square matrix, its inverse A=1 (if it
exists) is the unique matrix that satisfies

AA™ = A4 =],

where I = I, is the n x n identity matrix diag(1,...,1). If A~! exists then
A is called nonsingular (or regular). The following are equivalent:

2
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(a) A is nonsingular.

(b) The n columns of A are linearly independent (i.e., column rank(A) = n).

Equivalently, Ax # 0 for every nonzero x € R"™.

(c) The n rows of A are linearly independent (i.e., row rank(A4) = n).

Equivalently, 2’ A # 0 for every nonzero x € R".
(d) The determinant |A| # 0 (i.e., rank(A) = n). [Define det geometrically.]

Note that if A is nonsingular then A~! is nonsingular and (A=1)~! = A.

If A: m xm and C : n X n are nonsingular and B is m X n, then [verify]
rank(AB) = rank(B) = rank(BC).

If A:n xnand B:n xn are nonsingular then so is AB, and [verify]

(1.6) (AB)"' =B71'A"1

If A= diag(dy,...,d,) with all d; # 0 then A~' = diag(d;",...,d; ).

Trace: For a square matrix A = {a;;} : n X n, the trace of A is

(1.7) th:EZ;%“

the sum of the diagonal entries of A. Then

(1.8) tr(aA+bB) =atr(A)+ btr(B);
(1.9) tr(AB) = tr(BA); (Note: A:m xmn, B:nxm)
(1.10) tr(A") = tr(A). (A:nxn)

Proof of (1.9):

r(AB) =37 (AB)i = 377, (32, aubei)

= 2:21 <Z:1 bkiaik) - Zzzl(BA)kk = tr(BA).

3
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Determinant: For a square matrix A = {a;;} : n X n, its determinant is

A=Y em]]_ ane
= +Volume(A([0, 1]™)),

where 7 ranges over all n! permutations of 1,...,n and ¢(w) = 41 according
to whether 7 is an even or odd permutation. Then

(1.11) |AB| = |A| - |B| (A,B:n xmn);

(1.12) A =14

(1.13) [A'| = [Al;

(1.14) |A| = szl a;; if A is triangular (or diagonal).

Orthogonal matrix. An n x n matrix I' is orthogonal if
(1.15) I'T =1.

This is equivalent to the fact that the n row vectors of I' form an orthonor-
mal basis for R"™. Note that (1.15) implies that I = I'"!, hence also
['T" = I, which is equivalent to the fact that the n column vectors of I" also
form an orthonormal basis for R".

Note that I" preserves angles and lengths, i.e., preserves the usual inner
product and norm in R": for x,y € R",

(Tz, Ty) = (Tz)(Ty) = 2’ T'Ty = 2’y = (x, y),
SO
HI’xH2 =Tz, I'z) = (x, z) = HxH2

In fact, any orthogonal transformation is a product of rotations and reflec-
tions. Also, from (1.13) and (1.15), |T'|? = 1, so |TI'| = +1.
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Complex numbers and matrices. For any complex number ¢ = a+1b €
C, let ¢ = a — ib denote the complex conjugate of c. Note that ¢ = ¢ and

cé = a® + b* = |c|?,

cd = éd.

For any complex matrix C' = {c;;}, let C = {¢;;} and define C* = C’. Note
that

(1.16) (CD)* = D*C*.

The characteristic roots = of the n x n matrix A are the n roots
l1,...,l, of the polynomial equation

(1.17) |A—11]=0.

These roots may be real or complex; the complex roots occur in conjugate
pairs. Note that the eigenvalues of a triangular or diagonal matrix are just
its diagonal elements.

By (b) (for matrices with possibly complex entries), for each eigenvalue
[ there exists some nonzero (possibly complex) vector u € C™ s.t.

(A—=1Iu=0,
equivalently,
(1.18) Au = lu.

The vector u is called a characteristic vector = eigenvector for the eigenvalue
[. Since any nonzero multiple cu is also an eigenvector for [, we will usually
normalize u to be a unit vector, i.e., [|u* = u*u = 1.

For example, if A is a diagonal matrix, say

d 0 --- 0
0 dy --- 0

A = diag(dy,...,d,) = . , A
0o 0 --- d,
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then its eigenvalues are just di,...,d,, with corresponding eigenvectors
ui,...,u,, where
(1.19) u; =(0,...,0, 1 ,0,...,0)

is the ¢-th unit coordinate vector.

Note, however, that in general, eigenvalues need not be distinct and
eigenvectors need not be unique. For example, if A is the identity matrix
I, then its eigenvalues are 1,...,1 and every unit vector u € R" is an
eigenvector for the eigenvalue 1: Tu =1 - u.

However, eigenvectors u, v associated with two distinct eigenvalues [,
m cannot be proportional: if u = cv then

lu = Au = cAv = emv = mu,
which contradicts the assumption that [ # m.

Symmetric matrix. An n x n matrix S = {s;;} is symmetric if A = A’,
i.e., if Sij = Sji VZ,]

Lemma 1.1. Let S be a real symmetric n X n matrix.
(a) Fach eigenvalue | of S is real and has a real eigenvector v € R™.

(b) If | # m are distinct eigenvalues of S with corresponding real eigenvec-
tors v and v, then ~v L 1, i.e., ¥'vb = 0. Thus if all the eigenvalues of S
are distinct, each eigenvalue | has exactly one real eigenvector .

Proof. (a) Let [ be an eigenvalue of S with eigenvector u # 0. Then
Su=Ilu = u'Su=Ilu"u=I.
But S is real and symmetric, so S* = S, hence
u*Su = (u*Su)* = u*S*(u*)* = u*Su.

Thus u*Swu is real, hence [ is real. Since S — [ ] is real, the existence of a
real eigenvector 7 for [ now follows from (b) on p.3.

6
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(b) We have Sy = Iy and Svi) = ma), hence

Wy =1'Sy = ('97)" =S¢ =my'y = mi'y,
so vy = 0 since [ # m. L]
Proposition 1.2. Spectral decomposition of a real symmetric ma-

trix. Let S be a real symmetric n X n matriz with eigenvalues lq,...,1,
(necessarily real). Then there exists a real orthogonal matrix T' such that

(1.20) S=IDT,
where D; = diag(ly,...,l,). Since ST = I'Dy, the i-th column vector ; of
I' us a real eigenvector for ;.

Proof. For simplicity suppose that [1,...,[, are distinct. Let v¢,...,v, be
the corresponding unique real unit eigenvectors (apply Lemma 1.1b). Since

Y1,...,Yn 18 an orthonormal basis for R™, the matrix
(1.21) F'=(,...y7) nxn
satisfies I'I' = I, i.e., I' is an orthogonal matrix. Since each ~; is an

eigenvector for [;, ST' = I'D; [verify]|, which is equivalent to (1.20).

[The case where the eigenvalues are not distinct can be established by a
“perturbation” argument. Perturb S slightly so that its eigenvalues become
distinct (non-trivial) and apply the first case. Now use a limiting argument
based on the compactness of the set of all n x n orthogonal matrices.] U

Lemma 1.3. If S is a real symmetric matriz with eigenvalues lq, ..., l,,,

(1.22) tr(S) = Zizl L ;
(1.23) S| = Hi:l l; .
Proof. This is immediate from the spectral decomposition (1.20) of S. U

Positive definite matrix. An n x n matrix S is positive semi-definite
(psd) (also written as S > 0) if it is symmetric and its quadratic form is
nonnegative:

(1.24) z'Sx >0 Ve eR"™,
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S is positive definite (pd) (also written as S > 0) if it is symmetric and its
quadratic form is positive:

(1.25) 'Sz >0  Vnonzeroz € R".

e The identity matrix is pd: z'Ix = ||z||* > 0 if = # 0.

e A diagonal matrix diag(ds,...,d,) is psd (pd) iff each d; >0 (> 0).

o If S:n xnispsd, then ASA’ is psd for any A : m x n.

e If S:n xnispd, then ASA’ is pd for any A : m x n of full rank m < n.
e AA’ is psd for any A : m X n.

e AA’ is pd for any A : m x n of full rank m < n.

Note: This shows that the proper way to “square” a matrix A is to form
AA" (or A’A), not A2, which need not even be symmetric.

e S pd = S has full rank = S~ exists = S~ = (S71)S(S~1) is pd.
Lemma 1.4. (a) A symmetric n x n matriz S with eigenvalues Iy, ..., 1,

is psd (pd) iff each l; >0 (> 0). In particular, |S| > 0 (> 0) if S is psd
(pd), so a pd matriz is nonsingular.

(b) Suppose S is pd with distinct eigenvalues ly > --- > l,, > 0 and corre-

sponding unique real unit eigenvectors vyi,...,Vn. Lhen the set
(1.26) E={zecR" |28 e =1}
is the ellipsoid with principle azes /livi, .., VlpYn-

Proof. (a) Apply the above results and the spectral decomposition (1.20).
(b) From (1.20), S = I'D;T” with ' = (1 -+ y,), so S~! = T'D; 'T and,

E={zeR"|("x)'D; (") =1}

=T{yeR" |y D; 'y =1} (y =Tz)
2 2
=T<y=(y1,---,yn) Ny
l1 l,
EFSO
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But & is the ellipsoid with principal axes v/ljuy, ..., VI, u, (recall (1.19))
and T'u; = v;, so &£ is the ellipsoid with principle axes v1171, - . ., VInVn. U

Square root of a pd matrix. Let S be an n x n pd matrix. Any n X n
. . 1
matrix A such that AA” = S is called a square root of S, denoted by S=.
1
From the spectral decomposition S = I"'D;I"”, one version of S2 is

N~
[l V] BN

(1.27) S% = Tdiag(i?,...,12) I’ =D I";

this is a symmetric square root of S. Any square root .S 2 is nonsingular, for

(1.28) 157 = |5|7 > 0.

Partitioned pd matrix. Partition the pd matrix S : n x n as
ni ng
n1 ( Su1 Stz
(1.29) ns (szl 522>
where n1 + ny = n. Then both Si; and Ss are symmetric pd [why?],
S19 =S4y, and |[verify!]

(1.30) L., —S1255%" S11 Si2 I, 0\ _(Su2 0

' 0 I, So1 S22 —52_21521 I, 0 Saz )’
where

(131) 511.2 = Sll — 51282_21521

is necessarily pd [why?] This in turn implies the two fundamental identities

(1.32) (511 512):<In1 51252_21)<511.2 0 )( I, 0)
' So1 S22 0 I, 0 Sy S5t Sa1 In, )

(1.33) (SM Sl2>_1 — ( In, 0 ) (51_11.2 0 > (Inl —51252_21)
. So1 S22 —52_21521 In2 0 5'2_21 0 In2 )

The following three consequences of (1.32) and (1.33) are immediate:

9
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(1.34) S is pd <= S11.2 and Sog are pd <= Sa22.1 and S11 are pd.

(1.35) S| = |S112] - [S22] = [S22.1] - [S1a] -

For x = (?) € R", the quadratic form z’S~ 'z can be decomposed as
2

(136) LC,S_l.fC = (.CCl — 51252_21332),51_11,2($1 — 51252_21£U2) + .SU/252_21332.

Exercise 1.5. Cholesky decompositions of a pd matrix. Use (1.32)
and induction on n to obtain an wupper triangular square root U of S, i.e.,
S = UU’. Similarly, S has a lower triangular square root L, i.e. S = LL'.

Note: Both U = {u;;} and L = {l;;} are unique if the positivity conditions
u;; > 0 Ve and [;; > 0 Vi are imposed on their diagonal elements. To see
this for U, suppose that UU’ = V'V’ where V is also an upper triangular
matrix with each v;; > 0. Then U= 'V(U71V) =1, s0 I' = U~V is both
upper triangular and orthogonal, hence I' = diag(£1,...,£1) =: D [why?]
Thus V = UD, and the positivity conditions imply that D = I. L

Projection matrix. An n x n matrix P is a projection matrix if it is
symmetric and idempotent: P? = P.

Lemma 1.6. P is a projection matrix iff it has the form

o Im 0\
(1.37) P_r<0 0>r

for some orthogonal matriz I' : n X n and some m < n. In this case,
rank(P) = m = tr(P).

Proof. Since P is symmetric, P = I'D;I"” by its spectral decomposition.
But the idempotence of P implies that each [; =0 or 1. (A permutation of
the rows and columns, which is also an orthogonal transformation, may be
necessary to obtain the form (1.37).) L

Interpretation of (1.37): Partition I' as

m mn-—-m

(1.38) I'=n (It Iy ),

10
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so (1.37) becomes
(1.39) P =T4T7.

But I is orthogonal so I'T" = I,,, hence

rry rir I 0
m — 1+1 1+2 ) _ m
wa e (N IR (0
Thus from (1.39) and (1.40),

PFl - (Flf'l)Fl - Fl,
PTy = (I 1)) Ty = 0.

This shows that P represents the linear transformation that projects R"™
orthogonally onto the column space of 'y, which has dimension m = tr(P).
Furthermore, I,, — P is also symmetric and idempotent [verify| with
rank(I, — P) = n —m. In fact,
I, —P=TT"— P = (1T + Tol'%) — 1T} = a0,
so I,, — P represents the linear transformation that projects R™ orthogonally
onto the column space of I's, which has dimension n —m = tr(I, — P).

Note that the column spaces of I'y and I's are perpendicular, since
I"I's = 0. Equivalently, P(I,, — P) = (I, — P)P = 0, i.e., applying P and
I,, — P successively sends any x € R" to 0.

11
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1.2. Matrix exercises.

1. For S:pxpand U : p x q, with § > 0 (positive definite), show that
S+ UU'| =|S|-|I, +U'S~'U],

where | - | denotes the determinant and I, is the ¢ x ¢ identity matrix.

2. For S:pxpanda:px1with § > 0, show that

rqg—1
, ne1 _  a'S"a
S ad) e = ey

3. For S:pxpand T :p x p with S >0 and T > 0, show that

. >\z TS_l .
)\I[T(S"i_T) 1]: 1+§\(TS_)1)7 2217"'7p7

where A\; > --- > A\, denote the ordered eigenvalues.

4. Let A >0 and B > 0 be p x p matrices with A > B. Partition A as
A1 A12>
A=
(A21 Azo

and let A11.0 = Aqq —A12A2_21 Asq. Partition B in the same way and similarly
define Bi 5. Show:

(i) A1 > Bis.
(ii) B71 > A~
(111) Aq1.0 > Bii.o.

5. For S : p x p with S > 0, partition S and S~! as
_ [ S11 Si2 (St st2
S—(521 So | ST = g2l g22 |
respectively. Show that S' > S7;', and equality holds iff S;o = 0, or
equivalently, iff S'2 = 0.

12
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6. Now partition S and S~ as

Sll Sl2 513
S S
S=| 51 Su Sos ( (12) <12>3>,

Ssi Sy Sy ) N\ S
11 12 13
S—l _ §21 §22 223 — 5(12) 5(12)3
B 531 532 S33 - 53(12) S33

Then

S(12).3 = S(12) — 5(12)3533153(12)
_ (511 — 51353_1531 S12 — 51353_1532>
So1 — 52353_1531 Soo — 52353_1532

_ <S11-3 S12-3>
-\ 5213 S223 )
with similar relations holding for S(1?)3. Note that
SU2) = (S(19)3) 7, Saz) = (S123) 71,
but in general
Sll ?é (511'2)—1’ Sll — (Sll~2)—1;

instead,
Sll — (Sll-(23)>_17 Sll # (5&1-(23))—1.

Show:

(i) (Sa2)-3)11-2 = S11.(23)-

(i) Si1.0 = (S113)~1L,

(iii) S12.3(So20.3)"1 = —(S11)~1512,

(iv) S11 > Si1.2 > Si1.(23)- When do the inequalities become equalities?
(

v) S12.3(S22.3) 71 = — (S 718124 (for a 4 x 4 partitioning.)

13



STAT 542 Notes, Winter 2007; MDP

X1
1.3. Random vectors and covariance matrices. Let X = : be
X’I’L
a rvtr in R"™. The expected value of X is the vector
E(X1)
E(X) = N
B(Xn)

which is the center of gravity of the probability distribution of X in R".
Note that expectation is linear: for rvtrs X, Y and constant matrices A, B,

(1.41) E(AX + BY) = AE(X)+ BE(Y).
71 o Zin
Similarly, if Z = is a random matrix in R™*",
Zml U Zmn
E(Z) is also defined component-wise:
E(Zy) - E(Zin)
BZ)=| z
E(Zm1) -+ E(Zmn)

Then for constant matrices A : k x m and B : n X p,
(1.42) E(AZB) = AE(Z) B.
The covariance matrix of X (= the variance-covariance matriz), is

Cov(X) = E[(X — EX)(X — EX)']

Var(Xl) COV(Xl,XQ) s COV(Xl,Xn)
Cov(Xs, X1) Var(X5) o Cov(Xg, Xp)
Cov(Xn, X1) Cov(X,,X2) --- Var(X,,)

14
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The following formulas are essential: for X :n x 1, A:mXxn, a:n x 1,

(1.43) Cov(X) = B(XX') — (EX)(EX)’;
(1.44) Cov(AX +b) = ACov(X) A';
(1.45) Var(a'X + b) = a’ Cov(X) a.

Lemma 1.7. Let X = (X4,...,X,,)" be a random vector in R™.
(a) Cov(X) is psd.

(b) Cov(X) is pd unless 3 a nonzero a = (ay,...,a,) € R™ s.t. the linear
combination

dX=a Xy 4+ -+ a,X, = constant,
i.e., the support of X 1s contained in some hyperplane of dimension < n—1.
Proof. (a) This follows immediately from (1.45).
(b) If Cov(X) is not pd, then 3 a nonzero a € R" s.t.

0 =a’' Cov(X)a = Var(a'X).
But this implies that ¢’ X = const. l

For rvtrs X :m x 1 and Y : n x 1, define

Cov(X,Y)=E[X —EX)(Y —EY)

COV(Xl,Yl) COV(Xl,Yg) s COV(Xl,Yn)
COV(XQ,Yl) COV(XQ,YQ) s COV(XQ,Yn)
Cov(Xy, Y1) Cov(X,,,Ys) -+ Cov(Xy,,Yn)

Clearly Cov(X,Y) = [Cov(Y, X)]’. Then [verify]
(1.46) Cov(X £Y) = Cov(X) + Cov(Y) £ Cov(X,Y) £ Cov(Y, X).
and [verify]

X 1Y = Cov(X,Y) =0
(1.47) = Cov(X £Y) = Cov(X) + Cov(Y).

15
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Variance of sample average (sample mean) of rvtrs: Let X;,..., X,
be i.i.d. rvtrs in R?, each with mean vector p and covariance matrix ». Set

X, =1(X1i+ -+ X,).
Then E(X,,) = p and, by (1.47),
(1.48) Cov(X,) = 5Cov(X1 + -+ X,,) = 1%,
Exercise 1.8. Verify the Weak Law of Large Numbers (WLLN) for rvtrs:
X,, converges to p in probability (X, = u), that is, for each e > 0,

Pl| X, —pl| <€ —1 asn— co.

Example 1.9a. Equicorrelated random variables Let Xq,...,X,

be rvs with common mean p and common variance o2. Suppose they are
equicorrelated, i.e., Cor(X;, X;) = p Vi # j. Let

(1.49) X, =1(X1 4+ X,), s2 =150 (X, — X))

n

the sample mean and sample variance, respectively. Then

(1.50) E(X,) = pu (so X, is unbiased for p);.
Var(X,,) = 3 Var(X1 + - + X,,)
= > [no? + n(n — 1)po?] [why?]
(1.51) = 1+ (n—1)p].

When Xi,..., X, are uncorrelated (p = 0), in particular when they are

0_2

independent, then (1.51) reduces to %-, which — 0 as n — oo. When
p # 0, however, Var(X,,) — o2p # 0 so the WLLN fails for equicorrelated
i.d. Tvs Also, (1.51) imposes the constraint
(1.52) ——L-<p<lL
Next, using (1.51),
E(sp) = 7B (2 X7 — n(Xn)?)
2

n

(1.53) = (1—p)o?.

16
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Thus s2 is unbiased for o2 if p = 0 but not otherwise. L]

Example 1.9b. We now re-derive (1.51) and (1.53) via covariance matri-
ces, using properties (1.44) and (1.45). Set X = (X1,...,X,,)’, so

7 1
(1.54) EX)=| : | =pen, where e, = | : | :nx 1,

L 1

(1.55)

Il
—
—_
|
s
N—
S
+
e}
)
3

Then X,, = e/, X, so by (1.45),

Var(X,,) = Zel,[(1 — p)I, + pene,le,
— %[( p)n + pn?] [since e/ e, = n]
= Z[1+ (n—1)p,

which agrees with (1.51).
To find E(s2), write

(X - X)) = ER:XZ? —n(X
; =1

= X'X = Z (e, X)?

= X'X — L(X'e,) (e, X)

= X' (I, - é’ne}/) X
(1.56) = X'QX,

— en

— . . — -/ . . . .
where €,, = (%) is a unit vector, P = €,e€,, is the projection matrix of

rank 1 = tr(&,e;’) that projects R"™ orthogonally onto the 1-dimensional

17
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subspace spanned by e,, and Q = I,, — €,¢,, is the projection matrix of
rank n—1 = tr @ that projects R™ orthogonally onto the (n—1)-dimensional
subspace e [draw figure]. Now complete the following exercise:

Exercise 1.10. Prove Lemma 1.11 below, and use it to show that

(1.57) E(X'QX) = (n— 1)(1 - p)o”,

which is equivalent to (1.53). L

Lemma 1.11. Let X : n x 1 be a rvtr with E(X) = 0 and Cov(X) = X.
Then for any n X n symmetric matrix A,

(1.58) E(X'AX) = tr(AX) + 6’ A6.
(This generalizes the relation E(X?) = Var(X) + (E X)2.)

Example 1.9c. Eqn. (1.53) also can be obtained from the properties of
the projection matrix ). First note that [verify]

(1.59) Qe,, = v/nQ8, = 0.

Define
Y;

(1.60) Y= | =0QX :nx1,
Y,

SO

(1.61) B(Y) = QE(X) = 1 Qe, = 0,

(1.62) = (1 - p)Q.
Thus, since Q is idempotent (Q% = Q),

BE(X'QX) = E(Y'Y) = E[tr (YY")]
— tr[E(YY")]
= 0?(1 - p)tr (Q)
— 021 = p)(n—1),
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which again is equivalent to (1.53). L

Exercise 1.12. Show that Cov(X) = o?[(1 — p)I,, + pe,el] in (1.55) has
one eigenvalue = o2[1+ (n — 1)p|] with eigenvector e,,, and n — 1 eigenvalues
= d%(1 —p). L

Exercise 1.13. Suppose that ¥ = Cov(X) : n x n. Show that the extreme
eigenvalues of X satisfy

A1(X) = max Var(a'X),

lall=1
An(X) = ||Ir|1|in Var(a'X). L
al|=1
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2. The Multivariate Normal Distribution (MVIND).

2.1. Definition and basic properties.

Consider a random vector X = (X1,...,X,)" € R?, where X;,..., X, are
i.i.d. standard normal random variables, i.e., X; ~ N(0,1), so E(X) =0
and Cov(X) = I,. The pdf of X (i.e., the joint pdf of X;,...,X,) is

(@) = (2m) B bt
1

2.1 o) Ee T z € RP.
(

For any nonsingular matrix A : p X p and any p: p x 1 € RP, consider the
random vector Y := AX + u. Since the Jacobian of this linear (actually,
affine) mapping is ‘g_i};l = |A|+ > 0, the pdf of YV is

fly) = m) 5 Al ez mm) AT v-p)
— (27)"B|AA/| "B 3w (AA) T )

(2.2) = (2m) 2D 2o 2 (v BT wmm), y € R,

E(Y)=AE(X) + p = p,
Cov(Y)= ACov(X)A' = AA =% > 0.
Since the distribution of Y depends only on p and 3., we denote this distri-

bution by N,(u, ), the multivariate normal distribution (MVND) on R?
with mean vector y and covariance matrix ..

Exercise 2.1. (a) Show that the moment generating function of X is

/

(2.3) mx(w) = E(ew/X) = e3W'W,

(b) Let Y = AX + pu where now A : ¢ x p and p € R9. Show that the mgf
of Y is

(2.4) my (w) = B(e?Y) = ev/itiu’De

where ¥ = AA” = Cov(Y'). Thus the distribution of Y = AX + p depends
only on p and ¥ even when A is singular and/or a non-square matrix, so
we may again write Y ~ N, (u, ).

20
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Lemma 2.1. Affine transformations preserve normality.

If Y ~ Ny(p, %), then for C :r x q and d:r x 1,
(2.5) Z=CY +d~ N.(Cu+d, CEC").
Proof. Represent Y as AX + pu, so Z = (CA)X + (Cp+d) is also an affine

transformation of X, hence also has an MVND with E(Z) = Cu + d and
Cov(Z) = (CA)(CA) =CxC". L

Lemma 2.2. Independence <= zero covariance.

Suppose that Y ~ Np(u,X) and partition Y, p, and ¥ as

P1 p2
(Y p1 o 1 P 211 Y12
2.6 Y = o= Coy= ,
(2.6) D2 (Yz) B (M2> D2 (221 Ezz)
where p1 +p2 =p. Then Y7 1L Yy <= X5 = 0.

Proof. This follows from the pdf (2.2) or the mgf (2.4). L

Proposition 2.3. Marginal & conditional distributions are normal.

If Y ~ Np(u,X) and Loz is pd then

(2.8) Y1 | Yy ~ Ny, (11 + 2123855 (Y2 — p2), S112)
Yy ~ Np2 (:u27222)‘

Proof. Method 1: Assume also that X is nonsingular. By the quadratic
identity (1.35) applied with u, y, and ¥ partitioned as in (2.6),

(2.10) (y— )=y —n)
= (1 — 1 — D122 (y2 — M2)>/ Si12( ) + (Y2 — p2) Sog (- ).

Since also |X| = |X11.2||X22], the result follows from the pdf (2.2).
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Method 2. By Lemma 2.1 and the quadratic identity (1.32),
Vi =S85 Y2\ _ (L, —Y12%5 ) (Ya
Y2 0 Ip2 Y2
N 1 — S12%00 12 Y112 0
(211) pP1+p2 (( L2 g 0 Yoo .

Thus by Lemma 2.1 for C' = (I,;, 0p,xp, ) and (Op,xp, Ip, ), respectively,

Vi — $12855 Y ~ Ny, (11 — N 12N 00 2, S112)
Y ~ Np, (12, ¥22) ,

which yields (2.9). Also Y7 — 21222_215/2 1l Y5 by (2.11) and Lemma 2.2, so
(212) Yl 2122 Y2 ‘ Y2 ~ Np ( 21222_21M2, 211.2)
which yields (2.8). L

2.2. The MVND and the chi-square distribution.

The chi-square distribution x2 with n degrees of freedom (df) can be defined
as the distribution of

724+ 7%= = |1 Z]|?,

where Z = (Z1,...,2Z,) ~ N,(0,1,). (That is, Z1,...,Z, are i.i.d. stan-
dard N(0,1) rvs.) Recall that

(2.13) X, ~ Gamma (o =2, A=1),
(2.14) E(xn) =n,
(2.15) Var(x2) = 2n.

Now consider X ~ N, (u, ¥) with ¥ pd. Then

(2.16) Z =YX — p) ~ N,y (0,1,,),
(2.17) 27 = (X — )T HX —p) ~ x2.
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Suppose, however, that we omit ¥~! in (2.17) and seek the distribution

of (X — )’ (X — p). Then this will not have a chi-square distribution in
general. Instead, by the spectral decomposition ¥ = I'D,I", (2.16) yields

(X — (X — ) = Z'SZ = (I'Z) Dy(I'2)
(2.18) =V'D\V = V2 +--- )\ V2,
where A1,..., A, are the eigenvalues of ¥ and V =1"Z ~ N,,(0, I,,). Thus
the distribution of (X — u)’ (X — u) is a positive linear combination of in-

dependent x? rvs, which is not (proportional to) a x2 rv. [Check via mgfs!]

Lemma 2.5. Quadratic forms and projection matrices.

Let X~ N, (&,0%1,) and let P be an n x n projection matriz with rank(P) =
tr(P) = m. Then the quadratic form determined by X — & and P satisfies

(2.23) (X —&)'P(X = &) ~0°Xx2.

Proof. By Lemma 1.6, there exists an orthogonal matrix I' : n X n s.t.

(L, 0\
P_r<0 O>F.
Then Y = I'(X — &) ~ Ny, (0, 021,,), so with Y = (V3,...,Y,),

I,
(X—@TMY—Q:Y«E)8>Y:Yf+~lﬁ~d%% N
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2.3. The noncentral chi-square distribution.

Extend the result (2.17) to (2.30) as follows: First let Z = (Z1,...,2,)" ~
N, (&, 1), where £ = (&1,...,&,)" € R™. The distribution of

24+ ...+ 22=7'72=|Z|?

is called the noncentral chi-square distribution with n degrees of freedom
(df) and noncentrality parameter ||€]|?, denoted by x2(||£||?). Note that
Z1,...,Zy, are independent, each with variance = 1, but now E(Z;) = ¢;.

To show that the distribution of ||Z]|> depends on & only through its
(squared) length [|£||?, choose! an orthogonal (rotation) matrix I' : n x n
such that I'¢ = (||¢]],0,...,0), i.e., I" rotates £ into (||£][,0,...,0)’, and set

Y =T7Z ~ N, (T¢, FF’) = N, ((|&]], 0, .. .,O)’, I,).
Then the desired result follows since

1Z|? =Y IP=Y2+Y5 4+ 4 Y7
~ [N ([[€]l, DI 4+ [N1(0, D] 4 - - 4+ [N1(0, 1)]?
XTUEIP) +xT+ -+ 3

XTUIEN?) + xa 1,

(2.24)

where the chi-square variates in each line are mutually independent.

Let V =Y? ~ x3(6) ~ [N1(V6, 1)]2, where § = ||£]|>. We find the pdf
of V as follows:

fu(v) = S Pl-VE < ¥i < V3

Vg
d_1 e H1-VEP gy

L Let the first row of I' be f =

orthonormal basis for LJ‘.
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2.25 L ann ()t e
(2.25) - ¢ Z k! 2#F(1+22k) '+ Gk

Poisson(%) weights pdf of X%_,_%

where
k 142k 142k
Ck:z RI27E T (55)
(2k)!' V27

by the Legendre duplication formula for the Gamma function. Thus we
have represented the pdf of a x7(§) rv as a mixture (weighted average) of
central chi-square pdfs with Poisson weights. This can be written as follows:

(2.26) X100) | K ~ xiiak where K ~ Poisson (6/2) .
Thus by (2.24) this implies that Z'Z = || Z||* ~ x2(0) satisfies

(2.27) X200 | K ~ X2 ok where K ~ Poisson (§/2) .

That is, the pdf of a noncentral chi-square rv x2(8) is a Poisson(5/2)-
mixture of the pdfs of central chi-square rvs with n + 2k df, k =0,1,....

The representation (2.27) can be used to obtain the mean and variance
of x7(9):
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EDC(9)] = B{EI? ox | K1)

= B(n + 2K)
=n-+2(6/2)

(2.28) = n+6;

Varl 2 (8)] = BIVar(C o | K)] + Var[BOE g | K))

= E[2(n + 2K)] + Var(n + 2K)
=[2n+4(5/2)] + 4(6/2)

(2.29) = 9 + 40.

Exercise 2.6. Show that the noncentral chi-square distribution x2(4) is

stochastically increasing in both n and 9. L
Next, consider X ~ N, (u, ) with a general pd 3. Then

(2.30) X'S7IX = (S72X) (57 X) ~ A (WS ),

since

Z=%"2X ~Ny(X 2p, I,)
and
IS~ 2p)? = /S i

Note that by Exercise 2.6, the distribution of X’¥ 71X in (2.30) is stochas-
tically increasing in n and /Y"1 pu.

Finally, let Y ~ N, (&, 0%I,,) and let P be a projection matrix with
rank(P) = m. Then P = I'1T" where I'|I"; = I,,, (cf. (2.20) - (2.22)), so

IPY|* = Th T Y [|* = (11 Y) (Tl Y) = Y'THTY = [T Y77

But
Y ~ N, (T'|¢, o?TT'1) = N (T)€, 0*1,,),
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so by (2.30) with X =TY, u=T%¢, and ¥ = 021,

IPY]? _ (Cy)@my) (a’r1r35> _ (IIP§H2> |

o2 o2 o2 o2
Thus
P 2
231 Py~ ot (150)

2.4. Joint pdf of a random sample from the MVND N, (u, ).

Let Xi,...,X, be an i.i.d random sample from N,(u, ¥). Assume that X
is positive definite (pd) so that each X; has pdf given by (2.2). Thus the
joint pdf of Xy,...,X,, is

L 1 ) 1
= | | = ez@i=p)ET (i)
fls, ) ,:1(27r)%\z\%e

(2

- ( )"1:0 12| 5 6_% 2;1(%_“)/2_1(%—#)
2m) 2 |22
) ﬁe—%w[z—l(2;1(@_#)(%_“)/)]
2m) 2 |22
(2.32) -5 )n_{?‘z‘ﬁe—%@—wg1@—#)—%“(213)7
) 2 2
or alternatively,
—n /y-1
(2.33) — %enj’glu_%tr(ﬁlt)’
) 2 2
where
_ 1 <& n B B n
X=0 X S = X — X)(X; - X), T = X X,
> S - X)X, - X) >

=1

It follows from (2.32) and (2.33) that (X,S) and (X,T) are equivalent
representations of the minimal sufficient statistic for (u,>). Also from
(2.33), with no further restrictions on (u,%), this MVN statistical model

constitutes a p + @—dim@nsional full exponential family with natural
parameter (X" 1p, X71).
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3. The Wishart Distribution.

3.1. Definition and basic properties.

Let X1,...,X, be an i.i.d. random sample from N,(0, ¥) and set
X =(X1,...,X,) :pxn,

S=XX'=) X;X]:pxp.
=1

The distribution of S is called the p-variate (central) Wishart distribution
with n degrees of freedom and scale matrix ¥, denoted by W,(n, ¥). L.

Clearly S is a random symmetric positive semi-definite matrix with
E(S) =nX. When p =1 and ¥ = o2, Wi(n, 0?) = o2 2.

Lemma 3.1. Preservation under linear transformation. For A : gxp,
(3.1) ASA" ~ W, (n, AXA").

In particular, fora:p x 1,

(3.2) a'Sa ~ (a'Ya) - x2.

Lemma 3.2. Nonsingularity = positive-definiteness of S ~ W, (n, ).

S 1s positive definite with probability one <= X is pd and n > p.
Proof. (=): Recall that S ~ XX’ with X : p x n. If n < p then

rank(S) = rank(X) < min(p,n) =n < p,

so S is singular with probability one, hence not positive definite. If 3 is not
pd then Ja:p x 1, a#0, s.t. a’3a =0. Thus by (3.2),

a'Sa ~ (a'Ya) - x2 =0,
so S is singular w.pr.1.
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(<) Method 1 (Stein; Eaton and Perlman (1973) Ann. Statist.) Assume
that ¥ is pd and n > p. Since

S=XX'= ZXX’+ Z X X!,
1=p+1
it suffices to show that > %, X; X/ is pd w. pr. 1. Thus we can take n = p,

so X : p x p is a square matrix. Then |S| = | X|?, so it suffices to show that
X itself is nonsingular w.pr.1. But

p

{X singular} = U{Xz € S; =span{X; | j#i}},
i=1
SO

p
Pr[X singular] < Z PriX; € S
i=1

ZE{PrX €S| X, j#4}=

since dim(S;) < p and the distribution of X; ~ N,(0, X) is absolutely
continuous w.r.to Lebesgue measure on RP. Thus Pr[X nonsingular] = 1.
(<) Method 2 (Okamoto (1973) Ann. Statist.) Apply:

Lemma 3.3 (Okamoto). Let Z = (Zy,...,Z;) € RF be a random vector
with a pdf that is absolutely continuous w.r.to Lebesgue measure on RF. Let
9(2) = g(z1, ..., 2r) be a nontrivial polynomial (i.e., g Z0). Then

(3.3) Pr[g(Z)=0]=0.

Proof. (sketch) Use induction on k. The result is true for kK = 1 since
g can have only finitely many roots. Now assume the result is true for
k — 1 and extend to k by Fubini’s Theorem (equivalently, by conditioning
on Zl;-u;Zk:—l- L

Proposition 3.4. Let X : p x n be a random matriz with a pdf that is
absolutely continuous w.r.to Lebesque measure on RP*™. If n > p then

(3.4) Pr[rank(X) =p] =1,
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which tmplies that
(3.5) Pr[S = X X' is positive definite] = 1.
Proof. Without loss of generality (wlog) assume that p < n and partition
X as (X7, X5) with X7 : p x p. Since rank(X;) < p iff | X;| = 0, and since
the determinant | X;| = ¢g(X1) is a nontrivial polynomial,

Pr[rank(X;) =p] =1

by Lemma 3.3. But rank(X;) = p = rank(X) = p, so (3.4) holds. L

Okamoto’s Lemma also yields the following important result:

Proposition 3.5. Let [1(S) > --- > 1,(S) denote the eigenvalues (neces-
sarily real) of S = X X'. Under the assumptions of Proposition 3.4,

(3.6) Pr[i1(S) > --->1,(5) >0] = 1.

Proof. (sketch) The eigenvalues of S = X X’ are the roots of the nontrivial
polynomial h(l) = | XX’ —11,|. These roots are distinct iff the discriminant
of h vanishes. Since the discriminant is itself a nontrivial polynomial of

the coefficients of the polynomial A, hence a nontrivial polynomial of the
elements of X, (3.6) follows from Okamoto’s Lemma. L

Lemma 3.6. Additivity: If S; I Sy with S; ~ Wy, (n;, X), then

(37) S1+ Sy ~ Wp(nl + na, E)
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3.2. Covariance matrices of Kronecker product form.

If Xq,...,X,, are independent rvtrs each with covariance matrix > : p X p,
then Cov(X) = X ® I,,, a Kronecker product. We now determine how a
covariance matrix of the general Kronecker product form Cov(X) =X ® A
transforms under a linear transformation AX B (see Proposition 3.9).

The Kronecker product of the p x ¢ matrix A and the m x n matrix B
is the pm X gn matrix

Abyy oAby
AR B := .
Abp1 -+ Abpn

(i) A® B is bilinear:

(1 A1 + a2A42) ® B = a1(A1 ® B) + a2(A2 ® B)
A® (B1By + f2B2) = $1(A® By) + 32(A® By).

(ii) (A ®

- (A9 B) = A ® B,
- A=A, B=B =— A®B= (A2 D).

(iv) If I' : p x p and ¥ : n X n are orthogonal matrices, then '@ ¥ : pn X pn
is orthogonal. [apply (ii) and (iii)]

(v) If A:px pand B:n Xxn are real symmetric matrices with eigenvalues

ai,...,ap and By,..., By, respectively, then A ® B : pn X pn is also real
and symmetric with eigenvalues {a,;3; |i=1,...,p, j=1,...,n}.

Proof. Write the spectral decompositions of A and B as
A=TID,I, B =VUDgV’,
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respectively, where D, = diag(ai,...,a,) and Dg = diag(f1,...,0n).
Then

A® B = (D) ® (VDg¥')
(3.8) =T ®W¥)(D,® Dg)(I'® )

by (ii) and(iii). Since I' ® ¥ is orthogonal and Da ® Dg is diagonal with
diagonal entries {a;3; | i = 1,...,p, 7 = 1,...,n}, (3.8) is a spectral
decomposition of the real symmetric matrix A ® B, so the result follows. Ll

(vi) Apsd, Bpsd = A® B psd,
vi
Apd, Bpd — A® B pd. [apply (3.8)]

Let X = (X4,...,X,) : p X n be a random matrix. By convention we shall
define the covariance matrix Cov(X) to be the covariance matrix of the

pn X 1 column vector X formed by “stacking” the column vectors of X:

X1 COV(Xl) cee COV(Xl,Xn)

Cov(X):= Cov(X) = Cov

.

X, Cov(X:n, X) Cov(X,)

Lemma 3.7. Let X = {X;;}, ¥ = {0}, A={N;;s}. Then
Cov(X)=2X®A <= Cov(Xij, Xijs) = 0irNjjr

foralli;i' =1,...,p and all j,j' = 1,... n. [straightforward - verify] U

Lemma 3.8. Cov(X) =Y ®A <= Cov(X')=A®%.

Proof. Set U = X/, SO Uij = Xﬂ Then
COV(U@j, Ui/j/) = COV(in, Uj/i/) = Ujj’>\ii’7
hence Cov(X’) = Cov(U) = A ® ¥ by Lemma 3.7. L
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Proposition 3.9. If Cov(X) = X ® A then

(3.9) Cov( A X B)=(ASA)® (B'AB).
Sl T T Y
gXp pXn nxXm gxq mXm

Thus if X ~ Npxn(C, 2@ A) then

(3.10) AXB ~ Ny (ACB, (ASA') @ (B'AB))

Proof. (a) Because AX =

AX =

SO
Cov(AX) = Cov(AX) =
(b) Next,
Cov(X")
SO
Cov(B'X") =
hence
Cov(XB)

(AXq,...,AX,) it follows that

(A®I,)X

(A®I,) Cov(X) (A® I,

=(A®1,)(E®A) (A L)

= (AXA) @ A [by (ii)].
=A®X [Lemma 3.8],
(B'AB) ® % [(B)],

= Cov ((B'X')) = £ ® (B'AB) [Lemma 3.8].

Looking ahead: Our goal will be to determine the joint distribution of the
matrices (S11.2, S12, S22) that arise from a partitioned Wishart matrix S.
In §3.4 we will see that the conditional distribution of Sia | Sea follows a
multivariate normal linear model (MNLM) of the form (3.14) in §3.3, whose
covariance structure has Kronecker product form. Therefore we will first
study this MNLM and determine the joint distribution of its MLEs (6, Y)
given by (3.15) and(3.16). This will readily yield the joint distribution of
(S11.2, S12, S22), which in turn will have several interesting consequences,
including the evaluation of E(S™1) and the distribution of Hotelling’s T>

statistic X! S71X,,.
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3.3. The multivariate linear model.

The standard univariate linear model consists of a series X = (X1,...,X,,)
of uncorrelated univariate observations with common variance o2 > 0 such
that E(X) lies in a specified linear subspace L C R" with dim(L) = q < n.
If Z : q xn is any fixed matrix whose rows span L then

(3.11) L={pZ|B:1xqe R,
so this linear model can be expressed as follows:

E(X):ﬁZ, B:1xq,

3.12
(3.12) Cov(X) = o1, a? > 0.

In the standard multivariate linear model, X = (X1,...,X,) : p X n
is a series of uncorrelated p-variate observations with common covariance
matrix ¥ > 0 such that each row of E(X) lies in the specified linear subspace
L C R™. This linear model can be expressed as follows:

E(X) = pZ, B:pxag,

(3.13)
Cov(X)=X®I, ¥>0.

If in addition we assume that Xi,...,X, are normally distributed, then
(3.13) can be expressed as the normal multivariate linear model (MNLM)

(3.14) X ~Npun(BZ,S®1,), B:ipxqg >0.

Often Z is called a design matrix for the linear model. We now assume that
Z is of rank ¢ < n, so ZZ' is nonsingular and (3 is identifiable:

B=(B(X))Z(2Z")".

The maximum likelihood estimator (5, XA)) We now show that the
MLE (8, X) exists w. pr. 1 iff n — ¢ > p and is given by

X727\ 1,

(3.15) 3
S=1X(1,-2(22)'2Z) X' = 1XQX"

(3.16)

1
n
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Because the observation vectors Xi,...,X,, are independent under the
MNLM (3.14), the joint pdf of X = (X4,...,X,,) is given by

fas(z) = —L_ . 7 2y @i BZ) 2 @i= B2

|22
— i . 6_%tr[z_l(Z?:l(xi_ﬁzi)(xi_ﬁzi)/)]
bk
(3.17) _ G w2 (@-82)(2-82)]
Dk ’

where ¢; = (27)~2 and Z4, ..., Z, are the columns of Z. To find the MLEs

B, 3, first fix ¥ and maximize (3.17) w.r.to 8. This can be accomplished
by “minimizing” the matrix-valued quadratic form

(3.18) A(B) = (X — BZ)(X — BZ)

w.r.to the Loewner ordering®, which a fortiori minimizes tr[X~1A(B)] [ver-
ify]. Since each row of 8Z lies in L = row space (Z) C R", this suggests

that the minimizing B be chosen such that each row of BZ is the orthogonal
projection of the corresponding row of X onto L. But the matrix of this
orthogonal projection is

P=7(ZZ"Y"1'Z :nxn
so we should choose 3 such that 37 = X Z' (ZZ"Y71Z, or equivalently,
(3.19) B=X7(zz"\".

To verify that 3 minimizes A(8), write X —3Z = (X —3Z)+(3—1)Z,
SO
AB) = (X = B2)(X = p2) + (B - 8)22'(3 - B)
+ (X =B2)Z'(6~B) + (5~ B Z(X ~5BZ)'.

-~

2 T > Sif T — S is psd.
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Since ZZ' is pd, A(() is uniquely minimized w.r. to the Loewner ordering
when 3 = 3, so

(3:20) min A(8) = (X — BZ)X - BZ)

= X (I, - 2/(22"Y " Z)(I, — 2'(22") ' 2)' X
=X (I, — P)(I, — P) X'

= XQQ'X' [set Q = I, — P]

= XQX' [ Q, like P, is a projection matrix]

Since (3 does not depend on Y, this establishes (3.15). Furthermore, it
follows from (3.17) and (3.20) that for fixed ¥ > 0,

_ @ —Ltr(Z7tzQa’)
3.21 m R ‘

To maximize (3.21) w. r. to X we apply the following lemma:

Lemma 3.10. If W is pd then

- 1 np
(3.22) max — e~ 2% W) = — e 2
2]z

where ¥ = %W is the unique maximizing value of .

Proof. Since the mappings

OIS Pt = A
AHNW)AW2-Q

are both bijections of S; onto itself, the maximum in (3.22) is given by

1 n
(3.28)  max|AJE e 2 = G max| Q) 73t
> 2 Q>
1 P
max nge—%wi,
‘W|2 w12 2wy >0 v

36



STAT 542 Notes, Winter 2007; MDP

where wq,...,w, are the eigenvalues of ). Since nlogw — w is strictly
concave in w, its maximum value n is uniquely attained at w = n, hence the
maximizing values of wy,...,w, are w; = --- = @, = n. Thus the unique
maximizing value of €2 is Q= nl,, hence A=nW-land 3 = %W L

If W is psd but singular, then the maximum in (3.23) is +oo [verify].
Thus the MLE ¥ for the MNLM (3.14) exists and is given by 5 =1 ~XQX'
iff XQX' is pd. We now derive the distribution of XQX’ and show that

(3.24) XQX is pd w. pr.1 <= n—q>np.

Thus the condition n — ¢ > p is necessary and sufficient for the existence
and uniqueness of the MLE X as stated in (3.16).

First we find the joint distn of (3, ). From (3.14) and (3.10),
X(Z Q) ~ Moo (8220 Q)30 ((5) (2 @)

() ((BZZ’ 0>,2®<ZOZ' g)) ZQ =)

from which it follows that

(3.25) XZ' ~ Npxq (822", 2 © (22")),
(3.27) X7 1 XQ.

Because Q = I,, — Z'(ZZ')~1Z is a projection matrix with [verify]
rank(Q) = tr(Q) =n — q,

its spectral decomposition is (recall (1.37))
- In—q 0 !
(3.28) Q_F< A O>F

for some p x p orthogonal matrix I'. Set Y = XQTI, so from (3.26),

I, O
¥~ e (036 (50 0))
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This shows that [verify]
(3.29) XQX' =YY ' ~Wy(n—gq, %),

hence (3.24) follows from Lemma 3.2. Lastly, by (3.25), (3.29), and (3.27),

(3.30) B=XZ'(ZZ') '~ Npxy (B, 2@ (Z22))71),
(3.31) ny = XQX' ~Wy(n—gq, %),
(3.32) B S,

Remark 3.11. From (3.31), the MLE X is a biased estimator of :

B(S) = (1 ~ %) )

Instead, the adjusted MLE Y= %_qXQX’ is unbiased. L

Special case of the MNLM: a random sample from N, (p, X).

If X1,...,X, is an i.i.d. sample from N, (p, X) then the joint distribution
of X = (Xy,...,X,) is a special case of the MNLM (3.13):

(3.33) X ~ Npsnlpe,, S®@1,), p:ipx1l, 2>0.

Here =1, Z =€/, and Q = I,, — e, (el,e,) 1€, so from (3.30) - (3.32),
(3.34) o= Xey,(ee,)” ZX = N, (1, 2%,

(3.35) nS = XQX' = © (X - X,) (X = X) ~ Wy(n—1, %),

(3.36) X, LS.
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3.4. Distribution of a partitioned Wishart matrix.

Let S;r denote the cone of real positive definite p x p matrices and let
M. «n denote the algebra of all real m x n matrices. Partition the pd
matrixS:poESZ;" as

b1 P2

S S
337 g — b1 11 12 )7
( ) P2 (521 S22

where p; + p2 = p. The next result follows from directly from (1.34).

Lemma 3.12. The following correspondence is bijective:
S; = S X My, wp, X S

(3.38)
S — (511-27 5127 S22>-

Note that we cannot replace Si1.0 by Si; in (3.37) because of the
constraints imposed on S itself by the pd condition. That is, the range
of (S11, S12, S22) is not the Cartesian product of the three ranges.

Proposition 3.13.%** Let S ~ W,(n, X) be partitioned as in (3.37) with
n > py and Yoo > 0. Then the joint distribution of (S11.2, S12, S22) can be
specified as follows:

(3.39) S12 | S22 ~ Np, s, (Z12555 S22, S11.2 ® S22)
(3.40) Soo ~ W, (n, Ya2),

(3.41) S11.2 ~ Wy, (n — pa, L11.2),

(3.42) (S12, S22) 1L Si1.9.

Proof. Represent S as YY’ with Y = P (Yl

. Y2> ~ Npxn (0, 2® I,), so

S S\ (Y] Yy
(3:43) <S21 522>_<Y2Y1' YoY5 )

By Proposition 3.4, the conditions n > po and X9 > 0 imply that
rank(Y2) = pa w. pr. 1, hence Sy = YoYy is pd w. pr. 1. Thus Sii.9
is well defined and is given by

(3.44) Si1e =Y1 (I, — Y3 (Y2Y5)7'Y2) Y{ = V1QYY.
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From (2.8) the conditional distribution of Y7 | Ys is given by
(3.45) Y1 | Y2 ~ Npixn (Z12555 Y2, 112 ® 1)
which is a MNLM (3.14) with the following correspondences:

X oY), BeoXipdy,, pep,
Z <Yy, X< Y12, (< p.

Thus from (3.25), (3.31), (3.32), (3.43), and (3.44), conditionally on Y3,

(3.46) Si2 ‘ Yo ~ Np, xps (21222_21522, Y112 ® 522) :
(347) 511.2 ‘ Yy ~ Wpl (n — D2, E11'2)7
(348) S1o AL Si1.0 | Ys.

Clearly (3.46) = (3.39), while (3.40) follows from Lemma 3.1 with

A= (0pyxp, Ip,). Also, (3.47) = (3.41) and (3.47) = S11.2 L Y5, which

combines with (3.48) to yield Si1.2 1L (S12, Y2),> which implies (3.42). [
Note that (3.39) can be restated in two equivalent forms:

(3.49) $12555" | S22 ~ Npysps (£12855, S11.2 ® S53')

1/

_1 1
(3'50) 5125222 | Sag ~ Npl Xp2 <21222_2152227 Y112 ® Ip2) )

where 52%2 can be any (Borel-measurable) square root of Sas It follows from
(3.50) and (3.42) that

1

/
(351) Y19 =0 = 51252_25 AL Soo 1L Sq1.0.
We remark that Proposition 3.13 can also be derived directly from the
pdf of the Wishart distribution, the existence of which requires the stronger

conditions n > p and ¥ > 0. We shall derive the Wishart pdf in §8.4.

Proposition 3.13 yields many useful results — some examples follow.

3 Because A 1L B | C and B 1L C' = B 1L (A, C) [verify].
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Example 3.14. Distribution of the generalized variance.

If S ~ Wy(n, ¥) withn >p and ¥ > 0 then

P
(3.52) S|~ 21 TG
=1

a product of independent chi-square variates.

Proof. Partition S as in (3.37) with p; = 1, po = p — 1. Then

S| = [Si12] - [S22| ~ [Wi(n —p+ 1, Ei1.2)| - [Wp—1(n, Xa2)|
~ (B2 Xp_pi1) - [Wp—1(n, 322)]

with the two factors independent. The result follows by induction on p. U

Note that (3.52) implies that although %S is an unbiased estimator of
5, |£5] is a biased estimator of |X|:

(3.53) E|1S| =3 T, (228) < |3)|.

Proposition 3.15. Let S ~ Wy(n, ¥) withn >p and ¥ > 0. If A:qxp
has rank q < p then

(3.54) (A7) Wy (n—p g, (ADT1A) ).

When A =a’ : 1 x p this becomes

1 1 )

(3.55) V91 " wy-1g Xn-p+l:

Note: Compare (3.54) to (3.1): ASA" ~ W,(n, AXA’), which holds with
no restrictions on n, p, X, A, or gq.

Our proof of (3.54) requires the singular value decomposition of A:

41



STAT 542 Notes, Winter 2007; MDP

Lemma 3.16. If A : q x p has rank q < p then there exist an orthogonal
matriz I' : ¢ X ¢ and a row-orthogonal matrixz W, : ¢ X p such that

(3.56) A=TD,U,,

where D, = diag(as,...,aq) and ai > --- > a2 > 0 are the ordered eigen-
: : v
values of AA’.* By extending ¥; to a p X p orthogonal matrix ¥ = <\1]1 ) ,
2
we have the alternative representations

(3.57) A=T (Dys Ogx(p—q)) Y,
(3.58) =C (I; Ogxp—q)) Y,
where C' =T1'D,, : ¢ X ¢ is nonsingular.

Proof. Let AA’ = T'DT" be the spectral decomposition of the pd g X g
matrix AA’. Thus
D 'T'"AATD;' =1,

so Uy := D;'TVA : q x p satisfies U190} = I, i.e., the rows of ¥; are
orthonormal. Thus (3.56) holds, then (3.57) and (3.58) are immediate. LU

Proof of Proposition 3.15. It follows from (3.58) that [verify]
(AS71A) T = ¢80,
(An71A) T = 18,07,

where S = US¥ and g] = U W’ are partitioned as in (3.37) with p; = ¢
and pe = p — ¢. Since S ~ W, (n, X), it follows from Proposition 3.13 that

911-2 ~ Wq (n - (p - Q), zv311-2) )
SO

C'71811,C7 1 ~ W, (n —(p—q), Cl_lilwc_l) ;

which gives (3.54). L

4 a > - > Qg > 0 are called the singular values of A.
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Proposition 3.17. Distribution of Hotelling’s T2 statistic.

Let X ~ Np(u, ) and S ~ Wy(n, X) be independent, n > p, ¥ > 0, and
define

T? = X'S7'X.
Then
xaWET )

(3.59) T2
X%—p—i—l

= Fp, n—p+1 (N/E_llu)v

a (nonnormalized) noncentral F distribution. (The two chi-square variates
are independent.)

Proof. Decompose T2 as <%) - X’Y71X. By (3.55) and the inde-
pendence of X and S,

1
XS'X | X~ XS X
Xn—p+1
SO
X'S1X
7 X ~ 1 ’
XEiX Xn—p+1

independent of X. Since X'Y7'X ~ x2 (1Y~ 1) by (2.30), (3.59) holds. U

For any fixed pg € RP, replace X and p in Example 3.17 by X — g
and 1 — po, respectively, to obtain the following generalization of (3.59):

T? = (X — o)’ S™H(X — po)
X (1 = o) S = o))

(3.60)
Xn—pi1

= Fpnpt1 (11— p0) 7 (1 — o)) -

Note: In Example 6.11 and Exercise 6.12 it will be shown that 72 is the
UMP invariant test statistic and the LRT statistic for testing u = pg vs.
1 # po with 3 unknown. When p = o,

(3.61) T% ~ Fypi,n—p+1,

which determines the significance level of the test. L
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Example 3.18. Expected value of S~1.

Suppose that S ~ Wy,(n, ¥) with n > p and ¥ > 0, so S~! exists with
pr. 1. When does E(S™1) exist, and what is its value? We answer this by
combining Proposition 3.13 with an invariance argument.

First consider the case ¥ = I. Partition S and S~ as
[ S11 S12 -1 _ stt §12
S — (521 522) ) S - <S21 522 ’

respectively, with p; = 1 and p; = p — 1. Then by (3.41),

S112 Xp—pi1
SO
(3.62) E(s") = ;o7 <o iff n>p+2.

Similarly for the other diagonal elements of S™1: E(s%) < oo iff n > p + 2.
Because each off-diagonal element s% of S~ satisfies

|Sij| < w/Sz'z’sjj < %(Szz +Sjj)’

we see that E(S™!) =: A exists iff n > p + 2. Furthermore, because ¥ = I,
S ~ I'ST” for every p x p orthogonal matrix I', hence

TAT' =TE(S H)I"=E((I'ST')"') =E(S™")=A VI.

Exercise 3.19. Show that TAIY = A VI = A =1 for some § > 0. L

Thus E(S71) =61, and § = —-— by (3.62). Therefore when ¥ = I,

n—p—1

E(S™h = I (n>p+2).

n—p—1

Now consider the general case > > 0. Since

1/
2

N|—=

S~¥25%2  with S ~ Wy(n, I),

44



STAT 542 Notes, Winter 2007; MDP

we conclude that

I
¥
N[
¥
N[

(3.63)

»1 (n>p+2).

Proposition 3.20. Bartlett’s decomposition.

Let S ~ Wy(n, I) withn >p. Set S =TT whereT ={t;; |1 <j<i<p}
is the unique lower triangular square root of S witht;; > 0,i=1,...,p (see
Ezercise 1.5). Then the {t;;} are mutually independent rvs with

tzZiNXEL—i—i—l? 1:17---,]7,
(3.64)
ti; ~ N1(0,1), 1<j<i<p.

Proof. Use induction on p. The result is obvious for p = 1. Partition S
as in (3.37) with p; = p — 1 and p; = 1 so by the induction hypothesis,
S11 = ThT] for a lower triangular matrix 77 that satisfies (3.64) with p
replaced by p — 1. Then

-1
g = St Sz _ T1_1, P non 1 S12 =TT,
So1 S22 So1 T} 839.1 0 $39.1

1
where 1" : p X p is lower triangular with ¢;; > 0,¢=1,...,p. Since T} = S}
and ¥ = [, it follows from (3.51), (3.50), and (3.41) (with the indices “1”
and “2” interchanged) that

Slel_l/ jis T1 il $992.1
521T1_1/ ~ Nixp-1) (0, 1® 1),

2

from which the induction step follows. L
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Example 3.21. Distribution of the sample multiple correlation
coefficient R?.

Let S ~ Wy(n, X) with n > p and ¥ > 0. Partition S and ¥ as

1 p—-1 1 p—-1

1 S11 512 1 011 212
3.65 S — 9 E = Y
(3.65) p—1 (521 Sa2 ) p—1 (5321 Y22 )

and define

R? 51252_215217 P2 = 21222_21221’
S11 011
—1/2 ~1/2\’
7 — R2 _ 51252_21521 _ <512522 ) <512522 )
(3.66) 1 — R? 511-2 $11.2 ’
¢ = p? _ Y1255 Yo
1 — p? 011-2
V= V(S5 = D125 5% B
’ 0112

From Proposition 3.13 and (3.50) we have

N , —
$12857% | S22 ~ Nixpon) (S1255 5347, o112 @ Iy )
S11.2 ~ 011.2 X727,_p+17
Sag ~ Wy_1(n, Xa2),
s11.2 AL (S12,522),

so [verify]

2
Xp— (V) istn
U ‘ 822 ~ p2 : d:t Fp—lyn—p—i-l(V)?

Xn—p—l—l
Vi~ Coxa
Therefore the joint distribution of (U, V') = (U, V(S22,%)) is given by
UV~ Fpo1n—ptar(V),
Vo~

46
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Equivalently, if we set Z := V/({ so Z is ancillary (but unobservable), then

3.68
(3.68) 7ol

from which the unconditional distribution of U can be obtained by averaging
over Z (see Exercise 3.22 and Example A.18 in Appendix A). L

Exercise 3.22. From (A.7) in Appendix A, the conditional distribution
Fp1n—pt+1(CZ) of U | Z can be represented as a Poisson mixture of central
F' distributions:

(3.69)  Fp-1,n—pt1(CZ) | K ~ Fp_112K,n-p+1, K ~ Poisson (¢Z/2).
Use (3.68), (3.69), and (A.8) to show that the unconditional distribution of

U (resp., R?) can be represented as a negative binomial mixture of central
F (resp., Beta) rvs:

(3.70) U | K ~ Fpo142K, n—p+1;
(3.71) R2= U—+1 K o~ B(R 4K, 2,
(3.72) K ~ Negative binomial (p?),
that is,
I (2 +k) k n _
PriK =k]=—2—7>(p?) (1-p?)2 =0,1,....

Note: In Example 6.26 and Exercise 6.27 it will be shown that R? is the
LRT statistic and the UMP invariant test statistic for testing p? = 0 vs.
p? > 0. When p? =0 (<= X123 =0 <= (=0), U 1 Z by (3.68) and

(3.73) U~ Fpi n—pti,
(3.74) R* ~ BB, neptl),
either of which determines the significance level of the test. L
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4. The Wishart Density; Jacobians of Matrix Transformations.

We have deduced properties of a Wishart random matrix S ~ W,(n,X)
by using its representation S = XX’ in terms of a multivariate normal
random matrix X ~ Npy,(0, X ® I,,). We have not required the density of
the Wishart distribution on SIT (the cone of px p positive definite symmetric
matrices). In this section we derive this density, a multivariate extension of
the (central) chi-square density. Throughout it is assumed that n > p.

Assume first that ¥ = I. From Bartlett’s decomposition S = T7T" in
Proposition 3.20, the joint pdf of "= {T},} is given by [verify!]

1 12 £ 1 i —142
f(I) = H —%6 2”'H n—i—lF(n_i+1>tii e 2

1< <i<p =127 2

1 2 n—1 1 2
() = F(n_m) 1 .exp<—5 3 tij)

22" Ppa i=1 i=1 1<j<i<p

p
~ 1
=) Htf}i_z - exp ( -5t TT').
i=1

Since the pdf of S is given by f(S) = f(T) g—g , we first must find the
Jacobian |22 | = 1/|9Z| of the mapping S = TT”. [This derivation of the
Wishart pdf will resume in §4.4.]

4.1. Jacobians of vector/matrix transformations.

Consider a smooth bijective mapping (= diffeomorphism)

A— B

(4.2)
:l’,‘E(a’,'l,...,il?'n)Hyz(yla-"vyn)a

where A and B are open subsets of R". The Jacobian matriz of this map-
ping is given by

Oyp .. Oyn
AN o
(43) % = . - y
Oy .. Oyn
Ox,, ox,,
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and the Jacobian of the mapping is given by ‘ 52 ‘ = [det ( )]7L Jaco-
bians obey several elementary properties.

Chain rule: Suppose that x — y and y — z are diffeomorphisms. Then
x +— 2z is a diffeomorphism and

(1.4 = [ [k

Proof. This follows from the chain rule for partial derivatives:

s oplnssanl) 00 [15)(2)

Therefore (%) = (%) (%) ; now take determinants. L

Inverse rule: Suppose that x — y is a diffeomorphism. Then

Ox
45 = - ’ ‘
(4.5) Oy ly=y(x) Ox
Proof. Apply the chain rule with z = x. L

Combination rule: Suppose that x — wu and y — v are (unrelated)
diffeomorphisms. Then

(4.6)

ol [oy
Proof. The Jacobian matrix is given by
(8(u,v)) B (g—;‘ 0 )
o(z,y) 0 %)

Extended combination rule: Suppose that (z,y) — (u,v) is a diffeo-
morphism of the form u = u(z), v = v(x,y). Then (4.6) continues to hold.

Proof. The Jacobian matrix is given by

(G- (% ).
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4.2. Jacobians of linear mappings. Let

A:pxpand B:n xn be nonsingular matrices,
L:pxpand M: p x p be nonsingular lower triangular matrices,
U:pxpand V:pXxp be nonsingular upper triangular matrices,

¢ a nonzero scalar.

(A, B,L,M,U,V, care non-random.) Then (4.4) — (4.6) imply the following
facts:

(a) vectors. y = cx, x,y: 1 X n: !%’ = |c|™. [combination rule]
(b) matrices. Y =cX, X, Y :pxn: ‘8X = |c|P™. [comb. rule]
(c) symmetric matrices. Y = cX, X,Y : px p, symmetric: |3%| = |c \p(pH)
[comb. rule]

(d) matrices. ¥ = AX, X,Y:pxn: ’a_y = |A|". [comb. rule]
Y=XB, X,)Y:pxn |8X = | BJP. [comb. rule]

Y = AXB, X,Y:pxn: || =|A"|BJ]. [chain rule]

(e) symmetric matrices. Y = AXA', X,Y : p X p, symmetric:
‘ ‘ — AP+,

Proof. Use the fact that A can be written as the product of elementary
matrices of the forms

M;(c) :=Diag(1,...,1,¢,1,...,1),
1 0
Eij = | b
0 | 1
Verify the result when A = M;(c) and A = E;;, then apply the chain rule. U

o0
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(f) triangular matrices:

oY =LX, X,Y:pXplower triangular:

LA

Proof. Let Since y;; = ZZZJ. Lirzik; (1 > j), the Jacobian matrix is

9y11 9y21 dyz2 .. OYpp ] ] ]
89011 8.1:11 83311 8LE11 \ 11 21 o« .
9y11 9y21 dy22 .. Oypp l PP
811321 8:1321 8:1:21 81321 0 22

oY _ Oyi1 Oy Oy22 ..  OYpp _ 0 0 o9

0X — 022 Oxa2 Ox22 Ox22 -
Oyin  Oy21  Oy22 .. Oypp ) 0 o --- 0 lpp
Oxpp  Oxpp  Ozpp Ozpp

Thisis a p(p+1)/2 x p(p+1)/2 upper triangular matrix whose determinant
is [T, 18,0 O

oY =UX, X,Y:p X pupper triangular:

‘ ax |~ ‘“”"p—m‘

oY =XL, X,Y:pXp lower triangular:

ox \—Hw o

Proof. Write Y/ = L’ X’ and apply the preceding case with U = L’. W

5 A more revealing proof follows by noting that Y = L.X can be written column-by
columnas Yy = [1 Xq,,..., Yp = Lpo, where X; and Y are the (p—i—l—l) X 1 non-
zero parts of the columns of X and Y and where L; is the lower (p—i+1) X (p—i+1)
principal submatrix of L. Since Y; = L;X,; has Jacobian |Li’+ = H?:i |ljj|, the

result follows from the composition rule.

ol
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oY = XU, X,Y:pXpupper triangular:

’8)( - H "
=1

Proof. Write Y/ = U’ X’ and apply the first case with L = U’.

oY =LXM, X,Y:pxplower triangular:

% \—Hw Hlmu\p

Proof. Apply the chain rule.

oY =UXV, X,Y:p X pupper triangular:

P
‘ = H \uz’i\p_ﬂrl : H |’Uzz‘z
0X =1 i=1

Proof. Write Y/ = V'X'U’ and apply the last case with L

M=U".

(g) triangular/symmetric matrices:

= V'’ and

oY =X+ X' X :pxplower (or upper) triangular, Y : p X p symmetric:

Proof. Since y;; = 2x44,1 < ¢ < p, while y;; = z;;,1 < j < <p.

oY =L'X+X'L, X:pxplower triangular,

Y P .
pp—— :2p lm 2.
<| 1:] |

Y : p X p symmetric:

Proof. Clearly X +— Y is a linear mapping. To show that it is 1-1:
L'X:+X{L=LXy+ XL

— L/(Xl — X2) =

— (X — Xo)L 7! =

52

_(Xl
—[(X4

— Xo)'L
— Xo)L~

1]/.
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Thus (X; — X2)L ™! is both lower triangular and skew-symmetric, hence is
0, so X7 = X5. Next, to find the required Jacobian, apply the chain rule to
the sequence of mappings

X~ XLV - XL'v(XLY — UIXL'+(XL7Y]L=LX+X'L.

Therefore the Jacobian is given by [verify!]

oY - —1ip—i+l op - p+1 pp i
LR | (e | (| (0
i=1 i=1 i=1

oY =U'X + X'U, X:px pupper triangular, Y : p X p symmetric:

oY i .
—— | =9pP |p—itl
8X‘ 1;[1 i

oY =XL'+LX’', X:pxplower triangular, Y: p X p symmetric:

oY P .
:Qpl | |p—itl
GX‘ pale i

Proof. Apply the preceding case with U =L’ and X replaced by X :=X’. [

oY = XU +UX', X:pxpupper triangular, Y : p X p symmetric:

0 a .
el =2 Tt
=1

Proof. Apply the first case with L = U’ and X replaced by X =X L

53



STAT 542 Notes, Winter 2007; MDP

4.3. Jacobians of nonlinear mappings.

(*) The Jacobian of a nonlinear diffeomorphism x +— y is the same as the
Jacobian of the linearized differential mapping dxr — dy. Here,

dx := (dxy,...,dz,) and dy:= (dy1,...,dy,).

For n = 1, (*) is immediate from the linear relation between dxr and dy
given by the formal differential identity dy = (g—g)dx, where % is treated
as a scalar constant c. For n > 2, the equations for total differentials

dyy = (%)dazl T <%>dxn,
(4.7)

dyn = (g—fz)dxl TR (g—ij)d:cn,

can be expressed in vector-matrix notation as the single linear relation

(4.8) dy = (%) dz

with (2%) treated as a constant matrix, which again implies (*).
ox g

The following elementary rules for matrix differentials will combine
with (*) to allow calculation of Jacobians for apparently complicated non-
linear diffeomorphisms. Here, if X = (z;;) is a matrix variable, dX denotes
the matrix of differentials (dx;;). If X is a structured matrix (e.g., sym-
metric or triangular) then dX has the same structure.

(1) sum: d(X +Y)=dX +dY. [verify]
(2) product: d(XY) = (dX)Y + X(dY). [verify]
(3) inverse: d(X1) = —X"1dX)X 1.

Proof. Apply (2) with Y = X1, L]
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Four examples of nonlinear Jacobians:

(a) matriz inversion: if Y = X1 with X,Y: p x p (unstructured) then

= | X|7?P.
x| = X

Proof. Apply (3) and §4.2(d). L

(b) matriz inversion: if Y = X! with X, Y : p x p symmetric, then

=|X|7*~1.
x| =1
Proof. Apply (3) and §4.2(e). ]
(c) lower triangular decomposition: if S = TT' with S: p X p symmetric
pd and T': p x p lower triangular with ¢y > 0,...,¢,, > 0 (Cholesky), then

S : p—i+1

oz =2 11"

=1

Proof. By (2), dS = (dT)T" + T(dT)"; now apply §4.2(g). L

(d) upper triangular decomposition: if S = UU’" with S: p X p symmetric
pd and U : p x p upper triangular with w13 > 0,...,up,, > 0 (Cholesky),

then ,
o | =2 1w
1=1
Proof. By (2), dS = (dU)U’ + U(dU)'; again apply §4.2(g). L
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4.4. The Wishart density.

We continue the discussion following (4.1). When ¥ = I, and n > p, the
pdf f(T) of T (recall that S = TT' with T lower triangular) is given by
(4.1). Thus by the inverse rule and §4.3(c) the pdf of S is given by

1
f(S) =f(T
LI
p .
e Ht cexp (—3tr TT) - 277 [ [ 5,77
(4.9) i=1
p n—p—1
= 2_pc;7n : ( tii> - exp (—%tr TT’)
i=1
:cp,n-\S]n_g_le_er SesS/,
where
—1 ._ o22 p(p—1) P n—it1
(4.10) =27 ][ T ()

=: Q%Wp(pﬁfl) -y (%) :

Finally, for ¥ > 0 the Jacobian of the mapping S — X1/28%1/2 ig

|E\pT+1 (apply §4.2(e)), so the general Wishart pdf for S ~ Wy(n,X) is
given by

Cp o 3tr=7'S +
(4.11) |2| : Ses,,
a multivariate extension of the density of o2x?2. L

Exercise 4.1. Moments of the determinant of a Wishart random
matrix. Use (4.11) to show that

(4.12) E(ISI*) = 12]" -

2Ty (5 + F)
2

Lp(3)
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Exercise 4.2. Matrix-variate Beta distribution.

Let S and T be independent with S ~ W,(r,X), T ~ Wy,(n,X), r > p,
n>p,and X >0,s05 >0and T"> 0 w. pr. 1. Define

)

l\)ll—‘

—(S+T)" 25 ((S+T)"

(4.13)
V=S+T.

Show that the range of (U, V) is given by {0 < U < I} x{V > 0} and verify
that (4.13) is a bijection. Show that the joint pdf of (U, V') is given by

Cp rC ,
J(U,V) = B )=
P, TTN
o 'f;t:: VT,

so U and V are independent and the distribution of U does not depend on
Y. (Note that the distribution of U is a matrix generalization of the Beta
distribution.) Therefore

(4.15) E(ISI") = E(U*IVI®) = E(JU")E(V]®),

so the moments of |U]| can be expressed in terms of the moments of deter-
minants of the two Wishart matrices S and V' via (4.12) as follows:

&3
—
iSa)

&
~—
B
—~

3

+7r
(4.16) E(|U]") = - ; r) F( (5 izg

N3

Hint: To find the Jacobian of (4.13), apply the chain rule to the sequence
of mappings
(5, T) = (5, V)= (U, V).

Use the extended combination rule to find the two intermediate Jacobians.
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Exercise 4.3. Distribution of the sample correlation matrix when
Y. is diagonal.

Let S ~ W,(n,Dy) (n > p), where D, := diag(o1,...,0,) > 0. Define the
sample correlation matrix R = {r;;} by

—1/2  —1/2

i SijSj;

where S = {s;;}. Find the joint pdf of R, s11,...,sp,. Show that they are
mutually independent.

iy =8

Hint: First determine the range of (R, s11,...,5pp). Next, the joint pdf of
R, s11, ..., spp is given by

9(5)
R, S115-- -5 Spp)

B 8(812, ce ,Sp—l’pysl]_? sty Spp)
_f(S) ‘ a(R,Su,---,Spp) ‘

F(R 811, - -2 8pp) =F(S) ‘a(

__%nm S| nf=l —3uD;'S O(s12,-- -, Sp—1,p)
|D,|2 OR
c —p—1 nop-1 sy p=1
:Lﬂ‘mné’ Hszzz e Q;Z_Hsiiz
P 2
i=19i i=1 i=1

n—p—1 i 1 Sig 71 s
e |RIET T () (22) e,
0i/ \0Oj

1=

where f(S) is given by (4.11) with ¥ = D, and the Jacobian is calculated
using the extended combination rule and the relation s;; = 3;/ 27‘@-3%2.
This establishes the mutual independence, and will yield the marginal pdf
of R. (The mutual independence also can be established by means of Basu’s

Lemma.) L

Exercise 4.4. Inverse Wishart distribution. Let S ~ W,(n, I) with
n > pand ¥ > 0. Show that the pdf of W = S~ is

Q2 -
(4.17) cp,n&e_%tmw g WeSt.

W

where Q = 21, L
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5. Estimating a Covariance Matrix.

Consider the problem of estimating > based on a Wishart random matrix
S ~ Wpy(n, ¥) with ¥ € ;. Assume that n > p so that S is nonsingular®

w. pr. 1. The loss 1ncurred by an estimate 3 is measured by a loss function
L(%, %) such that L > 0 and L = 0 iff ¥ = X. An estimator ¥ = 3(9) is
evaluated in terms of its risk function = expected loss:

We shall consider two specific loss functions:

Quadratic loss : Ll(fl, Y) = tr(ZAJZ_l — I) :
Stein's loss : Ly(%, X)) = tr(i]E_l) —log |22 —p

We prefer Lo over L1 because L penalizes overestimates more than under-
estimates, unlike Lo:

Ll(f], I)—p as 3 — 0, Ll(f], I)—>ooasf)—>oo;
Ly(3, 1) — o0 as ¥ — 0 or oo.

5.1. Equivariant estimators of .

Let G be a subgroup of GL = GL(p), the general linear group of all p x p
nonsingular real matrices. Each A € G acts on S according to the mapping

S;'—>S;'

5.1
(5.1) Y- AL A

A loss function L is G-invariant if

(5.2) L(ASA, ASA)=L(2,Y) VAeG.

6 Itn < P it would seem impossible to estimate >.. However several proposals
recently been put forth to address this case, which occurs for example with microarray
data where p = 10% but n ~ 103. [References?|
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Note that both L; and Lg are fully invariant, i.e., are G L-invariant. If L
is G-invariant then the risk function of any estimator ¥ = 3(S) transforms
as follows: for A € G,

R(ATS(ASA)A™, 3) = By |1 (4718484047, 5)]
= Ex [L(2(ASA'), AT A
= Easa [L(2(S), ASA")]
= R(%(S), ADA).

An estimator 3 = (S) is G-equivariant if
(5.4) Y (ASA") = AX(S) A VAeG,VSeS,).

If L is G-invariant and ¥ is G-equivariant then by (5.3) the risk function is
also G-invariant:

A

(5.5) R(E, X)) =R(%, AxA") VA€,

that is, R(3, ) is constant on G-orbits of S,5 (see Definition 6.1).

We say that G acts transitively on S,f if S; has only one G-orbit under
the action of GG. Note that GG acts transitively on S;F iff every X € Szj_ has a
square root X € G, i.e.,, ¥ = XgX{,. Thus both GL and GT = GT'(p) (the
subgroup of all p X p nonsingular lower triangular matrices) act transitively
on S;r 7 If L is G-invariant, 3 is G-equivariant, and GG acts transitively on
S,7, then the risk function is constant on S;f:

(5.6) R(E,E)=R(X, I) VeSS [set A=X;'in (5.5)]

5.2. The best fully equivariant estimator of ..

Lemma 5.1. An estimator %(S) is G L-equivariant iff 2(S) = 6 S for some
scalar 6 > 0.

" TFor the latter, apply the Cholesky decomposition, Exercise 1.5.
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Proof. Set G = GL and A = S;; in (5.2) to obtain

(1) = 551, 2(5) St
SO

(5.7) 5(8) = Sar X(1) Sty
Next set A=T € O and S =1 in (5.2) to obtain
(5.8) S(I) =TI VYL e O(p),

where O = O(p) is the subgroup of all p x p orthogonal matrices. By
Exercise 3.19, (5.8) implies that (1) = 61, so 2(S) = 65 by (5.7),
stated. L

A

We now find the optimal fully equivariant estimators i?(S) =05 w. r.
to the loss function L; and Lo, respectively.

Proposition 5.2. (a) The best fully equivariant estimator w. r. to the loss
function Ly s the biased estimator #WS.

(b) The best fully equivariant estimator w. r. to the loss function Lo is the
unbiased estimator %S.

Proof. (a) Let S = {s;; | i,j =1...,p}. Because GL acts transitively on
S; and L is G L-invariant, 6 S has constant risk given by

E;[L1(6S, I)] = Ef[tr(6 S — I)?
= 6°Er(tr S?) — 20E;(tr S) + tr I?

R (SN, ) 23 )
= §2 {EI (Zzsu) + Ey (Z Zi;&jsij)] —20np+p
(5.9) = o” [(2?1 +n%)p+p(p — 1)%} —20mp +p

(5.10) = 6*np(n+p+1) — 26np + p.

The quadratic function of § in (5.10) is minimized by 6 = #pﬂ.
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*To verify (5.9), first note that when ¥ = I, s% ~ x2 so
E;(s3;) = Varr(x2) + (Er(x2)) = 2n + n”.
Next, Sij ~ S12 since

S ~ Wy(n, IIT') = Wy(n, I) ~ S

for any permutation matrix II. Also 31232_21/2 1l s99 and 81282_21/2 ~ N(0, 1)
by (3.50) and (3.51), so
52 52
E[ (852) = E[(ﬂ . 822> = E[(ﬁ) : E[(SQQ) =1-n=n.
522 522

(b) Because GL acts transitively on S, and Ly is G L-invariant, §S has
constant risk given by

Er[L2(6S, I)] = E;[tr(6S5) — log[0S] — p]
=JdE;(tr S) —plogd — E;(log|S|) —p
(5.11) = dnp —plogd — E;(log|S|) — p.

This is minimized by 5= % L
5.3. The best GT-equivariant estimator of X..

Lemma 5.3. Let Sp = Sap. An estimator 3(S) is GT -equivariant iff
(5.12) >(S) = Sp A Sy’

for a fived diagonal matriz A = diag(d,...,d,) with each 6; > 0.
Proof. Set G = GT and A = S;" in (5.4) to obtain

S(1) = S5 5(S) SV,
SO

(5.13) 3(8) = Sp2(I) St
Next set A = Dy = diag(£1,...,4+) € GT and S = I in (5.4) to obtain
(5.14) >(I)=D+X(I)Dy  VDs.
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But (5.14) implies that $(I) = A for some diagonal matrix A € S, [verify],
hence (5.12) follows from (5.13). L

We now present Charles Stein’s derivation of the optimal GT-equivariant
estimator XA)T(S) = S Ar S7’ w. r. to the loss function L. Remarkably,
f)T(S ) is not of the form §.S, hence is not G L-equivariant. Because GT' is
a proper subgroup of GL, the class of GT-equivariant estimators properly
contains the class of GGL-equivariant estimators, hence S dominates the
best fully equivariant estimator %S . Thus the latter, which is also the
best unbiased estimator and the MLE, is neither admissible nor minimax.
(Similar results hold for the quadratic loss function L;.)

Proposition 5.4.8 The best GT-equivariant estimator w. r. to the loss
function Lo 1s

(5.15) S7(S) = Sr Ar St/

where

(5.16) A = diag(dr,1,...,07,)
and

(5.17) or,i = m :

Proof. Let Sy = {t;; | 1 < j < i < p}. Because GT acts transitively on
S;r and Lo is GT-invariant, each GT-equivariant estimator S; A St has
constant risk Ro(St A St’, ¥) given by

Ep [Lo(STASE, )]

E[ [tl”(STAST ) log ‘STAST | - ]
= E; [tr(AST ST)} Zle logd; — Ej [log ‘STST’H —
=E; ijl 6; (t2 + t(z-i—l) + - -tzi)} — ijl log ; + const.
P

=2
=1

Zz.)_l [0; (n+ 1+ p—2i)) —logd;] + const.

[0; (n—i+ 1)+ (p—1)) — logd;] + const.
(5.18)

8 James and Stein (1962), Proc. 4th Berkeley Symp. Math. Statist. Prob. V.1.
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1
n+p+1—-2¢°

*This follows from Bartlett’s decomposition (Proposition 3.20). L

The ith term in the last sum is minimized by b; = as asserted.

For the loss function Lo, the improvement in risk offered by Stein’s
estimator XA]T(S) = St AT St’ compared to the unbiased estimator %S
is ~ 5-20% for moderate values of p.? However, this estimator is itself
inadmissible and can be improved upon readily as follows:

Replace the lower triangular group GT" with the upper triangular group
GU to obtain the alternative version of Stein’s estimator given by

(5.19) Y (S) = Sy Ay Sy,

where Sy = Sgu is the unique upper triangular square root of S and
AU = diag(éU,l, ey 5U,p) with

N _ g _ 1
OU,i = 0T, p—i+1 = 75173 -

Because GU also acts transitively on 81;F , the risk function of XA]U is also
constant on S; with the same constant value as the risk function of f]T
[why?19] Since Ly(, X) is strictly convex in ¥ [verify!], so is Ry(Z, X)

9 S. Lin and M. Perlman (1985). A Monte Carlo comparison of four estimators of a
covariance matrix. In Multivariate Analysis — VI, P. R. Krishnaiah, ed., pp. 411-429.

10" Use an invariance argument: Let Il denote the p X p permutation matrix corre-
sponding to the permutation (1, . ,p) — (p, cee 1). Then

S =TSN’ = ISy S, = (ILSyI1') (LS, 1T’

and HSUH/ is lower triangular, so HSUH/ = S’T by uniqueness. Also AU = H/ATH,
so from(5.19),

Sy (S) = (I SpI) (I ApID) (I SpIT) = I (S ApSp)IT
= II'Sp(S) I = IS (ST 1.
Now apply (5.3) with A = II to obtain

(5.20) R, (EU(S), 2) = Ry (H’ET(HSH’)H, 2) ~ Ry (ET(S), HEH’) ,
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[verify], hence
Rs (%(ET + 2U)7 E) < %R2(2Ta ¥) + %RQ@UW ¥) = Ba(Sr, B).

Therefore the estimator %(EAJT + f]U) strictly dominates 37 (and 3p).

The preceding discussion suggests another estimator that strictly dom-
inates 5 (X7 + ¢ ), namely

1 ~
(5.21) Sp(8) == > I'Sp(IS)I
P nep(p)

where P = P(p) is the subgroup of all p X p permutation matrices. Again
the strict convexity of Ly implies that ¥p dominates Y7, in fact [verify!]

Rz(ip, E) < Ry (%(XA}T + XAJU), E) < RQ(XA}T, Z)

5.4. Orthogonally equivariant estimators of ..

The estimator >p(S) in (5.21) is the average over P of the transformed
estimators II’ X (IISTI) IT and is itself permutation-equivariant [verify]:

(5.22) Yp(IISI) = Ep(S)II'  VIIe P.

Because P is a proper subgroup of the orthogonal group O, the preceding
discussion suggests the following estimator, obtained by averaging over O
itself:

(5.23) 20(9) = /O I’ S0 (ISTY) Ddw(T),

where v is the Haar probability measure on O, i.e. the unique (left = right)
orthogonally invariant probability measure on O. Since [verify!]

A~

(5.24) 50(8) = /O I’ $p(DST) T du(T),

so 2y and 27 must have the same (constant) risk function, as asserted. L
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the strict convexity of Ly implies that ¥ in turn dominates 3 p [verify!]:
Rg(io, E) < R2<2P7 Z)

The estimator 3¢, first proposed!! by Akimichi Takemura, is orthogo-
nally equivariant: for any I' € O,

So(TST) = /O ' S (U(STHT) U du (D)

_ / L(UT) $p (WT)S(UTY) (WD) du (W)
O

T (/ o' Ly (PSD) cbdu(cp)) I’
o
(5.25) =T'3o(S)I,

where * follows from the substitution ¥ — ® = ¢TI’ and the orthogonal
invariance of v: dv(¥) = dv(I'V) = dv(P). The estimator X offers greater

A

improvement over %S than does X7 (S), often a reduction in risk of 20-30%.

Clearly the unbiased estimator %S is orthogonally equivariant [verify].
The class of orthogonally equivariant estimators is characterized as follows:

Lemma 5.3. For any S € 8; let S = I's Dys) s be its spectral decom-
position. Here 1(S) = (11(5),...,1,(S)) where ly > --- > 1, (> 0) are the
ordered eigenvalues of S, the columns of I's are the corresponding eigen-
vectors, and Dygy = diag(l1(S),...,1,(S)). An estimator S = 3(8) s
O-equivariant iff

A

(5.26) %(8) =T's Dysy I's

where Dyy = diag(o1(l1, ..., 0p), ... &p(ly, ..., 1p)) with ¢y > -+ > ¢, >0,
Proof. For any I' € O and S € S,

I'ST' = (ITs) Dys) (TTs),

11 An orthogonally invariant minimax estimator of the covariance matrix of a multi-
variate normal population. Tsukuba J. Math. (1984) 8 367-376.
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hence I'rgrr = I'T's and {(D'STY) = [(S). Thus if 3(S) satisfies (5.26) then

S(TST) = T'rsr Dyrsry) s = D E(S) T,

so Y is O-equivariant.

Conversely, if 3 is O-equivariant then

(5.27) 5(8) =Ts B(I's STs) 'y = T's S(Dys)) T
But
ZA:(DI(S)) =Dy ZA:(DI(S)) Dy VDi= diag(:l:l, cey :i:) e O,

A

hence (recall (5.14)) X(Djs)) must be a diagonal matrix whose entries
depend on S only through [(S). That is,

A

Y(Dysy) = Dg(sy)

for some ¢(I1(S) = (p1(1(5)), ..., ¢p(I(S))), so (5.27) yields (5.26) L

By (5.5), the risk function Ra(3, ) of an O-equivariant estimator 3
is constant on O-orbits of S; , hence satisfies

(5.28) Ry(5, ¥) = R(S, Dxw)),

where A(X) = (A1(2) > ... > Ap(X) (> 0)) is the vector of the ordered
eigenvalues of Y. Thus, by restricting consideration to orthogonally equiv-
ariant estimators, the problem of estimating > reduces to that of estimating
the population eigenvalues A(X) based on the sample eigenvalues [(S).

Exercise 5.5. (Tukemura). When p = 2, show that ¥o(S) has the form
(5.26) with

_ \/EST,l \/EgT’2
(5.20) e <¢E+¢E+¢E+¢E> "
| d2(ly,1l2) = \/EgTQ 4 \/EST,l Iy
| i+ Vi+Vi )T
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where 5T,1 = n%rl and 5T,2 = ﬁ (set p=21in (5.17)). L

Because %H < % < ﬁ and 17 > Vs, f]o “shrinks” the largest

eigenvalue of %S and “expands” its smallest eigenvalue when p = 2 [verify],
and Takemura showed that this remains true of X for all p > 2.

Stein has argued that the shrinkage /expansion should be stronger than
that given by Y. For example, he suggested that for any p > 2, if consid-
eration is restricted to orthogonally invariant estimators having the simple

form ¢;(l1,...,lp) = ¢;l; for constants ¢; > 0, then the best choice of ¢; is
given by (recall (5.17))

(530) Ci:5T,i:ma Zzl,,p

Several reasons why such shrinkage/expansion is a desirable property
for orthogonally equivariant estimators are now presented.

First, the extremal representations

(5.31) 11(S) = n i z'Sx,
(5.32) [,(S) = mllllil;' 'Sz,

show that {41 (S) and [,(S) are, respectively, convex and concave functions
of S [verify]. Thus by Jensen’s inequality,

(5.33) Es [[1(5)] > l1 [E(S)] =11(nX) = nA1(2),
(5.34) Esx [I,(9)] < lp [E(S)] = [p,(nX) = n A, (3).
Thus %ll tends to overestimate A1 and should be shrunk, while %lp tends to
underestimate A, and should be expanded. This holds for the other eigen-

values also: %lg, %lg, ... should be shrunk while %lp_l, %lp_g, ... should be
expanded.

Next from (3.53) and the concavity of log x,

B[, 2] =TI ne - TT, (2=22)
<[ x® (-5
(5.35) <[ () -e e
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Thus []?_; 21; (S) will tend to underestimate [];_, X;(X) unless n > p?,
which does not usually hold in applications. This suggests that the shrink-
age/expansion of the sample eigenvalues should not be done in a linear

manner: the smaller %li (S)’s should be expanded proportionately more than
the larger L1; (S)’s should be shrunk.

A more precise justification is based on the celebrated ”semi-circle” law
[draw figure| of the mathematical physicist E. P. Wigner, since extended by
many others. A strong consequence of these results is that when ¥ = A\ [,

(equivalently, A1 (¥) = --- = A\,(X) = A) and both n, p — oo while £ — n
for some fixed n € (0, 1], then

(5.36) Sl (8) = A1+ i),

(5.37) 17, (8) “ A (1 — )

Thus if it were known that ¥ = A1, then 1l; (S) should be shrunk by
the factor 1/(1 + \/n)? while 11, (S) should be expanded by the factor
1/(1 — \/n)?. Furthermore, the expansion is proportionately greater than
the shrinkage since

1 ) 1 _ 1
TrvmE T2 — (7

Note that these two desired shrinkage factors for Ll (S) and L1, (S)

are even more extreme than ncy = ndr; and ne; = ndr, from (5.30):

)2>1.

