	University of Washington, Tacoma
TCSS 342B, Winter 2006 (Hong)

Homework Assignment 05: Binary Search Tree
	Assigned: Thursday, February 9, 2005

Due: Tuesday, February 21, 2005, 4:15pm

This written assignment focuses on binary search trees.
This assignment may be completed alone, or with one partner. Group details follow below.

Implementation:

For this assignment you must extend the instructor-provided AbstractBinarySearchTree class, which represents a binary search tree that stores generic types T that must implement Comparable. The tree does not store duplicates. Here are its methods (you will implement the abstract ones):

	public abstract class AbstractBinarySearchTree<T extends Comparable<T>> {

 public void add(T element)

 public void clear()

 public boolean contains(T element)

 public T getMax()

 public T getMin()

 public int getNumLeaves()

 public boolean isEmpty()

 public void printInOrder()

 public void printPostOrder()

 public void printPreOrder()

 public void remove(T element)

 public void removeMax()

 public int size()

 public String toString()

 // protected recursive helper methods omitted

 protected class TreeNode<T>

 public abstract int height();
 public abstract boolean isBalanced();

 public abstract boolean isFull();

 public abstract int numNodesAtLevel(int level);

 public abstract void printSideways();

 public abstract void removeMin();

 public abstract T kthSmallest(int k); // extra credit

 public abstract int numInternalNodes(); // extra credit

 public abstract void print(); // extra credit

}

Your class should be named BinarySearchTree, in the file BinarySearchTree.java. You only need to implement the underlined methods. The rest are implemented for you by instructor-provided class AbstractBinarySearchTree. You should inherit the behavior from AbstractBinarySearchTree using inheritance, like this:

public class BinarySearchTree<T extends Comparable<T>> extends AbstractBinarySearchTree<T> {

 // ... your code here

Provided Files:

The following files can be downloaded from the course web page:

· AbstractBinarySearchTree.java
abstract class for you to extend

· TestBST.java
testing program

· BinarySearchTree.java
class you need to complete; currently contains

only headers of methods.

Methods to Implement:

The following methods must be implemented in your BinarySearchTree for full credit. You must write all methods using recursion; do not use loops to traverse your tree. You may call any of the existing methods from the AbstractBinarySearchTree to help you, including its protected helper methods, as long as this doesn't break the expected Big-Oh you must achieve. You may also wish to look at the TreeNode inner class; it can help you with a bit of behavior such as its isLeaf method.

	We'll use the following tree as an example. It is the tree that would result if an empty BinarySearchTree were created and Integers with values of 4, 11, -5, 8, 27, -9, 7, 15, 32, 5, and 6 were added to it. Here is a text picture of such a tree.

The root is 4. It has 11 elements. Its height is 5.
It is neither balanced nor full.
	 4

 / \

 -5 11

 / / \

-9 8 27

 / / \

 7 15 32

 /

5

 \

 6

Required Methods:
	public int height()

Returns the length of the longest path (number of hops / edges) from the root to any node in the tree. An empty (null) tree has a height of -1. The tree in the picture above has a height of 5. Calling height should not modify the tree in any way. This method should be O(n).

public boolean isBalanced()

Returns true if no node's subtrees differ in height by more than 1. The above tree is not balanced; but if the 5 and 6 were removed, it would be. The empty (null) tree is considered to be balanced. Calling isBalanced should not modify the tree in any way. This method should be O(n).

public boolean isFull()

Returns true if every node in the tree is either a leaf, or has two non-null subtrees. The above tree is not full; the subtree rooted at 27 is full, but not the overall tree. The empty (null) tree is considered to be full. Calling isFull should not modify the tree in any way. This method should be O(n).

public int numNodesAtLevel(int level)

Returns the total number of nodes at a given level. Recall that the level of a node is the path length from the root to that node. So the root of a tree is at level 0, its children at level 1, their children at level 2, and so on. The example tree above has 1 node at level 0 (the 4), 2 nodes at level 1 (the -5 and the 11), 3 nodes at level 2 (the -9, the 8, and the 27), 3 nodes at level 3 (the 7, 15, and 32), and so on. If level is greater than the height of the tree, the result should be 0. This implies that the empty (null) tree returns 0 for any level value. If level is negative, throw an IllegalArgumentException. This method should be O(n).

public void printSideways()

Prints the tree to System.out as though the tree were rotated 90 degrees counter-clockwise. Right children are printed highest, followed by parents, then left children. Each node is printed with an indentation equal to four spaces times its level. For example, the root is not indented, the root's children are indented 4 spaces, the root's grandchildren are indented 8 spaces, and so on. An empty (null) tree produces no output.

