STAT 512: MATH/PROB DIAGNOSTIC

This quiz is intended solely to help assess your mathematical preparation for 512 . It will be self-graded and the grade will not be recorded. If questions 1-5 deal with material unfamiliar to you, you should consider taking preparatory courses in mathematics and/or probability before taking 512, such as MATH/STAT 394-5. If questions 6-7 are very easy for you, you might consider taking a more advanced probability course, such as MATH/STAT 491.

1. Evaluate $\int_{0}^{1} e^{-2 x} d x$.
2. Evaluate $\frac{d}{d x} \frac{1}{(1-x)}$.
3. Evaluate $\sum_{k=0}^{\infty} x^{k}$ for $|x|<1$.
4. Evaluate $\sum_{k=0}^{\infty} k x^{k-1}$ for $|x|<1$.
5. Let X be a random variable uniformly distributed on the interval (a, b). Find $\mathrm{E}(X)$ and $\mathrm{P}[X \leq \mathrm{E}(X)]$.
6. Define $f(x, y)= \begin{cases}c, & \text { if } 0<x<y<1 \\ 0, & \text { otherwise. }\end{cases}$

Show that $c=2$ makes this a probability density function.
7. Let (X, Y) be a pair of random variables with joint probability density function $f(x, y)$ as given in 6 .
(a) Find the marginal density $f(y)$ of Y and find $\mathrm{E}(Y)$.
(b) For $0<y<1$, find the conditional distribution of X given $Y=y$.
(c) Find the conditional expectation $\mathrm{E}(X \mid Y=y)$ and find $\mathrm{E}(X)$.
(d) Are X and Y independent?
(e) Are X / Y and Y independent?
(f) Evaluate $\mathrm{E}(X Y)$.