I\ _ n ~ 1 1
(5.38) 1> nbrs = iy ~ > e

I\ _ n ~ 1 1

The shrinkage and expansion factors in (5.36) and (5.37) are derived
only for the case ¥ = A, (the “worst case” in that the most shrink-
age/expansion is required). In general the appropriate shrinkage /expansion
factors (equivalently, the functions ¢y, ..., ¢, in (5.26)) depend on the (un-
known) empirical distribution of A;(X),...,A,(X) so must themselves be
estimated adaptively. Stein'? proposed the following adaptive eigenvalue

121 first learned of this result at Stein’s 1975 IMS Rietz Lecture in Atlanta, which
remains unpublished in English - Stein published his results in a Russian journal in
1977. 1T have copies of his handwritten lecture notes from his courses at Stanford and U.

of Washington. Similar results were later obtained independently by Len Haff at UCSD.
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estimators:

+
* — L )
(5.40) ¢z (llv T lp) o (n—p+1+21i Zj;éi #) g

The term inside the large parentheses can be negative hence its positive part
is taken. Also the required ordering ¢7 > ... > ¢, need not hold, in which
case the ordering is achieved by an isotonization algorithm — see Lin and
Perlman (1985) for details. Despite these complications, Stein’s estimator
offers substantial improvement over the other estimators considered thus
far — the reduction in risk can be 70-90% when ¥ ~ A I,,!

If the population eigenvalues are widely dispersed, i.e.,
(5.41) AM(Z) > > A0,
then the sample eigenvalues {/;} will also be widely dispersed, so
1 ls i ;
li 2 jbi Li—l; 2 jsi L1, T D j<i Li—l;, (p—1)+0,

in which case (5.40) reduces to [verify]

(recall (5.30)). On the other hand, if two or more \;(X)’s are nearly equal
then the same will be true for the corresponding [;’s, in which case the
shrinkage/expansion offered by the ¢!’s will be more pronounced than in
(5.42), a desirable feature as indicated by (5.38) and (5.39).

Remark. When p > 3 it is difficult to evaluate the integral for Takemura’s
estimator 3 (S) in (5.23). However, the integral can be approximated by
Monte Carlo simulation from the Haar probability distribution over O. This
can be accomplished as follows:

Lemma 5.6. Let X ~ N,.,(0, I, ® I,). The distribution of the ran-
dom orthogonal matrix I' = (X X’)~1/2X is the Haar measure on O, i.e.,
the unique left = right orthogonally invariant probability measure on the
compact topological group O.

Proof. It suffices to show that the distribution is right orthogonally invari-
ant, i.e., that I' ~ I' ¥ for all ¥ € O. But this holds since

IV =[(XU)(XP)]Y2XU~ (XX)V2X =T. [
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6. Invariant Tests of Hypotheses. (See Lehmann TSH Ch. 6, 8.)

Motivation for invariant tests (and equivariant estimators):
(a) Respect the symmetries of a statistical problem.

(b) Unbiasedness fails to yield a UMPU test when testing more than one
parameter. Restricting to invariant tests sometimes leads to a UMPI test,
but at least reduces the class of tests to be compared.

6.1. Invariant statistical models and maximal invariant statistics.

A statistical model is a family P of probability distributions defined on a
sample space (X,.A), where A is the sigma-field of measurable subsets of
X. Often P has a parametric representation: P = {Py | § € ©}. (The
parameterization is assumed to be identifiable.)

Let G be a group of measurable mappings of X into itself. Then G
acts on X if

(1) (9192)55 — 91(92513) Vagi1,92 € G,Vx € X.
(2) 1gx = x Vx € X. (1g denotes the identity element in G.)

Here (1) and (2) imply that the mapping g : X — ¢gX is a bijection V¢ € G.
Definition 6.1. Suppose that G acts on X. For x € X, the G-orbit of x
is the subset Gz := {gz | g € G} C &, i.e., the set of all images of x under
the actions in GG. The orbit space

X/G:={Gx |z e X}
is the set of all G-orbits. The orbit projection w is the mapping

T: X = X/G

x+— Gr.
Trivially, 7 is a G-tnvariant function, that is, 7 is constant on G-orbits:
m(x) = w(gx) Yz, g.
[Since G itself is invariant under group multiplication: {gg¢’ | ¢’ € G} = G.]

71



STAT 542 Notes, Winter 2007; MDP

Definition 6.2. A function ¢t : X — 7 is a maximal invariant statistic
(MIS) if it is equivalent to the orbit projection 7, i.e., if ¢ is constant on G-
orbits and distinguishes G-orbits (takes different values on different orbits.)

Lemma 6.3. Suppose that ¢t : X — 7 satisfies
(3) t is G-invariant;

(4) if u : X — U is G-invariant, i.e., satisfies u(x) = u(gz) Vz, g, then u
depends on x only through the value of t(x), i.e., u(x) = w(t(z)) for some
function w: 7 — U.

Then ¢ is a maximal invariant statistic.

Proof. We need only show that ¢ distinguishes G-orbits. This follows from
(4) with u = . L

If G acts on X then G acts on P as follows: gP := P o g~ !, that is,
(gP)(A) = P(g7'(A)) YA € A
Equivalently, if X ~ P then ¢X ~ gP.
Definition 6.4. The statistical model P is G-invariant if gP C P Vg € G.

If P is G-invariant then by (1) and (2),

(5) (g192)P = 91(g2P) Y¢1,92 € G,VP € P. [since (g192)™" = g5 "9 ']
(6) 1¢P = P VP € P.

Then (5) implies that
P=g(g”"P) C gP Vg €G,

so gP = P Vg and the mapping g : P — ¢gP is a bijection for each g € G.
Furthermore, if P has a parametric representation {FPy | 6§ € O} then,
equivalently, G acts on © according to

ng =gPy=Pyo g_l.

Also equivalently, if X ~ Py then gX ~ Py. In this case, (5) and (6)
become
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(7) (9192)0 = 91(g920) Vg1,92 € G,V0 € ©.

(8) 1g0 =0 V0 € ©. (Thus, GO = 06.)

Again, (7) and (8) imply that ¢® = © Vg and the mapping g : © — ¢gO
is a bijection for each g € G. Note that if dPy(x) = f(z, 0)dx then the
G-invariance of P is equivalent to

(9) f(z, 0) = f(gz, g0) |29 [verify].

Definition 6.5. Assume that P = {Py | § € O} is G-invariant. For 6 € O,
the G-orbit of 0 is the subset GO := {gf | g € G} C ©. A function7: © — =
is a mazimal invariant parameter (MIP) if it is constant on G-orbits and
distinguishes G-orbits. L

As in Lemma 6.3, 7 is a maximal invariant parameter iff 7 is G-invariant
and any G-invariant parameter o(#) depends on 6 only through the value

of 7 = 7(0).

Lemma 6.6. Assume that u : X — U is G-invariant. Then the distribution
of u depends on 6 only through the value of the maximal invariant parameter
7. (In particular, the distribution of a maximal invariant statistic ¢t depends
only on 7.)

Proof. We need only show that the distribution of u is G-invariant. But
this is immediate, since for any measurable subset B C U,

ng[u(X) ~ B] = P@[U(QX) € B] = P@[U(X) € B]

6.2. Invariant hypothesis testing problems.
Suppose that P = {Py | § € O} is G-invariant and we wish to test

(6.1) Hy:0 €0 VS. H:0e€0)\06

based on X, where O is a proper subset of © such that Py = {FPy | 6 € ©g}
is also G-invariant. Then (6.1) is called a G-invariant testing problem. A
sensible approach to such a testing problem is to respect the symmetry of
the problem (i.e., its G-invariance) and restrict attention to test statistics
that are G-invariant. Equivalently, this leads us to consider the “invariance-
reduced” problem where we test Hy vs. H based on the value of a MIS
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t = t(x) rather than on the value of x itself. In general this may entail
a loss of information, but optimal invariant tests often (but not always)
remain admissible among all possible tests.

Because Py and P are G-invariant, the invariance-reduced testing prob-
lem can be restated equivalently as that of testing

(6.2) Hy:17€Z5, VS. H:17€eEZ\E

based on a MIS ¢, for appropriate sets =y and = in the range of the MIP .
Our goal will be to determine the distribution of the MIS ¢ and apply the
principles of hypothesis testing to (6.2). In particular, if a UMP test exists
for (6.2), it is called UMP invariant (UMPI) with respect to G for (6.1).

In cases where the class of invariant tests still so large that no UMPI
test exists, the likelihood ratio test (LRT) for (6.1), which rejects Hy for
large values of the LRT statistic

Az) = maxg f(z,0)

maxg, f(z,0)’

is often a satisfactory G-invariant test.

Lemma 6.7. The LRT statistic is G-invariant:
A(gz) = A(z) VgeQq.

Proof. Apply property (9) in §6.1. L]

Example 6.8. Testing a mean vector with known covariance ma-
trix: one observation.

Consider the problem of testing
(6.3) p=0 vs. pu#0 basedon X ~ Np(u,Ip).

Here X = © = RP and Oy = {0}. Let G = O, = the group of all p X p
orthogonal matrices g acting on X and © via

X —gX and pgp,
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respectively. Because

gX ~ Np(gp, 99’ = I,),

© and O¢ are G-invariant. For X, p € X = RP, the G-orbits of X and pu
are the spheres

{y e R"[lyll =X} and {veRP[|v] =g}
respectively, so
t=t(X)=|X|* and 7=r7(n)=|p]?

represent the MIS and MIP, resp. The distribution of ¢ is XI%(T), the non-
central chi-square distribution with noncentrality parameter 7. Any G-
invariant statistic depends on X only through || X||?, and its distribution
depends on p only through ||u||?. The invariance-reduced problem (6.2)
becomes that of testing

(6.4) 7=0 vs. 7>0 basedon [ X[*~x3(7).

Since x2(7) has monotone likelihood ratio (MLR) in 7 (see Appendix A on
MLR, Example A.14), by the Neyman-Pearson (NP) Lemma the uniformly
most powerful (UMP) level « test for (6.4) rejects ||u* = 0 if

IXT* > X5 o

the upper a quantile of the X; distribution, and is unbiased. Thus this test
is UMPI level « for (6.3) and is unbiased for (6.3). L

Exercise 6.9. (a) In Example 6.8 show that the UMP invariant level o
test is the level a LRT based on X for (6.3).

(b) The power function of this LRT is given by
Bp(1) = Pr-[ | X]* > xp,a) = Pr{xp(7) > x50l

It follows from the MLR property (or the log concavity of the normal pdf)
that (3,(7) is increasing in 7, hence this test is unbiased. Show that for fixed
T, Bp(T) is decreasing in p. Hint: apply the NP Lemma.
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(c) (Kiefer and Schwartz (1965) Ann. Math. Statist.) Show that the LRT
is a proper Bayes test for (6.3), and therefore is admissible among all tests

for (6.3).

Hint: consider the following prior distribution:

Prlp=0] =1,
plp#0 ~ Ny(0, M), (0<vy<1, A>0),

Example 6.10. Testing a mean vector with unknown covariance
matrix: one observation.

Consider the problem of testing
p=0 vs. pu#0 basedon X ~ Ny(u,X)
with 2 > 0 unknown. Here
X =TRP, © =R xS, O = {0} x S,

Now we may take G = GL(p), the group of all p X p nonsingular matrices
g, acting on X and O via

X gX and (u,%)— (gu, g%9g')

respectively. Again © and Oy are G-invariant. Now there are only two G-
orbits in X: {0} and R?\{0} [why?], so any G-invariant statistic is constant
on R? \ {0}, hence its distribution does not depend on p. Thus there is
no G-invariant test that can distinguish between the hypotheses © = 0 and
1t # 0 on the basis of a single observation X when ¥ is unknown. L
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Example 6.11. Testing a mean vector with unknown covariance
matrix: n + 1 observations.

Consider the problem of testing
(6.5) p=0 vs. u#0 based on (Y, W)~ Ny(u, ) x Wy(n, ¥)
with > > 0 unknown and n > p. Here
X=0=RxS, O = {0} x S,
Let G = GL act on X and © via
Y, W) — (gY, gWg') and (1,%) — (gu, 92g"),

respectively. Because

(9Y, gWg') ~ Np(gp, g¥g") x Wp(n, g5g'),
© and ©( are G-invariant. It follows from Lemma 6.3 that

t=t(Y,W):=Y'W™'Y and 7=7(,%) =4S p

represent the MIS and MIP, respectively [verify!]. We have seen that

2
-
Hotelling’s 72 = YW ™'Y ~ ﬁp( ) :

Xn—p+1

the ratio of two independent chisquare variates, the first noncentral. (This is
the (nonnormalized) noncentral F' distribution Fj, ,,—,+1(7).) The invariance-Jj
reduced problem (6.2) becomes that of testing

(6.6) 7=0 vs. 7>0 basedon T2~ F, , pi1(7).
Because F), ,,_p+1(7) has MLR in 7 (see Example A.15), the UMP level o

test for (6.6) rejects 7 =0 if T? > F, ,_p+1.o and is unbiased. Thus this
test is UMPI level « for (6.5), and is unbiased for (6.5). L
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Exercise 6.12. (a) In Example 6.11, show that the UMP invariant level «
test (= the T2 test) is the level o LRT based on (Y, W) for (6.5).
(b) The power function of this LRT is given by

Bp, n—p+1(T) = PYT[Tz > Fp n—pt1;0] = Pr[Fp npt1(7) > Fp nopiiial-
It follows from MLR that (3, n,—p+1(7) is increasing in 7, hence this test is
unbiased. Show that for fixed 7 and p, B, n—p+1(7) is increasing in n.

(c)* (Kiefer and Schwartz (1965) Ann. Math. Statist.). Show that the
LRT is a proper Bayes test for testing (6.5) based on (Y, W), and thus is
admissible among all tests for (6.5).

Hint: consider the prior probability distribution on ©¢ U © given by

PI‘[(")()] =7

PrO@]=1-7, (0<y<1);
(1, 2) ‘ ©g ~ o,
(1, %) | © ~,

where my and 7 are measures on ©g = {0} x S;7 and © = RP x S respec-
tively, defined as follows: 7 assigns all its mass to points of the form

(1, 2) = (0, (I, +mm)~"), neRP,

where 1 has pdf proportional to |1, + 7777’\_(”“)/2; 7 assigns all its mass to
points of the form

(1, 2) = (L + 1) "', (L +m0')™Y), neR?,
where 1 has pdf proportional to
Iy |2 exp (50 (I, + m') ).

Verify that my and 7 are proper measures, i.e., verify that the corresponding
pdfs of 1 have finite total mass. Show that the T2 test is the Bayes test for
this prior distribution. L
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Note: An entirely different method for showing the admissibility of the T2
test among all tests for (6.5) was given by Stein (Ann. Math. Statist. 1956),
based on the exponential structure of the distribution of (Y, W).

Example 6.13. Testing a mean vector with covariates and un-
known covariance matrix.

Similar to Example 6.11, but with the following changes. Partition Y, W,
i, and X as

Y1 Wip Wi P Y1 X2
Y = , W= , = ,  Xu= ,
( Yo ) < War Wao ) H <M2 dio1 a2
respectively, where Y; and p; are p; x 1, W;; and X;; are p; X p;, ¢,j = 1,2,

where p1 + p2 = p. Suppose it is known that ps = 0, that is, the second
group of py variables are covariates. Consider the problem of testing

pr =0 vs. pp #0

6.7
(6.7) based on (Y, W) ~ N,(u, %) x Wy,(n,X)

with ¥ > 0 unknown and n > p. Again X = RP x 8;‘, but now
O =RM" xS/, O = {0} x S,
Let GG; be the set of all non-singular block-triangular p X p matrices of the
form
= (% 5

so (G1 is a subgroup of the invariance group GL in Example 6.11. Here
G1 = {g} acts on X and O via the actions

(K W) = (gY7 gWg/) and (,ula Z) = (911,UJ17 929/)7

respectively. Then © and ©( are Gp-invariant [verify]. L

Exercise 6.14. (a) In Example 6.13, apply Lemma 6.3 to show that
(L, M) = (LY, W), M(Y,W))

(O We W Y WL (W Wy 'Ye) g1y,
= YWy, Vs e
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is a (two-dimensional!) MIS, while
_ ry—1
71 =71(p1, E) = XM

is a (one-dimensional!) MIP. Thus the invariance-reduced problem (6.2)
becomes that of testing

(6.8) 71=0 vs. ;1 >0 basedon (L, M).

(b) Show that the joint distribution of (L, M) = (L(Y, W), M(Y,W)) can
be described as follows:

X21 (17-1]\4)
LM~ p2—_|_ = Fpl,n—p+1(1rM)7
(6.9) X”;p“
M~ = By,
Xn—pa+1

Hint: Begin by finding the conditional distribution of Y; — W12W2_21Y2 given
(Y, Waa).

(c) Show that the level @ LRT based on (Y, W) for (6.7) is the test that
rejects (u1, u2) = (0,0) if

L> thn—p-i-l;a-

This test is the conditionally UMP level « test for (6.8) given the ancillary
statistic M and is conditionally unbiased for (6.8), therefore unconditionally
unbiased for (6.7) = (6.8).

(d)** Show that no UMP size « test exists for (6.8), so no UMPI test exists
for (6.7). Therefore the LRT is not UMPI. (See Remark 6.16).

(e)* In Exercise 6.12b, show (3, ,,(7) is decreasing in p for fixed 7 and m.
Hint: Apply the results (6.9) concerning the joint distribution of (L, M) U

Remark 6.15. Since 72 = Y'W~Y = L(1 + M) + M, the overall T? test
in Example 6.11 is also Gi-invariant in Example 6.13, so it is of interest to
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compare its power function to that of the LRT in Example 6.13. Given M,
the conditional power function of the LRT is given by

Pre[ Fp npt1(t557) > Fornpttia | M] = Bpinpia (7)),

while the (unconditional) power of the size-a T test is 8, n—p+1(71) because
T = 71 when po = 0. Since 8, ,,(0) is decreasing in p but increasing in &
(recall Exercises 6.12b, 6.14e), neither power function dominates the other.

Another possible test in Example 6.13 rejects (u1, pu2) = (0,0) iff
T12 = Y{Wﬁlyl > Fplan_p1+1aa7

a test that ignores the covariate information and is not G-invariant [verify].
Since

Tl2 ~ Fpl,n—p1+1(%1)

where 71 := p) ¥ j11, the power function of the level a test based on T? is
Bpy n—p1+1(71). Because 71 < 11 but 8,.,,(9) is decreasing in p and increas-
ing in m, the power function of T? neither dominates nor is dominated by
that of the LRT or of T2, L]

Remark 6.16. Despite their apparent similarity, the invariant testing
problems (6.6) and (6.8) are fundamentally different, due to the fact that
in (6.8) the dimensionality of the MIS (L, M) exceeds that of the MIP 7.
Marden and Perlman (1980) (Ann. Statist.) show that in Example 6.13,
no UMP invariant test exists, and the level a LRT is actually inadmissible
for typical (= small) a values, due to the fact that it does not make use of
the information in the ancillary statistic M. Nonetheless, use of the LRT
is recommended on the basis that it is the UMP conditional test given M,
it is Gi-invariant, its power function compares well numerically to those of
T2, T?, and other competing tests, and it is easy to apply. L

Exercise 6.17. Let (Y, W) be as in Examples 6.11 and 6.13. Consider the
problem of testing pus = 0 vs. pus # 0 with g7 and ¥ unknown. Find a
natural invariance group G5 such that the test that rejects us = 0 if

T22 = Y2/W2_21Y2 > Fp2,n—p2+1;a
is UMP among all Gs-invariant level « tests. L
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Example 6.18. Testing a covariance matrix.

Consider the problem of testing
(6.10) Y=1, vs. ¥#1I, basedon S~ Wy(r,%) (r > p).

Here X = © = S, and ©9 = {I,}. This problem is invariant under the
action of G = O, on SJ given by S — ¢S¢’. It follows from Lemma
6.3 and the spectral decomposition of X € S;r that the MIS and MIP are
represented by, respectively,

[(S) = ([4(S) > --- > 1,(S)) :=the set of (ordered) eigenvalues of S,
> -+ > A\p(X)) := the set of (ordered) eigenvalues of X.

[verify!]. By Lemma 6.6, the distribution of [(.S) depends on ¥ only through
A(X); this distribution is complicated when ¥ is not of the form xI, for some
k > 0. The invariance-reduced problem is that of testing

(6.11) AX)=(1,...,1) wvs. A(X)#(1,...,1) based on A(S5).

Here, unlike Examples 6.8, 6.11, and 6.13, when p > 2 the alternative
hypothesis remains multi-dimensional even after reduction by invariance,
so it is not to be expected that a UMPI test exists (it does not). L

Exercise 6.19a. In Example 6.18 derive the LRT for (6.10). Express the
test statistic in terms of [(.5).

Answer: The LRT rejects ¥ = I, for large values of %, or equivalently,

for large values of

ST (1(8) —loghi(S) — 1).

1=1

Exercise 6.19b. Suppose that ¥ = Cov(X). Show that

AM(X) = ||II1Ha_}><1 Var(a'X) = ||rn|rx_xl a'Ya.

The maximal linear combination a’ X is the first principal component of X.

Hint: Apply the spectral decomposition of X. L
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Exercise 6.20. Testing sphericity. Change (6.10) as follows: test

(6.12) XY =kl,, 0<KkK<oo vs. X#kl, based on S~ W,(r X).

Show that this problem remains invariant under the extended group
G:={g=agla>0,ge0,}

Express a MIS and MIP for this problem in terms of [(S) and A(X) respec-
tively. Find the LRT for this problem and express it in terms of I(.5).

(The hypothesis ¥ = kI,,0 < 0 < oo is called the hypothesis of sphericity.)

ltrs
Answer: The LRT rejects the sphericity hypothesis for large values of ki ,
S|P
or equivalently, for large values of
5 2 li(S)
1 9
f:1 ACE
the ratio of the arithmetic and geometric means of 1;(5), ..., [,(S5). L

Exercise 6.21. If the identity matrix I, is replaced by any fixed matrix
IS S;r , show that the results in Exercises 6.19 and 6.20 can be applied af-

/ /
ter the linear transformations S +— 251/25251/2 and X — 251/22251/2 )

Example 6.22. Testing independence of two sets of variates.

In the setting of Example 6.18, partition S and X as

S11 S12 Y1 Y12
S - y Z — ,
(521 S22 Yo1 Yoo
respectively. Here, S;; and X;; are p; X p; matrices, 4,5 = 1,2, where
p1+p2 =p. Let © = S;F as before, but now take

@0:{2685‘212:0},
so (6.1) becomes the problem of testing

(6.13) X12=0 vs. X19#0 based onS ~ Wy,(n,%) (n > p).
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If G is the group of non-singular block-diagonal p x p matrices of the form

_(9u O
g <0 922)

(so G = GL(p1) x GL(p2)), then (6.13) is invariant under the action of G on
S5 given by S — ¢Sy’ [verify]. It follows from Lemma 6.3 and the singular
value decomposition that a MIS is [verify!]

/
r(S) = (r1(S) > --- > 1ry(S)) := the singular values of 51_11/251252_21/2 :
the canonical correlation coefficients of S, and a MIP is [verifyl]

p(X) = (p1(X) > -+ > pe(X)) := the singular values of 21_11/221222_21/2/,

the canonical correlation coefficients of ¥, where ¢ = min{p;,p2} (see Ex-
ercise 6.25).

The distribution of r(S) depends on ¥ only through p(X); it is com-
plicated when Y15 # 0. The invariance-reduced problem is that of testing

(6.14) p(X)=1(0,...,0) vs. p(X)>(0,...,0) based on r(5).

When p > 2 the alternative hypothesis remains multi-dimensional even after
reduction by invariance, so a UMPI test for (6.13) does not exist. L]

Remark 6.23. This model and testing problem can be reduced to the
multivariate linear model and MANOVA testing problem (see Remark 8.5)
by conditioning on Sos:

o /
(6.15) Y = 51285,"% | S22 ~ Npywps (85347, S112 ® I,),
where 3 = 21222_21. Since 15 = 0 iff 8 = 0, the present testing problem
is equivalent to that of testing 6 = 0 vs. [ # 0 based on (Y, S11.2), a
MANOVA testing problem under the conditional distribution of Y. L

Exercise 6.24. In Example 6.22 find the LRT for (6.13). Express the
test statistic in terms of r(S5). Show this LRT statistic is equivalent to
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the conditional LRT statistic for testing 8 = 0 vs. § # 0 based on the

conditional distribution of (51252_21/ 2/, S11.2) given Syo (see Exercise 6.37a).
Show that when X5 = 0, the conditional and unconditional distributions
of the LRT statistic are identical. [This distribution can be expressed in
terms of Wilks’ distribution U(py, p2, n — p2) — see Exercises 6.37c, d, e.]

Partial answer: The (unconditional and conditional) LRT rejects Y15 = 0
for large values of

S11]S22]
S

or equivalently, for small values of

(6.16) [T a-r25)).

1=1

Exercise 6.25. Suppose that > = Cov (Xl ) Show that

Xo
CL’ 2126L2
1(2) = max Cor(d; X, abX2)= max 1 .
p ( ) a1#0, az#0 ( 1 72 ) a17#0, a27#0 \/a’lEllal\/aéEggag
Hint: Apply the Cauchy-Schwartz inequality. L

Example 6.26. Testing a multiple correlation coefficient.

In Example 6.22 set p;y = 1,80 po =p—1and ¢ =min(l, p—1) = 1. Now
the MIS r1(S) > 0 and the MIP = p;(X) > 0 are one-dimensional and can
be expressed explicitly as follows:

_ 51252_21521

. Z1222_21221 2
Sll .

=: R?, pr(Y) = 722272 )

2
r1(S) Sy

The invariance-reduced problem (6.14) becomes that of testing
(6.17) pP=0 vs. p>>0 based on R?.

By normality, the hypotheses

(6.18) Yi2=0, p°=0, and X; I X,
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are mutually equivalent. By (6.16) and (3.74) the size o LRT for testing

Yo =0 vs. X1g # 0 rejects X1o = 0 if B2 > B(g, n_§+1; a) .

Note: p and R are called the population (resp., sample) multiple correlation
coefficients for the following reason: if

(Zn Z12) _ Cov <X1>
Yoy 222 Xy )’

by
p = max Cor(X;, a5X5) = max 1202

as#0 az7#0 \/211\/%222@27

with equality attained at a, = 22_21221. [Verify; apply the Cauchy-Schwartz
inequality — this implies that 21222_21)(2 is the best linear predictor of Xy
based on Xo when EX = 0.] L

then

Exercise 6.27. Show that the R2-test is UMPI and unbiased.

Solution: In Example A.18 of Appendix A it is shown that the pdf of R? has
MLR in p?. Thus this R2-test is the UMP size « test for the invariance-
reduced problem (6.17), hence is the UMPI size « test for 315 = 0 vs.
Y12 # 0, and is unbiased. L

Remark 6.28. (Kiefer and Schwartz (1965) Ann. Math. Statist.) By an
argument similar to that in Exercise 6.14c, the LRT is a proper Bayes test
for testing 15 = 0 vs. X192 # 0 based on 5, and thus is admissible among
all tests for this problem. L

Remark 6.29. When Y15 = 0, R? = % ~ B(25, 2=2HL) (see (3.74)),
SO

—1

B(RY) =2 > 0=p2

n
Thus, under the null hypothesis of independence, R? is an overestimate of
p3(X) = 0 (unless n > p), hence might naively suggest dependence of X3
on Xo. L
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Example 6.30. Testing independence of £ > 3 sets of variates.

In the framework of Example 6.22, partition S and X as

S Sk Y11 v Xk
S = : : , u= : : ;
Sk1 o Skk Yr1 o Ykk

respectively, where £ > 3. Again S;; and ¥;; are p; X p; matrices, i, =
1,...,k, where p; + -+ pr = p. Take

G0 ={X [ Xy =0,i#j},
so (6.1) becomes the problem of testing
(6.19) X;; =0, 4 # j vs. £;; # 0 for some i # j based on S ~ W, (n,X)
with n > p. If G is the set of all non-singular block-diagonal p X p matrices

g1 - 0

@
Il

0 - gk
so G = GL(p1) x --- x GL(pr) and P, then (6.19) is G-invariant. Now
no explicit representation of the MIS and MIP is known (probably none

exists). Again the alternative hypothesis remains multi-dimensional even
after reduction by invariance, so a UMPI test does not exist. L

Exercise 6.31. In Example 6.30, derive the LRT for (6.19).
[, 15

Answer: The LRT rejects 3;; =0, 7 # 7, for large values of T

Note: This LRT is proper Bayes and admissible among all tests for (6.19)

(Kiefer and Schwartz (1965) Ann. Math. Statist.) and is unbiased. L
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Example 6.32. Testing equality of two covariance matrices.

Consider the problem of testing

21 :EQ VS. 21 #22

6.20
( ) based on (Sl, SQ) ~ Wp(nl, 21) X Wp(ng, 22)

with nq, no > p. Here
— —_ Qt+ + _ Q+
X=0=S5xS5,, B0 =35, .
This problem is invariant under the action of GL on S];" X Szj_ given by
(6.21) (S1,82) = (951", 9529')

It follows from Lemma 6.3 and the simultaneous diagonalizibility of two
positive definite matrices that the MIS and MIP are represented by

f(S1,82) = (f1(S1,52) > --- > f,(S1,S2)) := the eigenvalues of S;9; ",
¢(21, 22) = (qbl(El, 22) Z s Z gbp(El, 22)) = the eigenvalues Of 2122_1,
respectively [verify!]. By Lemma 6.6 the distribution of f(S7,S2) depends

on (31,32) only through ¢(X1,35); this distribution is complicated when
Y1 # KkXo. The invariance-reduced problem becomes that of testing

(622) ¢(El, 22) = (1, ceey 1) VS. (b(El, 22) # (1, ceey 1) based on f(Sl, Sz)

When p > 2 the alternative hypothesis remains multi-dimensional even after
reduction by invariance, so a UMPI test for (6.20) does not exist. L

Exercise 6.33. In Example 6.32, derive the LRT for (6.20) and express the
test statistic in terms of f(.51,.52). Show that the LRT statistic is minimized
when 7%151 = 7%52.

Answer: The LRT rejects X1 = X5 for large values of

|Sl + S2|n1+n2
Sy Sa|m2
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or equivalently, for large values of

[T+ mh™@+ )= (f = fi(S1,5)).

i=1
The ith term in the product is minimized when f; = ny/no. L

Example 6.34. Testing equality of £ > 3 covariance matrices.

Consider the problem of testing

(6.23) Y1 ==X vs. X;#2; forsomei#j
. based on (Si,...,Sk) ~ Wp(ni,21) x -+ X Wp(ng, ).
with nqy > p, ..., np > p. Here

X=0=58 x---x& (k times), Oy =S, .

This problem is invariant under the action of GL on S;f X e X S];L given
by
(Sl7 SR Sk) = (9519/7 S 798169/)

As in Example 6.30, no explicit representation of the MIS and MIP are
known (probably none exists). The alternative hypothesis is multidimen-
sional after reduction by invariance; no UMPI test for (6.23) exists. L

Exercise 6.35. In Example 6.34, derive the LRT for (6.23). Show that the
LRT statistic is minimized when n%Sl = ... = n—lksk.

Answer: The LRT rejects 31 = --- = X, for large values of

‘ 25:1 Si an

k
L= 15
To minimize this, apply the case k£ = 2 repeatedly.

Note: This LRT, also called Bartlett’s test, is unbiased when k > 2. (Perl-
man (1980) Ann. Statist.) L

2
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Example 6.36. The canonical MANOVA testing problem.
Consider the problem of testing

p=0 vs. p#0 (X unknown)

(6.24)
based on (Y, W) ~ Npur(pt, 2 ® I,) X Wp(n, %)

with ¥ > 0 unknown and n > p. (Example 6.11 is the special case where
r =1.) Here
X=0=R"xS§, O = {0} x S,

This problem is invariant under the action of the group GL x O, = {(g,7)}
acting on X and O via

(Y, W) — (gY+, gW¢'),

(6:25) (1, 2) — (97, 929",

respectively. It follows from Lemma 6.3 and the singular value decomposi-
tion that a MIS is [verify!]

fYW) = (A, W) 2 - = fo(Y, W)

:= the nonzero eigenvalues of YW 1Y

where ¢ := min(p,r) (or equivalently, the nonzero eigenvalues of YY'W 1),
and a MIP is [verify!]

¢(M7 E) = (¢1(/"L’ E) Z ce Z qbq(,u, E))

:= the nonzero eigenvalues of /S 1y,

(or equivalently, the nonzero eigenvalues of uu/>"1). The distribution of
f(Y,W) depends on (u,>) only through ¢(u,>); it is complicated when
i # 0. The invariance-reduced problem (6.2) becomes that of testing

(6.26) ¢(p,X) =(0,...,0) vs. &(u,2) > (0,...,0) based on f(Y,W).

Here the MIS and MIP have the same dimension, namely ¢, and a UMP
invariant test will not exist when ¢ = min(p,r) > 2.
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Note that f(Y, W) reduces to the T2 statistic when 7 = 1, so in the gen-
eral case the distribution of f(Y, W) is a generalization of the (central and
noncentral) F distribution. The distribution of (fi(Y,W),..., f,(Y,W))
when p = 0 is given in Exercise 7.2.

(The reduction of the general MANOVA testing problem to this canon-
ical form will be presented in §8.2.) L

Exercise 6.37a. In Example 6.36, derive the LRT for testing u = 0 vs.
p # 0 based on (Y, W). Express the test statistic in terms of f(Y, W). Show
that when = 0, W+YY” is independent of f(Y, W), hence is independent
of the LRT statistic.

Partial solution: The LRT rejects u = 0 for large values of

W+ Y'Y

(6.27) 7

. / —1 — q
=L +YWwlY|=]]

(1+ fi(Y,W)).

When = 0, W 4+ YY' is a complete and sufficient statistic for X, and
f(Y;W) is an ancillary statistic, hence they are independent by Basu’s
Lemma. (Also see §7.1.) L

Exercise 6.37b. Let U be the matrix-variate Beta rv (recall Exercise 4.2)
defined as

(6.28) U:=(W+YY)"\2W (W +YY') Y2
Derive the moments of % = |U| under the null hypothesis u = 0.

Solution: By independence,
(6.29) E(W|*) = E(UMW +YY'|*) = E([U*) E(IW + YY'|*),

so (recall (4.16) in Exercise 4.2)

E(WI) — _ E(S®) Ty
(W +YY' ") E(V[F) T, (3

(6.30)  E(UI") = &
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Exercise 6.37c. Let U(p, r, n) denote the null (¢ = 0) distribution of |U|.
(U(p, r, n) is called Wilks’ distribution.) Show that this distribution can
be represented as the product of independent Beta distributions:

(6.31) U(p,r,n) ~ H

where the Beta variates are mutually independent.

T

B S),

Note: The moments of |U| given in 6.30) or obtained directly from (6.31)
can be used to obtain the Box approrimation, a chi-square approximation
to the Wilks’ distribution U(p, r, n). (See T.W.Anderson book, §8.5.) U

Exercise 6.37d. In Exercise 6.24 it was found that the LRT for testing
(632) 212 =0 wvs. 212 75 0

(i.e., testing independence of two sets of variates) rejects Y15 = 0 for small

values of % Show that the null (¥,5 = 0) distribution of this LRT

statistic is U(p1, p2, n — p2) — see Exercise 6.24. L

Exercise 6.37e. Show that U(p, r, n) ~ U(r, p, r + n — p), hence

Ul(p, r, n)NH

Remark 6.38. Perlman and Olkin (Annals of Statistics 1980) applied the
FKG inequality to show that the LRTs in Exercises 6.24 and 6.37a are
unbiased. L]

P

o B 5), :

Example 6.39. The canonical GMANOVA Model.

(Example 6.13 is a special case.) [To be completed| L

Example 6.40. An inadmissible UMPI test. (C. Stein — see Lehmann
TSH Example 11 p.305 and Example 9 p.522.)

Consider Example 6.32 (testing %1 = Y5) with p > 1 but with n; = ny =1,
so S1 and Sy are each singular of rank 1. This problem again remains
invariant under the action of GL on (S1,.53) given by (6.21):

(S1,52) — (9514’, 9529").
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Here, however, GL acts transitively [verify] on this sample space since S1, Sy
each have rank 1, so the MIS is trivial: ¢(S7,S2) = const. This implies that
the only size « invariant test is ¢(S1,S2) = «, so its power is identically a.
However, there exist more powerful non-invariant tests. For any nonzero
a:px1,let

a’'Sia  a’'Sia

(6.33) Va — a/52a ~ a/S2a .

and let ¢, denote the UMPU size « test for testing 6, = 1 vs. J, # 1 based
on V, (cf. TSH Ch.5 §3). Then [verify]: ¢, is unbiased size « for testing
Y1 = Yg, with power > « when 6, # 1, so ¢, dominates the UMPI test ¢.

Note: This failure of invariance to yield a nontrivial UMPI test is usually
attributed to the group GL being “too large”, i.e., not “amenable”.!3 How-
ever, this example is somewhat artificial in that the sample sizes are too
small (n1 = ng = 1) to permit estimation of ¥; and . It would be of
interest to find (if possible?) an example of a trivial UMPI test in a less
contrived model. L

Exercise 6.41. Another inadmissible UMPI test. (see Lehmann TSH
Problem 11 p.532.)

Consider Example 6.10 (testing g = 0 with ¥ unknown) with n > 1 obser-
vations but n < p. As in Example 6.40, show that the UMPI G L-invariant
test is trivial but there exists more powerful non-invariant tests. L

13" See Bondar and Milnes (1981) Zeit. f. Wahr. 57, pp. 103-128.
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7. Distribution of Eigenvalues. (See T.W.Anderson book, Ch. 13.)

In the invariant testing problems of Examples 6.22 (testing Y15 = 0),
6.32 (testing X7 = X5), and 6.36 (the canonical MANOVA testing prob-
lem), the maximal invariant statistic (MIS) was represented as the set of
nontrivial eigenvalues of a matrix of one of the forms

ST~ or S(S+T)7,

where S and T are independent Wishart matrices.'* Because the LRT
statistic is invariant (Lemma 6.7), it is necessarily a function of these eigen-
values. When the dimensionality of the invariance-reduced alternative hy-
pothesis is > 2,'® however, no single invariant test is UMPI, and other
reasonable invariant test statistics'® have been proposed: for example,

2
T

r? (Roy) and 23:1 5 (Lawley — Hotelling)

L —r;

in Example 6.22, where we may take (S, T') = (51252_21521, S11.2), and

fi (Roy) and Z?_l fi (Lawley — Hotelling)

in Example 6.36, where (S, T) = (YY', W).

Thus, to determine the distribution of such invariant test statistics it
is necessary to determine the distribution of the eigenvalues of ST~! or
equivalently [why?] of S(S+ 7)1,

7.1. The central distribution of the eigenvalues of S(S + T)~!.

Let S and T be independent with S ~ W, (r,X) and T' ~ W,(n, %), ¥ > 0.
Assume further that n > p, soT > 0 w. pr. 1. Let

1> by >--->b, >0 and fi>--->f, >0

4 Example 6.36, YY/(E S here) has a noncentral Wishart distribution under the
alternative hypothesis, i.e., E(Y) = p # 0. In Example 6.22, 51252_21521(5 S here)
has a conditional noncentral Wishart distribution under the alternative hypothesis.

15 For example, see (6.14), (6.22), and (6.26).

16 gchwartz (Ann. Math. Statist. (1967) 698-710), presents a sufficient condition and

a (weaker) necessary condition for an invariant test to be admissible among all tests.
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denote the ¢ = min(p, r) ordered nonzero!'” eigenvalues of S(S+ 7)1 (the
Beta form) and ST~1 (the F form), respectively. Set

b= (bi,...,0) = {b:i(S,T)},
f=f 0 fo) ={£i(S T}

First we shall derive the pdf of b, then obtain the pdf of f using the relation

(7.1)

(7.2) fi=

Because b is GG L-invariant, i.e.,
b@(S, T) = bz(ASA/, ATA/) vV AeGL,

the distribution of b does not depend on ¥ [verify], so we may set ¥ = I,,.
Denote this distribution by b(p,n,r) and the corresponding distribution of

f by f(p,n,r).

Exercise 7.1. Show that (compare to Exercise 6.37e)

b(p7 n, ’I“) = b(’l", n+r - D, p)7

(7:3) o, m 1) = F(r 47— p ).

Outline of solution: Let W be a partitioned Wishart random matrix:

P r

_p (Wi Wi
W= r <W21 W22> p-l-?"(ma Ip—i—r)-

Assume that m > max(p,r), so Wi > 0 and Was > 0 w. pr. 1. By the

properties of the distribution of a partitioned Wishart matrix (Proposition
3.13),

(a) the distribution of the nonzero eigenvalues of WiaW,' Wo Wit
is b(p, m —r, ) [verifyl!]

17 1¢ p > 1 then ¢ = 7 and p — 7 of the eigenvalues of S(S + T)_l are trivially

= 1. By Okamoto’s Lemma the nonzero eigenvalues are distinct w. pr. 1.
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(b) the distribution of the nonzero eigenvalues of Wa W ;' Wi Wy
is b(r, m — p, p) [verify!].

But these two sets of eigenvalues are identical'® so the result follows by
setting n =m — r. L

By Exercise 7.1 it suffices to derive the distribution b(p,n,r) when
r > p, where ¢ = p. Because r > p, also S > 0 w. pr. 1, so by (4.11) the
joint pdf of (S,T) is

Cpr o+ |SITFT [T T B 550, T >0,
Make the transformation
(S, T)— (S, V=85+T).

By the extended combination rule, the Jacobian is 1, so the joint pdf of
(S,V) is

r—p—1

Cpr Com - |S| TV =S F e V>8>0

By E.3, there exists a unique [verify] nonsingular p x p matrix £ = {e;;}
with e;; > 0, j =1,...,p, such that

S=ED,E,

7.4
(74) V=EFE,

where Dy, := Diag(by,...,b,). Thus the joint pdf of (b, E') is given by

d(S,V)

o(b, E)

r—p—1 n—p—1 n+r—2p—2

f<b7E) :Cp,rcp,n"Db‘ 2 ‘Ip_Db| 2 ‘EEllfe_%trEE/

Y

where the range Ry g is the Cartesian product Ry X R with

Ry:={b|1>b >--->b, >0}
REg ::{E‘€1j>03 00 < €45 < 00, 7/:2,7]7,]:17717}

A, A

18 Because ‘)\Ip — AB’ = ‘ B I =

AL| |2, — BA)|.
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We will show that

a(Sv V) 7 2
(7.5) S| =2 R T - by),
0(b, F) g J
hence
P r—p—1 P n—p—1
FO,B) =2cprepn- [0 = JIO=0)" [ bi—b)
i=1 i=1 1<i<j<p

Because Ry, = Ry X R, this implies that b and E are independent with
marginal pdfs given by

p —p—1 n—p—1

(7.6)  f)=c- [0 = (1=b)"=2 - ][] (bi—b5), beRelp),
i=1 1<i<j<p

(7.7)  f(E)=cg |EE/| T "¢ 2w EE E € Re(p),

where
coegp =28 cprcpp.

Thus, to determine ¢ it suffices to determine cg. This is accomplished as
follows:

_ nt+r—p _ 1 /
cE1:/ [EE'| "= e 2" FE 4R
RE

— 2—p/ |EE’\”+5_p e U EE gp [by symmetry]
Rp?

p
p> nt+r—p 1 1.2
=2"P27 7/ EE'| = | I e 2%ide;;
SO AN Var d

i,j=1
=272 T B(IW,(p, 1) 5 [why?)
p2 C
=27P(2r)"7 . 2L
(2) — [by (4.12)]
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Therefore (recall (4.10))

2
2 CppCpnCpr

(7.8) ey = ep(p,n,r) = (2m)

Cp,n+r

_ Ty ("57)

()T (3)Th (5)

This completes the derivation of the pdf f(b) in (7.6), hence determines the
distribution b(p, n,r) when r > p. Note that this can be viewed as another
generalization of the Beta distribution.

Verification of the Jacobian (7.5):
By the linearization method (*) in §4.3,

A(S, V)| |o(dsS,dV)
‘ (b, E) ‘ - ‘ d(db, dE) ‘

(7.9)

From (7.4),
dS = (dE)DyE' + E Dg E' + EDy(dE)’,

dV = (dE)E' + E(dE),

hence, defining

dF = E~Y(dE),
dG = E~1(dS)(E~1Y,
dH = E~Y(dV)(E™'Y,
we have
(7.10) dG = (dF)Dy + Dgy + Dy(dF)’,
(7.11) dH = (dF) + (dF)".
To evaluate % , apply the chain rule to the sequence

(db, dE) — (db, dF) v (dG,dH) — (dS,dV)

to obtain
9(dS,dV)| |d(db,dF)| |8(dG,dH)| |d(dS,dV)
‘8(db,dE)’_ ’a(db,dE)H d(db, dF) "’a(dG,dH)"
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By 4.2(d), 4.2(e), and the combination rule in §4.1,

db, dF

N—

9(dF)

(7.12) \%‘ - ‘W‘ — |E|"?,
13) |G am)| = iy | lagam| =171 =

Lastly we evaluate

—%(éfjjfa))) =: J. Here dG = {dg;;} and dH =

{dh;;} are p x p symmetric matrices, dF' = {df;;} is a p x p unconstrained
matrix, and db is a vector of dimension p. From (7.10) and (7.11),

dgii = 2(df;)b; + db;, t=1,...,p,
dhuzzdflh i:17"'7p7
dgi; = (dfij)bj +bi(df;i), 1<i<j<p,
dhij = dfi; + df ji, I <1<y <np.
Therefore
7 d((dgii), (dhi;), (dgij), (dhij))
A((dby), (dfis), (dfi;), (dfji))
I, 0 0 0
2Dy 21, 0 0
0 0 Di Lyp-rz|
0 0 D, Ip(p—l)/Q
where

D1 = Diag(bg, NP ,bp, bg, . .,bp, . .,bp_l,bp,bp)
D2 = Diag(bl, “e ,bl,bg, .. .,bg, .. .,bp_Q,bp_Q, bp—1)7

hence [verify!]