For the example tree above, the following output would be produced from a call to printSideways:

 32

 27

 15

 11

 8

 7

 6

 5

4

 -5

 -9

(Turn your head to the left and look at it... 4 is the root, -5 is to its left, 11 to its right. 8 is to 11's left, 27 to its right. 7 is to 8's left. 15 is to 27's left, and 32 is to 27's right. And so on.)

An empty (null) tree produces no output. This method should be O(n).

public void removeMin()

Removes the element in the tree with the smallest value (the element e for which
e.compareTo(e2) < 0 for any e2 != e in the tree). The other elements in the tree should remain intact. If the tree is empty (null), throw an IllegalStateException. You should implement this method yourself and not by calling the existing remove and getMin methods. You may use remove, getMin and removeMax as references to get ideas, though. This method should be O(log n) expected runtime for a reasonably balanced tree and O(n) worst-case runtime.

Extra credit methods:

In addition to the previous required methods, any or all of the following methods can be implemented for extra credit. If you choose not to attempt a particular extra credit method, please still include it in your code, but make its body throw an UnsupportedOperationException, like this:

 public T kthSmallest() {

 throw new UnsupportedOperationException();
 }

	public T kthSmallest(int k)

This method is extra credit. A working implementation will receive up to 4% more points.

Returns the element in the tree such that k other elements in the tree have a lesser value than it. In the above tree, the following statements are true:

kthSmallest(0) is -9
kthSmallest(2) is 4
kthSmallest(5) is 7
kthSmallest(9) is 27

kthSmallest(10) is 32
Calling kthSmallest should not modify the tree in any way. If k is negative or greater than or equal to the size of the tree, throw an IllegalArgumentException.

public int numInternalNodes()

This method is extra credit. A working implementation will receive up to 4% more points.

Returns the total number of internal nodes in the tree. An internal node is a node that is neither the root nor a leaf. The above tree has 6 internal nodes: -5, 5, 7, 8, 11, and 27. An empty (null) tree has 0 internal nodes. Calling numInternalNodes should not modify the tree in any way. This method should be O(n).

public void print()

This method is extra credit. A working implementation will receive up to 8% more points.

Prints the tree to System.out with each node indented. Each node appears on its own line; the order of the lines goes level-by-level, left-to-right within each level. In other words, the root is printed highest, followed by its children from left to right, then their children from left to right, and so on. Each element is indented four spaces times its rank among the elements. For example, the root has 2 elements smaller than it (-5 and -9), so it is indented by 8 spaces. The element 7 has 5 elements smaller than it (-5, -9, 4, 5, 6), so it is indented by 20 spaces. An empty (null) tree produces no output.

For the example tree above, the following output would be produced from a call to print:

 4

 -5

 11

-9

 8

 27

 7

 15

 32

 5

 6

Calling print should not modify the tree in any way.

Hint: You are allowed to use an outer loop on this method to print each level one at a time.

Groups:

This assignment may be completed alone or with one partner. If you work with someone, please make this clear in the comment headers of your file so that the instructor so he knows about it. The assignment should be turned in online through the course webpage e-submit system. A group only needs to submit one copy; either student may submit it. If both students submit a copy, the first one in ABC order will be used, regardless of dates or times of turnin.

Even though this assignment allows group work, it is still subject to the plagiarism and conduct rules specified in the course syllabus. Multiple groups or non-grouped individuals should not discuss or share their code with each other. If you get help from friends, classmates, books or websites, please cite this in comments in your code.
Submission and Grading:

Submit this assignment online via the link on the course web site. Turn in your BinarySearchTree.java only. Your BinarySearchTree should work with the AbstractBinarySearchTree file unmodified; please don't change the superclass file, because I will use my own version of it when grading.

The correctness of your program will be graded on matching the expected behavior of the methods to be implemented. Although a testing program is provided, you should test your own code further to verify that it works; passing the provided test code does not guarantee 100% correctness.

The style and design of your program will be graded on the following:

· whether you follow the program specification above

· whether you extend the abstract class given

· the reasonableness of your tree algorithms including that they are recursive, that they don't modify the tree structure created in AbstractBinarySearchTree, and that they don't hack around parameter-passing by adding unnecessary fields and state

· obeying the Big-Oh runtime requested for each method

· encapsulation (make all your fields private, and do not add unnecessary fields; also make any 'helper' methods in your code private or protected)

· the presence of reasonable brief comments in your source code (a short header on each class, each method, and on particularly complex code sections)

· the use of meaningful identifier names for variables and methods

· avoiding redundancy

· general spacing, indentation, and neatness of your code

