3

TCSS 342B Winter 2006

Word Counting Using Hashtables. version 1.0 writeup.
Out: Thursday, Feb. 23, 2006
Due: Thursday, March 2, 2006.

Background and Introduction

Word counting is used in all sorts of applications, including text analysis, creating indexes, and even cryptography. In this programming assignment, you will take a text file and compute what words appear in that file and how many times they appear.
In this assignment, you will use a Map data structure to keep track of words, and to associate each word with an Integer counter. You will update the Map to reflect the occurrence of each string as it is read from a file. If a word is seen for the first time, it is inserted into the map with associated Integer 1. Otherwise, the Integer associated with the word in the Map is increased by one. The dictionary will be implemented in two different ways: using Java’s hashmap implementation and as a quadratic probing version of a hash table. You will run the code on two input files of different sizes to evaluate the performance of the data structures.
Learning Objectives

· Increase your familiarity with hashtables.

· Increase your familiarity with Java’s Map interface.

· Practice reading and modifying other people’s code.

Starter Files

Much of the code is provided for you. Portions of the starter code was written by a variety of people, including: the authors of our java software structures book, Mark Allen Wiess, Donald Chinn, and myself (Ed Hong). The code is located in the wordcounthash.zip file on the website.

Here is a breakdown of the provided files, along with some explanatory comments:

· DictionaryApp.java – This is a driver program that parses the command line argument to determine which algorithm is supposed to be used, and what input file is to be used. It also sets up a timer to time how long it takes to read in and insert the strings into the Map. There is a method called getWord, which gets the next sequence of contiguous alphanumeric characters from the input stream. This is what we will consider a word to be for the purposes of this assignment. You should a look at the main method to see how it works. This file is complete as is; you do not need to change it unless you do the extra credit.
 Note that DictionaryApp uses the standard Java Map interface, and the implementation HashMap (a chaining hashtable implementation of the Map). However, DictionaryApp uses the SimpleMap interface for the quadratic probing hashtable implementation of map. Ideally we would use the same interface so that all our timing results would measure the difference between the data structures, as opposed to the difference in the interface. Since implementing the full java Map interface is prohibitively time-consuming and not that instructive, DictionaryApp uses a simplified Map interface (SimpleMap) for the data structures that are not part of the Java Collections API. SimpleMap only specifies those methods from the Map interface that DictionaryApp actually needs.
· SimpleMap.java – This is a simplification of the standard Java Map interface; this interface has just three methods: a put method, a get method, and method printImplementationInfo. The first two methods are similar to those in the Map interface. The last method is for printing out information about your hashtable that is useful for making sure it is working.

· QuadraticProbingHashTableMap.java – This is the code that implements the SimpleMap using a quadratic probing hash table. This is the only file you should have to change. The given implementation is incomplete.

· king_james_bible.txt
shortkjv.txt
 These are two sample files in Unicode Big-Endian format that can be used as input into DictionaryApp. shortkjv is just the first few lines of king_james_bible.txt. The King James Bible text was obtained from Project Gutenburg, whose website is http://promo.net/pg . Note that DictionaryApp requires text files in Unicode Big-Endian format, and will not work on standard ANSI text files (in ASCII code). Standard ANSI text files can be easily converted to Unicode Big-Endian format using TextPad or NotePad; use the Save As command, and select a different format.

· king_james_bible.output.txt
shortkjv.output.txt
 These are two files that may be useful for debugging. They contain the output results of using my completed version of the quadratic probing hashtable on the two given sample text files.

The Assignment

Here is a step-by-step list of things you need to do for this assignment, in the approximate order that you should do them:

· Understand the Map and the SimpleMap interface and how it is used by DictionaryApp.

· Create the quadratic probing implementation of the hash table by completing the code in file QuadraticProbingHashTableMap.java. It may help to look at the HashTableSet.java implementation that we saw in class; this is available as a separate link from the homework website.

· Some implementation details:

· Implement put() and get(); it is not necessary to implement remove

· In order to complete put() you will also need to implement rehash()

· The size of the new array is already calculated for you.

· Note that you can’t just directly copy items from the old array to the new one; items may now get hashed to a different place!

· You will also need to complete the code for the HashEntry class that represents the things that you actually store inside the hashtable.

· Also implement printImplementationInfo() to print out information about the following hashtable statistics:

· The current size of the table

· The number of collisions in the table since the table was created. (This includes collisions during times when the table used to be smaller).

· The total number of times rehash() was called to grow the table size.

· The first 10 non-empty slots in the array. Each slot should print the index of the slot, the key stored there, and the associated value. If there are fewer than 10 items in the table, then just print them all out.

· Note that to get the same result as in the output results from my program, you will need to implement the hash function same way as was described in class: First take the absolute value of the hashcode, then do the mod by the table size.

· Run the DictionaryApp on the given input text files, using the different implementations. Record the results.

· For testing purposes, be sure to use only text files in Unicode Big Endian format; otherwise getWord method will not read the words properly. (You can check that it is the right format by printing out some sample strings stored in the map, and seeing if they look like normal words.)

· Write a report describing your results. Your report must include the following information:

· How long does it take just to read in the King James Bible file without doing any kind of insertions into a data structure? (Hint: Use the –x option. The –x option is just a dummy method.)
· For each hashing method, how much time are you spending doing the actual hashing hashing?
· For your quadratic probing implementation, report the number of total collisions and the number of times you rehash.
· If you wanted to explore further why Java’s implementation is slower or faster than your quadratic probing version, what further experiments would you do? Include talk about what additional coding you would want to do, or what other tests you would want to run.
· What was the most surprising thing you learned from this assignment?
Extra Credit

· Implement a linear probing hashmap, and perform additional experiments on it. Your report should talk about how this implementation compares with the other ones. (Worth additional 4% of overall points of this assignment).

· Implement a chaining version of a hash table, and perform additional experiments using it. Your report should talk about how this implementation compares with the other ones. (Additional 4% of possible points.)

· Design a good secondary hash function, and use it for a double hashing implementation of a hash table. Your report should talk about how this implementation compares with the other ones. (Additional 6% of possible points.)
What to Turn In
You should e-submit all the code that you wrote. Print out your report, and turn in a hard copy of the report in class.

Evaluation
As usual, you will be graded on two things: the correctness of your program (i.e., how well you followed directions, and how well your program does what we asked), and on the clarity of your program (i.e., how readable it is, and how well it communicates the intent of what you were trying to accomplish to the human reader). Clarity will benefit from good explanatory comments, good choice of variable names, good use of local names (if needed), and good use of indentation to group things.

0�
�

