TCSS 342 Winter 2006, Assignment #2

Polynomial Calculator

Out: Thursday, January 12.
Due: Electronic submission (e-submit) and written report (in lecture),
 4:15pm Thursday, January 19.

Learning Objectives

· Use code written by someone else

· Manipulate linked lists

· Implement your own ADT

· Construct a good set of test cases for your ADT

· Reinforce good programming practices (comments, good variable names, indentation, etc.)

Project Description

Linked lists are a convenient way to represent polynomials. In this programming assignment, you will implement a Polynomial abstract data type that uses a linked list as the underlying representation. The file PolynomialADT.java provides the interface to the Polynomial ADT that you need to implement. You should create a class that implements the PolynomialADT interface. Your implementation is required to use linked lists. The methods of the interface are listed below; read the actual file for details on what each method should do.

public interface PolynomialADT {
 public void insertTerm(int coefficient, int exponent); { }
 public void zeroPolynomial(); { }
 public PolynomialADT negate(); { }
 public PolynomialADT plus(PolynomialADT polynomial); { }
 public PolynomialADT minus(PolynomialADT polynomial); { }
 public PolynomialADT times(PolynomialADT polynomial); { }
 public PolynomialADT derivative(); { }
 public String toString();
};
An important class is the Literal class:

public class Literal {
 // constructor and any other functions
 private int coefficient;
 private int exponent;
};
How a Polynomial is Implemented Using a Singly Linked List

The ADT assumes that the polynomial is of a single variable (e.g., x) and that exponents and degrees are all integers. A Literal represents one of the terms of the polynomial (e.g., the 3x2 in 4x3 + 3x2 – 2x + 1). The polynomial, then, is represented by a linked list of Literal. For example, the polynomial 4x3 + 3x2 – 2x + 1 would be represented by the following linked list:

What To Implement

You should create a new class LinkedPolynomial.java that implements all of the above methods in the PolynomialADT interface. As stated above, your implementation needs to use linked lists. It is recommended that you use java.util.LinkedList from the Java Collections API, and create a LinkedList of Literals to represent your polynomial. However, if you want more of a challenge, you could create your own linked list implementation, or find an alternate linked list implementation to use. The provided code includes a calculator that will use the class you will create.

Things to be Careful about

In the toString() method, make sure the terms get printed in order, from highest exponent to the lowest. Exponents can be negative. Also, be sure you handle the signs of each term correctly (don’t put a plus sign before the first term and make sure you don’t print a plus sign and a minus sign before negative terms). The polynomial 4x3 + 3x2 – 2x + 1 should print out like this:

 4x^3 + 3x^2 – 2x + 1
For terms with a negative degree, place parentheses around the exponent:

 4x^3 + 2x^(–1)
In your underlying implementation, be sure that you never have a term in a polynomial that has 0 as a coefficient and that for any given exponent there is no more than one term with that exponent. (Why are these important?)

insertTerm, negate, and derivative should run in O(n) time, where n is the number of terms in the polynomial being operated on. plus and minus should run in time O(n + m), where n is the number of terms in the first Polynomial and m is the number of terms in the second Polynomial. times should run in time O(nm), where n is the number of terms in the first Polynomial and m is the number of terms in the second Polynomial.

Be sure you achieve the above run-times in your code. Assuming your polynomials are represented as java.util.LinkedList of literals, using ListIterators is probably the most convenient way to achieve an efficient implementation. Remember that using get() on a linked list to access the middle of a list is not efficient.

IMPORTANT: When you implement these methods, you should not have any Polynomial "share" terms with any other Polynomial. For example, when you add two Polynomials, the Polynomial that is returned should not contain any Literal objects that are in any other Polynomials. (Why is this important?)

Derivative: Recall from your calculus class the way to calculate the derivative of a polynomial. If p(x) is a polynomial of the form
[image: image1.wmf]å

¥

-¥

=

=

i

d

i

i

x

c

x

p

)

(

, then the derivative is
[image: image2.wmf]å

¥

-¥

=

-

×

=

i

d

i

i

i

x

c

d

x

p

1

)

(

'

.

For example, the derivative of 5x2 + 3x + 1 – 2x–1 is 10x + 3 + 2x–2.

Multiplication: To multiply two polynomials p1(x) and p2(x), you take each literal in p1(x) and multiply it by each literal in p2(x) and then add them all up together.

Test cases: be sure to come up with a good set of test cases that test all of the logic of all of your code. Be sure that each test case tests something about your code that the other test cases do not.

Your grade (out of 40 points) will depend on the correctness and clarity of your code. It will also depend on the quality of your comments that explain potentially tricky parts of your code. Finally, it will depend on the quality and completeness of your test cases described in your report.

Bonus (up to 10 points): Implement a factor method for the Polynomial ADT, whose signature is

 public PolynomialADT[] factor() { }

This method should take the input polynomial p and return two new polynomials p1 and p2 such that p1 * p2 is the original polynomial. The return array must be of size two. For simplicity, you do not have to handle all cases. In particular you should only check if p is factorable into p1 * p2 where p1 is a polynomial of the form (ax + b) for some integer constants a and b. If it is not, you can return p1=1 and p2=p. Otherwise, return the appropriate p1 and p2. If you wish, you can add a factor button to the GUI for the polynomial calculator.

Turning in the Project

You will be graded on two things: the correctness of your program (i.e., how well you followed directions, and how well your program does what we asked), and on the clarity of your program (i.e., how readable it is, and how well it communicates the intent of what you were trying to accomplish to the human reader). Clarity will benefit from good explanatory comments, good choice of variable names, good use of local names (if needed), and good use of indentation to group things.

Electronically turn in (e-submit) your code. In addition, turn in a printout of LinkedPolynomial.java in lecture.

Written Report

In lecture on Tuesday, January 28, you must turn in a short (no more than two pages) written report about your project. What sorts of test cases did you try? Did the calculator work correctly for all the ways your Polynomial class could manipulate the underlying linked list? If not, describe what did not work. Describe the most important things you learned from this project, which could be new ideas that you have never seen before, or misconceptions that you had that the project helped you straighten out.

exp: 0

coeff: 1	

exp: 1

coeff: -2

exp: 2

coeff: 3

exp: 3

coeff: 4

_1198564797.unknown

_1198564860.unknown