(7.14) J=2"|Dy—Do| =20 ] (bi—0by).
1<i<j<p
The desired Jacobian (7.5) follows from (7.12), (7.13), and (7.14). L
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Exercise 7.2. Use (7.2) to show that if » > p, the pdf of (fi,---, fp) is
given by

715 amrnn) [[£ T v~ [ (-5,

i=1 1<i<j<p

where c,(p,n,r) is given by (7.8). If » < p then the pdf of (f1,---, f)

follows from f(p, n, r) = f(r, n+r —p, p) in (7.3). W

Exercise 7.3. Under the weaker assumption that n+r > p, show that the
distribution of b = {b;(S,T)} does not depend on ¥ and that b and V are
independent. (Note that f = {f;(S,T)} is not defined unless n > p.)

Hint: Apply the G L-invariance of {b;(S,7)} and Basu’s Lemma. If n >
and r > p the result also follows from Exercise 4.2.

IS

7.2. Eigenvalues and eigenvectors of one Wishart matrix.

In the invariant testing problems of Examples 6.18 (testing ¥ = I,,) and
Exercise 6.20 (testing ¥ = kl,), the maximal invariant statistic (MIS) can
be represented in terms of the set of ordered eigenvalues

th 221 ={li(9)}

of a single Wishart matrix S ~ W,(r, X) (r > p, ¥ > 0). Again the LRT
statistic is invariant so is necessarily a function of these eigenvalues.

As in §7.1, when the dimensionality of the invariance-reduced alterna-
tive hypothesis is > 2 (e.g. (6.11)), no single invariant test is UMPI — other
reasonable invariant test statistics include

p 2
1 — Ita<i,<i,<py (Roy) and Z¢:1 (#li—1)" (Nagao)

in Example 6.18 and

l1 p p 1
L (Roy) and 2121 li-zizll—i

in Example 6.20. To determine the distribution of such invariant test statis-
tics we need to find the distribution of (ly,...,l,) when ¥ = I,,.
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Exercise 7.4. Eigenvalues of S ~ W, (r, I,,).
Assume that r» > p. Show that the pdf of [ = (I3, --,[,) is

D

)T (

r—p—1

] IIQ et I i-1y)

=1 1<i<j<p

3

T16) )= g

(st
N3

on the range
Ri={l]oco>1l1 >--->1, >0}

Outline of solution. Use the limit representation
(7.17) 1;(S) = lim, oo fi (S, £T) = limy,—oonnf; (S, T).

Let l; = nf;, ¢ = 1,...,p and derive the pdf of [,...,[, from the pdf of
(f1,.-., fp) in (7.15). Now let n — oo and apply Stlrhng s approximation
for the Gamma function. L

Alternate derivation of (7.16). Begin with the spectral decomposition

S=TDT,

7.18
(7.18) I,=TT,

where D; = Diag(ly,...,l,). The joint pdf of (I, I') is given by

f(lar) =Cp,r-

'azr

3

(7.19) = Cp,r - Hlir_g_ ¢ o(dl di“)‘
=1

From (7.18),
dS = (dl') D, ' +T Dy " + T D, (dT")’,

0= ()T + T (dr,
hence, defining dF = T~1(dT),

(7.20) dG : =T YdS)(I' ) = (dF)D; 4+ Dg + D;(dFY’,
(7.21) 0 =EY0)(EY = (dF) + (dF)'.

101



STAT 542 Notes, Winter 2007; MDP
Thus dG = {dg,;} is symmetric, dF' = {df;;} is skew-symmetric, and
(7.22) dG = (dF)Dl + Dy — D (dF)

To evaluate ‘ 8?(ds) apply the chain rule to the sequence

dl,dr) |’

(dl,dl’) +— (dl,dF) — dG +— dS

to obtain
S) | 0(dl,dF)| | 9(dG) | |(dS) |
. . fyl.
a(dl dF)‘ ‘8(dl,df) (dl,dF) | 19(da) [verify]
et =7 1
From (7.22),
d.gu:dlza izla"'apa
dgij = (dfi;)(l; — L),  1<i<j<p,

(note that df;; = 0 by skew-symmetry), so

;| 9((dg), (dgiy)) ' _

O((dls), (dfiz))

I, =
0 D

=D = 1] w-1y,

1<i<y<p

where
D = D1ag(l2 —ll,...,lp —ll,...,lp _lp—l)-

Therefore from (7.19),

p

FAD) =cpr-[[l 7 e J] -1y,
i=1 1<i<j<p
:/ f(, I')dl
Op

Poovipr
(7.23) <cp,r/ dF)- et I -1y,
o, :

SO
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The evaluation of this integral requires the theory of differential forms on
smooth manifolds.’® However, we have already obtained f(I) in (7.16), so
we can equate the constants in (7.16) and (7.23) to obtain

(i)

T2
Cp.r dl' = —= —,
" /Op QTFP (%) Fp (5)
so from (4.10),
71_11(104-1-1)
(7.24) / ar-="_"_ 5
Op FP (5)

It follows from ((7.19) that [ 1L I" and that I" is uniformly distributed
over O, w. r. to the measure dI' — however, we have not defined this
measure explicitly. This is accomplished by the following proposition.

Proposition 7.5. Let S = I's D;(g) Iy be the spectral decomposition of
the Wishart matrix S ~ W,,(r, I). Then the eigenvectors and eigenvalues
of S are independent, i.e., I's 1L I(.5), and

I's ~ Haar(O,),

the unique orthogonally invariant probability distribution on O,,.

Proof. It suffices to show that for any measurable sets A € O, and B € R?,
(7.25) Pr[¥I'se A|l(S)eB]=Pr[I'sc A|l(S)eB] VV¥eO,.

This will imply that the conditional distribution of I'g is (left) orthogonally
invariant, hence, by the uniqueness of Haar measure,

I's | 1(S) € B~ Haar(O,) V BeR".

This implies that I's 1L [(S) and I's ~ Haar(O,) unconditionally, as as-
serted.

19" This approach is followed in the books by R. J. Muirhead, Aspects of Multivariate
Statistical Theory (1982) and R. H. Farrell, Multivariate Calculation (1985).
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To establish (7.25), consider
S=0SV ~W,(r I).

Then
S = (UT's)Dy(5)(¥Ts),
SO
I's=UTg and I(S)=1(9).

Therefore

Pr[¥UTs € A|l(S) € B =Pr[T5 € A|1(S) € B]

=Pr[I's € A|I(S) € B,

since S ~ S, so (7.25) holds. L.

7.3. Stein’s integral representation of the density of a maximal
invariant statistic.

Proposition 7.6. Suppose that the distribution of X is given by a pdf f(x)
w. r. to a measure p on the sample space X. Assume that p is invariant
under the action of a compact topological group G acting on X and that u
is G-invariant, i.e., u(¢gB) = u(B) for all events B C X and all g € G. If
t: X - T
x — t(x)

is a maximal invariant statistic then the pdf of t w.r. to the induced measure
f=u(t™t) on 7 is given by

(7.26) Fz) = /G f(g) dv(g).

where v is the Haar probability measure on G.

Proof: First we show that f(z) is actually a function of the MIS ¢. The
integral is simply the average of f(-) over all members gz in the G-orbit of
x. By the G-invariance of u, f(-) is also G-invariant:

Flgr) = /G F(9g1) dulg) = /G f(gz) dv(g) = flz) ¥ g €G,
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hence f(x) = h(t(x)) for some function h(t).
Next, for any event A C 7 and any g € G,

PlH(X) € A] = /X La(t(2) £ () du(z)
- /X La(t(g™"2) £ () du(x)
_ /X La(t(y)) f(9) dps(y),

by the G-invariance of ¢ and p, so

) e A] / / La(t(y)) f(gy) duly) dv(g)

—/ /fgydv 9) du(y)

_ /X Ta(t(y)) h(t(y)) dpuly)
_ / Ta(t) h(t) dji(t).
T

Thus h(t) = f(z) is the pdf of t = t(X) w. 1. to dji(t). L

Example 7.7. Let X = R?, G = Op, and ;1 = Lebesgue measure on R?,
an Op-invariant measure. Here v € O, acts on R? via  — vyz. A maximal
invariant statistic is t(z) = ||z||?>. If X has pdf f(z) w. 1. to u then the
integral representation (7.26) states that ¢(X) = || X||? has pdf

(7.27) h(t) = /O F(yz) dvy ()

w. r. to dii(t) on (0,00), where v, is the Haar probability measure on O,,.
In particular, if f(x) is also Op-invariant, i.e., if

fla) = k(]|z]*)
for some k(-) on (0, co), then the pdf of ¢(X) w.r.to dji(t) is simply

(7.28) h(t) = k(t),  te(0,00).
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The induced measure dji(t) can be found by considering a special case:
If X ~ Ny(0, I,) then t = || X||* ~ x3. Here

f@) = i e I = k(jal?)  wr o duo),

so t has pdf
h(t) = k(t) = —5 e 2t w.r. to df(t).

wt) = 5Lt—t5 "3t wor. to dt (= Lebesgue measure).
()

Therefore dji(t) is determined as follows:

(7.29) dil(t) = —2 dt = =2t~ dt.

Application: We can use Stein’s representation (7.27) to give an alternative
derivation of the noncentral chi-square pdf in (2.25) — (2.27). Suppose that
X ~ Ny(&, I,) with € # 0, so

t= X" ~x;(6) with & = [[&]1%.

Here

— 1 —5llz—¢|I
f(x) (271_)% € 2 )

so by (7.27), t has pdf w. r. to dji(t) given by

ht) = —y /@ e~ Hl=€1 gy ()

p

_ 1 e—%||£||2e—%||x||2/ e du ()
O

p
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2) Ca i (t0) .
21 ese 22( )'/o VI dup () [ verify! |

P

)kE [Beta (3, %)}k [ verify!]

 (2m)?

NN
N—"

N—"

(1) This follows from the left and right invariance of the Haar measure v,,.

(2) By the invariance of v, the distribution of 15 is even, i.e., y11 ~ —711,
so its odd moments vanish.

(3) By left invariance, the first column of « is uniformly distributed on the
unit sphere in R?, hence 72, ~ Beta (3, 25%) [verify!].

Thus from (7.29) and Legendre’s duplication formula, ¢ has pdf w. r. to dt
given by

0
o) ok p+2k'_1 _t
. _g (5) t 2 (4
(7.30) = e 2y ; L :

as also found in (2.27). L
Example 7.9. Extend Example 7.8 as follows. Let
X =R, G=0,x0O,, = Lebesgue measure on RP*",
so u is (Op x O,)-invariant. Here (v,¢) € O, x O, acts on RP*" via
T — vy’
Assume first that 7 > p. A maximal invariant statistic is [verify!]
(7.31) tx) = (li(xz") > - > l(x2)) = (za),
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the ordered nonzero eigenvalues of xx’ [verify|. If X has pdf f(x) w. r. to
@ then Stein’s integral representation (7.26) states that [ = [(X X’) has pdf

(7.32) h(l) = /O /O F(ya!) duy () dvy ()

w. 1. to dfi(l) on R;. In particular, if f(z) is also (O, x O, )-invariant, i.e.,

if
f(x) = k(I(z2))
for some k(-) on R, then the pdf of [(XX’) w. r. to dfi(l) is simply
(7.33) h(l) = k(1), [ €R;.
The induced measure dji(l) can be found by considering a special case:

X ~ Npur(0, I, ® I,) = XX' ~ W,(r, I).

Here
€r) = 1pr e—%trxm’
f( ) (2m) 2
= 2 1)ﬁ ez b= k(1) w.r. to du(z) on RP*",
so [ has pdf
h(l) = k(1) = # 72 2l w.r. to dfi(l) on R;.

w(l) = s : I, 2 e 3l li =1
0= e L LI o

1<i<j<p

w.r. to dl (= Lebesgue measure) on R;. Therefore dfi(l) is determined as
follows:

p(r+1) [

RO Ty (5T (5) i

(7.34)  da(l) =

I @-1)ad.

1<i<j<p

Finally, the case r < p follows from (7.33) by interchanging p and r, since
XX and X’X have the same nonzero eigenvalues.
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Application: Stein’s representation (7.32) provides an integral representa-
tion for the pdf of the eigenvalues of a noncentral Wishart matrix. If

X~ Npsr(€, Ip @ 1)

with & # 0, the distribution of X X’ = S depends on £ only through &£’ [ver-
ify], hence is designated the noncentral Wishart distribution Wy (r, I,,; ££').

Assume first that r > p. The distribution of the ordered eigenvalues
[=1(XX)=(L(XX) > >1,(XX"))
of S depends on &£’ only through the ordered eigenvalues
A= AEE) = (L(EE) 2 - = (&)
of €€’ hence is designated by [(p, r; A). Here

2) = — L e~k (@=&)@=¢)
f) = 7

so by (7.32), [ has pdf w. r. to dji(l) given by

1 / / e_%tr(wmﬂ—ﬁ)(wﬂp/_g)/ dup(’)/) dVr(w)
O0pJ O,

(2m)Z

1o —1treg’ _ltr:cm’/ / etrfy:m//&’ de(’Y)dVr<'¢)

(2m)

126_%Z>"'6_%Zl // TP A§dyp('y)dy7“(¢>

(2m) 2

].p’l’ 6_%Z>\i6_%zli/ / ZI 127 1l12>\ FYJ“pﬂde(’Y) dVr(¢)

(2m)Z

2)

(27r) T

2%k
b1
A DL DL / /(9 1 Z (Qk), (]EIAEVji@Dji) dvp(7) dvr (¥).
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(1) Here Dy = diag(\1,...,Ap), D; =diag(l4,...,l,), and 7 is the leading
p X p submatrix of v. The equality follows from the left and right in-
variance of the Haar measures v, and v, and from the singular value
decompositions of £ and z. The representation (1) is due to A. James
Ann. Math. Statist. (1961, 1964). Note that the double integral in (1)

is a convex and symmetric (= permutation-invariant) function of

1 1
I7,...,17 on the unordered positive orthant R [explain].

(2) By the invariance of v, the distribution of v; = (v1i,...,7pi)’, the ith
column of ~, is even, i.e., v; ~ —v;. Apply this for i = 1,...,p, using
the following expansion at each step:

;e—l—egc ix

k=

o

Thus from (7.34), [ has pdf f\(I) w. r. to dl given by

dii(l)
() h(l)T
% _§2>\Z p r—p—1
T2€ 1
= —5 - [, = e 2l (li = 15)
271y (g)rp(i) 11;[1 19’119 ’

2%
(7.35) //O kz::ﬁ (iﬁ\%%i%i) dvp(7y) dvy ()

on the range R;. The case r < p now follows by interchanging p and r in
(7.35), since XX and X’X have the same nonzero eigenvalues. L

Remark 7.10. The integrand in (7.35) is a multiple power series in {l;},
and similarly in {A;} — this can be expanded and integrated term-by-term,
leading to an extension of the Poisson mixture representation (7.30) for
the noncentral chi-square pdf. However, important information already
can be obtained from the integral representation (7.35). By comparing the
noncentral pdf fy(l) in (7.35) to the central pdf f(I) = fo(l) in (7.16) the
likelihood ratio

fk(l) _ e—%ZAi
(7.56) R
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the double integral in (7.35). From this representation it is immediate

1
that f(l) = fo(l) is strictly increasing in each l;, hence in each [?, and
as already noted in (1) its extension to the positive orthant R is convex

1
and symmetric in the {{?}. Thus the symmetric extension to RY of the
acceptance region A C R; of any proper Bayes test for testing A = 0 vs.

1
A > 0 based on | must be convex and decreasing in {/? } [explain and verifyl!].

Wald’s fundamental theorem of decision theory states that the closure
in the weak™ topology of the set of all proper Bayes acceptance regions
determines an essentially complete class of tests. Because convexity and
monotonicity are preserved under weak™ limits, this implies that the sym-
metric extension to RY of any admissible acceptance region A C R; must

1
be convex and decreasing in {/?}. This shows, for example, that the test
which rejects A = 0 for large values of the minimum eigenvalue [,,(S) is
inadmissible among invariant tests [verify!], hence among all tests.

Furthermore, Perlman and Olkin (Ann. Statist. (1980) pp.1326-41)
used the monotonicity of the likelihood ratio (7.36) and the FKG inequality
to establish the unbiasedness of all monotone invariant tests, i.e., all tests
with acceptance regions of the form {g(ls, ..., gp) < ¢} with g nondecreasing
in each ;. L

Exercise 7.11. Eigenvalues of S ~ W, (r, ¥) when ¥ # I,,.
(a) Assume that » > p and ¥ > 0. Show that the pdf of I = (I1,---,1,) is

- r—p—1
pr r l’L ’ (lz_l)
22T, (5) Ty (5) (TT7= M)? id 19’1199 j

(7.37) /o e~ 2 DD gy, (), l€Ry,

P

NS

M) =

p

where | = (I1,---,1,) and A = (A1,...,\,) are the ordered eigenvalues of S
and X, respectively. (Compare to Exercise 7.4).

(b) Consider the problem of testing ¥ = I, vs. ¥ > I,. Show that a
necessary condition for the admissibility of an invariant test is that the
symmetric extension to R of its acceptance region A C R; must be convex
and decreasing in {/;}. (Thus the test based on [,(S) is inadmissible.) ) U
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Remark 7.12. Stein’s integral formula (7.26) for the pdf of a maximal
invariant statistic under the action of a compact topological group G can
be partially extended to the case where GG is locally compact. Important
examples include the general linear group GGL and the triangular groups GT'
and GU. In this case, however, the integral representation does not provide
the normalizing constant for the pdf of the MIS, but still provides a useful
expression for the likelihood ratio, e.g. (7.36). References include:

S. A. Andersson (1982). Distributions of maximal invariants using quotient
measures. Ann. Statist. 10 955-961.

M. L. Eaton (1989). Group Invariance Applications in Statistics. Regional
Conference Series in Probability and Statistics Vol. 1, Institute of Mathe-
matical Statistics.

R. A. Wijsman (1990). Invariant Measures on Groups and their Use in
Statistics. Lecture Notes — Monograph Series Vol. 14, Institute of Mathe-
matical Statistics.
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8. The MANOVA Model and Testing Problem. (Lehmann T'SH Ch.8.)

8.1. Characterization of a MANOVA subspace.

In Section 3.3 the multivariate linear model was defined as follows:

Yi,..., Y, (note m not n) are independent p x 1 vector observations hav-
ing common unknown pd covariance matrix 3. Let Y; = (Yi;,...,Y;),
g =1,...,m. We assume that each of the p variates satisfies the same

univariate linear model, that is,
(8.1) B(Yit,-..,Yim) = BiX,  i=1,....p,

where X : [ X m is the design matrix, rank(X) =1 < m, and 3; : 1 x [
is a vector of unknown regression coefficients. Equivalently, (8.1) can be
expressed geometrically as

(8.2) E(Yi1,...,Yim) € L(X) = row space of X CR™, it=1,...,p.
In matrix form, (8.1) and 8.2) can be written as
(8.3) E(Y) e {8X |8 € Ml(p, )} = Lp(X),
where M (a, b) denotes the vector space of all real a x b matrices,
Y = (Yl, .. ,Ym) € ./\/l(p, m),
631
s=| :
By
Note that L,(X) is a linear subspace of M(p, m) with

dim(Ly (X)) = p- dim(L(X)) = p,

a multiple of p. Then (8.2) can be expressed equivalently as?®
U1

84)  B(Y) e & LX) = 4| | |vn.. v, € LX)
Up

20 (8.3) and (8.4) can also be written as F(Y) € RP @ L(X).
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The forms (8.1) — (8.4) are all extrinsic, in that they require spec-
ification of the design matrix X, which in turn is specified only after a
choice of coordinate system. We seek to express these equivalent forms in
an intrinsic algebraic form that will allow us to determine when a specified
linear subspace L C M(p,m) can be written as L,(X) for some X. This
is accomplished by means of an invariant = coordinate-free definition of a
MANOVA subspace.

Definition 8.1. A linear subspace L C M(p,m) is called a MANOVA
subspace if

(8.5) M(p,p) L C L.

Because M(p,p) is in fact a matrix algebra (i.e., closed under matrix mul-
tiplication as well as matrix addition) that contains the identity matrix I,,,
(8.5) is equivalent to the condition M(p,p) L = L. ]

Proposition 8.2. Suppose that L is a linear subspace of M(p,m). The
following are equivalent:

(a) L is a MANOVA subspace.
(b) L = L,(X) for some X € M(l,m) of rank Il < m (so dim(L) = pl).

(c) There exists an orthogonal matrixz T : m X m such that

(8.6) LT = {(t, Op—s) | 11 € M, D)} (1 < m).

((8.6) is the canonical form of a MANOVA subspace.)

(d) There exists a unique m X m projection matriz P such that
(8.7) L={ze M(p,m)|z=axP}.

Note: if L = L,(X) then P = X'(XX')"'X and | = tr(P) [verify]. Also, T’
is obtained from the spectral decomposition P = I" diag(l;, 0,,—;) I,

Proof. The equivalence of (b), (c¢), and (d) is proved exactly as for uni-
variate linear models [reference?] It is straightforward to show that (b) =
(a). We now show that (a) = (d).

114



STAT 542 Notes, Winter 2007; MDP

Lete¢; = (0,...,0,1,0,...,0)" denote the i-th coordinate vector in R? =
M(1,p) and define L; := €, C M(1,n), i =1,...,p. Then for every pair
i, 7, it follows from (a) that

Lj = €;L = EQHWL Q EgL = Li,
where II;; € M(p,p) is the i, j-permutation matrix, so
L= :Lp :Eg_/\/l(l,m)

Let P : m x m be the unique projection matrix onto L. Then for z € L,

P = I,xP = (Zé_l 6i€;>£lfp

= (XL e)dar = (X0 a)eie = (X ) =o,

where the third equality holds since €,z € L; = L, hence
LC{x e M(p,m)|z=zP}.

Conversely, for x € M(p, m),

/ _ ! .
TP =€, 1=1,...,p,

7
/
)

— c.x = e,x; for some z; € L
P P

:>xE(§ _ 16,’62)33: g _ 1(6@-62)%61},
1= 1=

where the final membership follows from (a) and the assumption that L is
a linear subspace. Thus

TP =1 = ¢

L2 {z € M(p,m)|z =P},

which completes the proof. L
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Remark 8.3. In the statistical literature, multivariate linear models often
occur in the form

(8.8) Ly(X,C) == {8X | B € M(p,1), 5C = 0},

where C : [ x s (with rank(C) = s < [) determines s linear constraints on
B. To see that L,(X,C) is in fact a MANOVA subspace and thus can be
re-expressed in the form L,(Xy) for some design matrix Xy, by Proposition
8.2 it suffices to verify that

M(p,p) Lp(Xv C) C Lp(X7 C),

which is immediately evident. L

8.2. Reduction of a MANOVA testing problem to canonical form.

A normal MANOVA model is simply a normal multivariate linear model
(3.14), i.e., one observes

89) Y =(Yi,...,Ym)~ Npum(n, S®1L,) with ne L C RP*™,

where L is a MANOVA subspace of RP*™ and ¥ > 0 is unknown.

The MANOVA testing problem is that of testing
(8.10) nelLy vs. neL based on Y,
for two MANOVA subspaces Lo C L C RP*™ with

dim(Lg) = plo < pl = dim(L). L

Proposition 8.4. (extension of Proposition 8.2¢). Letr = 1—ly, n = m—I.
There exists an m X m orthogonal matrix I'* such that

LT ={(& 1, Opxn) | £ € M(p, lo), p € M(p, )},
LoT™ = {(&, Opxr, Opxn) | £ € M(p, lo) }.

Proof. Again this is proved exactly as for univariate linear subspaces:
From (8.6), choose I' : n x n orthogonal such that

LT = {(&, 11, Opxen) | € € M(p, lp), € M(p, )}.
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nxl

I'p : I x [ orthogonal so that

By (8.5), Lol <OIl ) is a MANOVA subspace of R?!, so we can find

ol (11 ) o = (66 Opr) | € € M. o),

FO len

Now take I'* =T <On><l I,

) and verify that (8.11) holds. L

From (8.11) the MANOVA testing problem (8.10) is transformed to
that of testing

w=0 vs. pu#0 with &€ M(p, ly) and ¥ unknown

(8.12)
based on Y*:=1T"Y = (U, Y, Z) ~ prm((f, ty Opxn)y 2 ® Im).

This testing problem is invariant under G* := M(p, lp) acting as a trans-

lation group on U (and &):

(U,Y, Z) — (U+b,Y, Z),
& py X) = (E4b, p, 2).

Since M(p, lp) acts transitively on itself, the MIS and MIP are (Y, Z) and
(1, %), resp., and the invariance-reduced problem becomes that of testing

(8.13)

=0 vs. pu#0 with ¥ unknown

(8.14)
based on (Y, Z) ~ Npy(r4n) ((,u, Opxn), 2 ® ]T-_|_n).

For this problem, (Y, W) := (Y, ZZ') is a sufficient statistic [verify], so
(8.14) is reduced by sufficiency to the canonical MANOVA testing problem
(6.24). Asin Example 6.36, (6.24) is now reduced by invariance under (6.25)
to the testing problem (6.26) based on the nonzero eigenvalues of YW ~1Y.

(The condition n > p, needed for the existence of the MLE 3 in (6.24)

and (8.14), is equivalent to m > [+ p in (8.9) and (8.10).) L
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Remark 8.5. By Proposition 8.2b and Remark 8.3, L,(X) and L,(X,C)
are MANOVA subspaces of RP*™ such that L,(X,C) C L,(X). Thus the
general MANOVA testing problem (8.10) is often stated as that of testing

(8.15) neL,(X,C) vs. neLly(X).
[Add Examples] L

Exercise 8.6. Derive the LRT for (8.15).
Hint: The LRT already has been derived for the canonical MANOVA testing

problem in Exercise 6.37a. Now express the LRT statistic in terms of the
observation matrix Y, the design matrix X, and the constraint matrix C. L
8.3. Related topics.

8.3.1. Seemingly unrelated regressions (SUR).

If the p variates follow different univariate linear models, i.e., if (8.1) is
extended to

(8.16) E(Yit, ..., Yim) = X, € L(X:),  i=1,...,p,

where X : [; xm, ..., X, : [, x m are design matrices with different row
spaces, the model (8.16) is called a seemingly unrelated regression (SUR)
model. The p univariate models are only “seemingly” unrelated because
they are correlated if ¥ is not diagonal. Under the assumption of normality,
explicit likelihood inference (i.e., MLEs and LRTSs) is not possible unless the
row spaces L(X1),...,L(X,) are nested. (But see Remark 8.9.) L

8.3.2. Invariant formulation of block-triangular matrices.

The invariant algebraic definition of a MANOVA subspace in Definition
8.1 suggests an invariant algebraic definition of generalized block-triangular
matrices. First, for any increasing sequence of integers

O=po<p1<p2< - <pr<prp1=p (1<r<p)
define the sequence

(8.17) {0fcVicVeC---CV,.CRP
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of proper linear subspaces of R? as follows:
(8.18) Vi = span{eq, €, ..., €p, }, i=1,...,7
Consider a partitioned matrix
(8.19) A= (A |1<4,5 <r)e M(p, p),

where A;; € M(p; — pi—1, pj —pj—1). Then A is upper block triangular,
ie, A;; =0for 1 <j<i<r,if and only if [verify!]

AV; CV,, i=1,...,r

Thus the set of A of upper block-triangular matrices can be defined in the
following algebraic way:

(8.20) A= Alp1,...,pr) ={A e M(p,p) | AV, CV;,i=1,...,r}.

Exercise 8.7. Give an algebraic definition of the set of lower block trian-
gular matrices. Ll

More generally, let
(8.21) {0}cWrcWC---CV,.CRP
be a general increasing sequence of proper linear subspaces of R? and define
(8.22) A=AMW,..., V) ={Ae M(p,p) | AV, CV;,i=1,...,p}.

Note that this is a completely invariant = coordinate-free algebraic defi-
nition, and immediately implies that A is a matrix algebra, i.e., is closed
under matrix addition and multiplication [verify], and I, € A. The algebra
A is called the algebra of block-triangular matrices with respect to Vi, ..., V.
The proper subset A* C A consisting of all nonsingular matrices in A is a
matrix group, i.e., it contains the identity matrix and is closed under matrix
inversion [verify|. Finally, it is readily seen that A(V7,...,V,.) is isomorphic
to A(p1,...,pr) under a similarity transformation, where p; := dim(V;). U
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Remark 8.8. Suppose that Vi,...,V,. is an arbitrary (i.e., non-nested)
finite collection of proper linear supspaces of RP. Define A = A(V1,...,V})
as in (8.22). Then A is a generalized block-triangular matriz algebra [verify!]
and A* is a generalized block-triangular matriz group. Note too that

(8.23) AVy, ..., V) = ALV, ..., V),
where L(Vi,...,V,) is the lattice of linear subspaces generated from
(Vi,...,V,) by all possible finite unions and intersections. L

Remark 8.9. The algebra A = A(L(V1,...,V,)) plays an important role
in the theory of normal lattice conditional independence (LCI) models (An-
dersson and Perlman (1993) Annals of Statistics). A subspace L C M(p,n)
is called an A-subspace if AL C L. It is shown by A&P (IMS Lecture Notes
Vol. 24, 1994) that if the linear model subspace L of a normal multivariate
linear model is an A-subspace and if the covariance structure satisfies a
corresponding set of LCI constraints, then the MLE and LRT statistics can
be obtained explicitly. This was extended to ADG covariance models by
A&P (J. Multivariate Analysis 1998), and to SUR models and non-nested
missing data models with conforming LCI covariance structure by Drton,
Andersson, and Perlman (J. Multivariate Analysis 2006). L

8.3.3. The GMANOVA model and testing problem.
(Recall Example 6.39.) [To be completed] L
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9. Testing and Estimation with Missing/Incomplete Data.

Let Y1,...,Y,, be an iid. random sample from N,(u,¥) with x4 and X
unknown. Partition Yy, p, and X as

p1 b2
p1 [ Yik H1 p1  X11 212
Y = . op= , n= .
" (Y%) (M2> P2 (2321 Z22)
Consider n additional i.i.d. observations Vi,...,V,, from N, (us2,>92), in-
dependent of Y;,...,Y,,. Here Vi,...,V,, can be viewed as incomplete ob-

servations from the original distribution N, (u, ). We shall find the MLEs
i,> based on Yq, ..., Y, Va,..., V.

Because
Yir | Yor ~ Np, (o + BYap, ¥11.2),
5 E12222 )
o= 1 — 6”27

the likelihood function (LF = joint pdf of Yi,...,Y,,, V1,...,V,) can be
written in the form

n

1
( )Hf(gEnQ(ylkLka Hf,uz o2 y2 H 12, 222

k=1 k=1
=c - [S11.2| " Pexp (— %trzul.z je1 (Y1k — @ — Byax)*?)

m n
: |222|_(m+n)/2 exp ( - %tr 22_21 [Z(y% - Mz)*2 + Z(Uk - Mz)*ﬂ),
k=1 =
where (y)*? := yy’ and the parameters o, 3, X11.2, lt2, Y22 vary indepen-

dently over their respective ranges. Thus we see that the LF is the product
of two LF's, the first that of a multivariate normal linear regression model

/

Np,m (e, 8) (€Z> , ¥11.2)

with e/ = (1,...,1): 1 xm and Z = (Ya1,...,Y2,), and the second that of
m + n i.i.d. observations from N, (us2, X22).

121



STAT 542 Notes, Winter 2007; MDP

The MLEs for these models are given in (3.15), (3.16), (3.34), and
(3.35). To assure the existence of the MLE, the single condition m > p+ 1
is necessary and sufficient [verify!]. (This is the same condition required for
existence of the MLE based on the complete observations Y7, ...,Y,, only.)
If this condition holds, then the MLEs of «, 3, ¥11.2, pt2, 222 are as follows:

R . mY- —l—n‘_/
G =Y, — (s, fog = ————,
m—+n
(9.2) B = S1255,, Yoo = m+n (522 + T+ = (Y, — ‘7)*2),
Y112 = =S11.2,

[verify!], where

=" V-Y)? T=3 (V- V)2

Verify that m”j_:ﬁlzgg is the sample covariance matrix based on the com-

bined sample Y1, ..., Yo, Vi,...,V,. Furthermore, the maximum value of
the LF is given by

(9.3) C- |S12| T3 San| T 2 exp (=L (mp + np2)).

Remark 9.1. The pairs (Y,S) and (V,T) together form a complete and
sufficient statistic for the above incomplete data model. L

Remark 9.2. This analysis can be extended to the case of a monotone =
nested incomplete data model. The observed data consists of independent
observations of the forms

Y;
Ys Yy

(9.4) S T |
Yr Y;“ YT

where a complete observation Y ~ N,(u,Y). The MLEs are obtained by
factoring the joint pdf of Y7,...,Y, as
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95)  flyrs--- yr) = Falye, - ur) F(W2lys, ooy ue) - f(Yr—1lye) f(yr)

and noting that each conditional pdf is the LF of a normal linear regression
model. L

Exercise 9.4. Find the LRTs based on Yi,...,Y,,, V4,...,V, for testing
problems (i) and (ii) below. Argue that no explicit expression is available
for the LRT statistic in (iii). (Eaton and Kariya (1983) Ann. Statist.)

(i) Hy:ps=0 vs. H:ps#0 (p1 and X unspecified).
(i) Ho:p1 =0, uo=0 wvs. H:p3 #0, pe #0 ( X unspecified).
(iii) Hs:pp =0 vs. H:pp #0 (pe and X unspecified).

Partial solutions: First, for each testing problem, the LF is given by (9.1)
and its maximum under H given by (9.3).

(i) Because v = py1 when po = 0, it follows from (9.1) that the LF under
H, is given by

c '|211-2\_m/2 exp ( — %tr E1_11.2 Z(ylkz — p1 — 5y2k)*2)
(9.6) b=l

m

|Z22‘ (m4+n)/2 eXp tl" 222 Z +Z(U

k=1 k=1

Thus the maximum of the LF under H; is given by

(9.7) ¢+ [S11.2| 72 Sge| T2 exp (=4 (mp + np2)),
where 3 .
Yo : m+n( 20 +1T)
i (220 4+ Y (Vi)
k=1 k=1
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[verify!]. Thus, by (9.3) and (9.7) the LRT rejects Hs in favor of H for large
values of [verifyl]

. _ _ o\ %2
Sy + (mY2+nV> ’

‘222| . m-+n

|22 |20
— 14+ (m};fsi:\_/)/i;zl(m};gi:‘_/)
=1+T5.

Note that T% is exactly the T? statistic for testing po = 0 vs. 2 # 0 based
on the combined sample Y5q,...,Ys,,,V1,...,V,, so the LRT ignores the
observations Yi1,...,Y1m.

(ii) The LRT statistic is the product of the LRT statistics for problem (i)
and for the problem of testing g3 = 0, pue = 0 vs. p; # 0, pz = 0 (see
Exercise 6.14). Both LRTs can be obtained explicitly, but the distribution
of their product is not simple. (See Eaton and Kariya (1983).)

(iii) Under Hs : u1 = 0, ps appears in different forms in the two exponen-
tials on the right-hand side of (9.1), hence maximization over po cannot be
done explicitly. N

Exercise 9.5. For simplicity, assume p is known, say @ = 0. Find the LRT
based on Yi,...,Y,,, V4,...,V, for testing

HO . 212 =0 vs. H: 212 7& 0 (211 and 222 unspeciﬁed).

Solution: The LRT statistic for this problem is the same as if the addi-
tional observations Vi, ..., V,, were not present (cf. Exercise 6.24), namely

wlﬁl%. This can be seen by examining the LF factorization in (9.1) when

=0 (soa=0and ps = 0). The null hypothesis Hy : ¥12 = 0 is equivalent
to 8 = 0, so the second exponential on the right-hand side of (9.1) is the
same under Hy and H, hence has the same maximum value under Hj and
H. Thus this second factor cancels when forming the LRT statistic, hence

the LRT does not involve Vi,..., V. L
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9.1. Lattice conditional independence (LCI) models for non-
monotone missing/incomplete data.

If the incomplete data pattern is non-monotone = non-nested, then no
explicit expressions exist for the MLEs. Instead, an iterative procedure
such as the EM algorithm must be used to compute the MLEs. (Caution:
convergence to the MLE is not always guaranteed, and the choice of starting
point may affect the convergence properties.)

An example of a non-monotone incomplete data pattern is

Y; Y1
(9.8) Ys |, , Ys |,
Y3 Y3 Y3 Y3

Here no compatible factorization of the joint pdf such as (9.5) is possible.
However, Rubin (Multiple Imputation, 1987) and Andersson and Perlman
(Statist. Prob. Letters, 1991) have pointed out that a compatible factor-
ization is possible if a parsimonious set of lattice conditional independence
(LCI) restrictions determined by the incomplete data pattern is imposed on
the (unknown) covariance matrix . In the present example, these restric-
tions reduce to the single condition Y; Il Y5 | Y3, in which case the joint
pdf of Y7, Y5, Y3 factors as

(9.9) fy2,u3) = fyilys) f(y2lys) f(ys).

Here again each conditional pdf is the LF of a normal linear regression
model, so the MLEs of the corresponding regression parameters can be
obtained explicitly.

Of course, the LCI restriction may not be defensible, but it can be
tested. If it is rejected, at least the MLEs obtained under the LCI restriction
may serve as a reasonable starting value for the EM algorithm. (See L. Wu
and M. D. Perlman (2000) Communications in Statistics - Simulation and

Computation 29 481-509.)

[Add handwritten notes on LCI models.]
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Appendix A. Monotone Likelihood Ratio and Total Positivity.

In Section 6 we study multivariate hypothesis testing problems which re-
main invariant under a group of symmetry transformations. In order to
respect these symmetries, we shall restrict consideration to test functions
that possess the same invariance properties and seek a uniformly most pow-
erful invariant (UMPI) test. Under multivariate normality, the distribution
of a UMPI test statistic is often a noncentral chi-square or related noncen-
tral distribution. To verify the UMPI property it is necessary to establish
that the noncentral distribution has monotone likelihood ratio (MLR) with
respect to the noncentrality parameter. For this we will rely on the relation
between the MLR property and total positivity of order 2.

Definition A.1. Let f(z,y) > 0 be defined on A x B, a Cartesian product
of intervals in R'. We say that f is totally positive of order 2 (TP2) if

f(ry,y1)  f(1,92)
f(x2,91)  f(w2,92) =0

Vi, < z2, y1 < Y2,

i.e.,if

(A.1) flxi,yn) f(z2,y2) = f(21,92) f (22, Y1)

If f>0o0n Ax B then (5.1) is equivalent to the following condition:

f(z2,y)
(42) f(x1,y)

1s nondecreasing in y Vxy < Ts.

Note that f(z,y) is TP2 on A x B iff f(y,z) is TP2 on B x A. L

Fact A.2. If f and g are TP2 on A X B then f-g is TP2 on A X B. In
particular, a(x)b(y) f(x,y) is TP2 for any a(-) > 0 and b(-) > 0. L

Fact A.3. If f is TP2 on A’ x B" and ¢ : A — A" and ¢ : B — B’ are
both increasing or both decreasing, then f(¢(x),1¥(y)) is TP2 on Ax B. [

Fact A.4. If f(z,y) > 0 and a;;%if >0 on A x B then f is TP2. L]
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Fact A.5. If f(x,y) = g(x —y) and g : R' — [0,00) is log-concave, then
f is TP2 on R2.

Proof. Let h(z) =logg(x). For z1 < x2, y1 < yo set

§=T1—Y1, U=T1— Y2,
=22 —Y2, V=22 Y1.
Then [verify]
u < min(s,t) < max(s,t) < v,
s+t=u-+wv,
so, since h is concave,
h(s) + h(t) > h(u) + h(v),

which is equivalent to the TP2 condition (A.1) for f(z,y) =g(z —y). U
These Facts yield the following examples of TP2 functions f(x,y):
Example A.6. Exponential kernel: f(x,y) = e*¥ is TP2 on R! x RL.

Example A.7. Exponential family: f(x,y) = a(x)b(y)e®®*®) is TP2 on
Ax Bifa(-)>0on A, b(-) > 0on B, ¢(-) is increasing on A, and ¥(-) is
increasing on B. In particular, f(z,y) = ¥ is TP2 on (0,00) x R

Example A.8. Order kernel: f(z,y) = (x —y)¢ and f(z,y) = (v — y)*
are TP2 on R' x R! for o > 0. [I(g,00) and (o o) are log concave on R*.]

The following is a celebrated result in the theory of total positivity.

Proposition A.9. Composition Lemma = Karlin’s Lemma (due to
Polya and Szego). If g(x,y) is TP2 on Ax B and h(x,y) is TP2 on B x C,
then for any o-finite measure i,

(A3) f(r,z) = /B 9z, )h(y, 2)du(y)

1s TP2 on A x C.
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Proof. For 21 < x5 and 21 < 29,
xlazl 1'2,22) f(xsz)f(xQ?Zl)

= [[ g1, p)ga,0) bl 20)h(ws 2) ~ iy, 22l 20)du(y)diaw)

Sttt

=0

By interchanging the dummy variables y and u, however, we see that

//{ § }g(xl,y)g(xz,u)[h(y,zl)h(u,zg) — h(y, z2)h(u, z1)]dp(y)dp(u)
://{ < }9(x1,U)g(m27y)[h(u,21)h(y,22) — h(u, z2)h(y, 21)]dp(y)dp(w)

SO

I st I

_ / / (9(z1,9)g(x2,u) — g(w1, w)g (w2, )]
{y<u}

< [Ay, 21)h(u, 22) — h(y, 22)h(u, 21)]dp(y)dp(u) = 0
since g and h are TP2. Thus h is TP2. L
Example A.10. Power series: f(z,y) = > poockx™y® is TP2 on
(0,00) x (0,00) if ¢ > 0 Vk.
Proof. Apply the Composition Lemma with g(z,k) = z*, h(k,y) = y*,

and p the measure that assigns mass ¢ to £k =0,1,.... L

Definition A.11. Let {f(x|\) | A € A} be a 1-parameter family of pdfs
(discrete or continuous) for a real random variable X with range X', where
both X and A are intervals in R'. We say that f(x|\) has monotone
likelihood ratio (MLR) if f(xz|\) is TP2 on & x A. L

Proposition A.12. MLR preserves monotonicity. If f(x|\) has MLR
and g(x) is nondecreasing on X, then

Ex[g(X)] = /X 9(x) f(z|\)dv(z)
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is nondecreasing in \ (v is either counting measure or Lebesque measure).

Proof. Set h(\) = E)[g(X)]. Then for any A\; < A\ in A,
h(xz) = h(A1)

g(@)[f(z|X2) — f(z|A1)]dv(x)

[\

I
—

=5 [[l9(x) — g)] [f (x[A2) f(y|A1) — flylA2) f (] A1)]dv(2)dv(y)
>0,
since the two [ - -] terms are both > 0 if x > y or both <0 if z < y. ]

Remark A.13. If {f(x|\)} has MLR and X ~ f(x|\), then for each a € X,

Pra[ X > a] = Ex [T(a,00)(a)]

is nondecreasing in A, hence X is stochastically increasing in A. L

Example A.14. The noncentral chi-square distribution y2(J) has
MLR w.r.to 9.

From (2.27), a noncentral chi-square rv x2(d) with n df and noncentrality
parameter § is a Poisson(d/2)-mixture of central chi-square rvs:

(A.4) 2O | K=k ~ X2 00 K ~ Poisson(§/2).

Thus if f,(z|0) and f,(x) denote the pdfs of x2(d) and x?2, then

> [ x%"’k_le_%

22T (% + k)

e

k=0
(A.5) =8 lem % ot -chxkék,
k=0
where ¢ > 0. Thus by A.2; A3, and A.10, f,,(z|d) is TP2 in (z,d). L
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Example A.15. The noncentral F distribution F,, ,(5) has MLR
w.r.to 9. Let

2
distn X'm )
(A.6) Fpn(8) Xg )

Y

the ratio of two independent chi-square rvs with x?2,(J) noncentral and y?2
central. From (A.4), F,, ,(d) can be represented as a Poisson mixture of
central F' distributions:

(A7) Frn(®) | K=k ~ Fniopn, K ~ Poisson (§/2),
s0 if fo,.n(z]0) and fp, () now denote the pdfs of F, ,,(6) and F), ,, then

fmn(2[6) = me,n+2k(x) Pr[K = k]
k=0
e e (e
e G RN C) B O Vi g
rz ! 5o x

A - 2.y d o
e Sy
where dj, > 0. Thus by A.2 and A.10, f,, »(z|6) is TP2 in (z,4). L

Question A.16. Does x2(4) have MLR w.r.to n? (4§ fixed) Does Fy, ,(d)
have MLR w.r.to m? (n, § fixed) L

Proposition A.17. Scale mixture of a TP2 kernel. Let g(x,y) be
TP2 on R' x (0,00) and let h be a nonnegative function on (0,00) such
that h (y/C) is TP2 for (y,() € (0,00) x (0,00). Then

(4.9) f,¢) = / " g, C2)h(2)d

is TP2 on R! x (0, 00).
Proof. Set y = (z, so

f(2,0) = /O ) h (y) dy
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hence the result follows from the Composition Lemma. L

Example A.18. The distribution of the multiple correlation coef-
ficient R?2 has MLR w.r. to p2.

Let R?, p?, U, ¢, and Z be as defined in Example 3.21 (also see Example
6.26 and Exercise 6.27). From (3.68),

U ‘ Z ~ Fp—l,n—p—i—l(CZ)a

A.10
(A.10) 7ol

so the unconditional pdf of u with parameter ( is given by

FlulC) = / Footnp1 (U] C2) fu(2)d2

where f,_1 n—p+1(-|C2) and f,(-) are the pdfs for F,_1 ,_p+1({z) and x2,
respectively. Then f,_1, n—p+1(u]y) is TP2 in (u,y) by Example A.15, while

HORSONE.

is TP2 in (y,() by Example A.7, so f(u|¢) is TP2 in (u, () by Proposition
A.17. Finally, because U and ( are increasing functions of R? and p?,
respectively, it follows by Fact A.3 that the distribution of R? has MLR
w.r.to p2. L
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