University of Washington, Tacoma

TCSS 342, Winter 2006, Section B (Hong)

Assignment #7 version 1.1
Due: Thursday, March 9, 2006, 4:15 PM

Please show your work and explain your reasoning. Write legibly (or type) and organize your answers. Turn in your own work, and acknowledge in writing any sources or help you receive.

* * *
1. Suppose you have a list of 50,000 names in a binary search tree, and you must frequently look for various names. It turns out that 20% of the names account for 75% of the lookups (finds). Instead of doing binary search tree find over all 50,000 names every time, consider the possibility of splitting the tree into two binary search trees, a high-frequency tree of 10,000 names, and a low-frequency tree of the remaining 40,000 names. To look up a name, you will first use binary search tree find on the high-frequency tree, and 75% of the time you will not need to go on to the second stage, where you use binary search tree find on the low-frequency tree. Is this scheme worth the effort? Justify your answer by calculating the number of nodes that are examined in the binary search tree find algorithm (on average for names in the tree), both in the new scheme and in the single tree of 50,000 names.

For simplicity of calculation, you may assume that in each scheme the trees are perfectly balanced. (If this were a real system where lookups are common, then it would be worth the effort to arrange the tree so that it is as balanced as possible.) Also, for simplicity of calculation, you may assume that half of the nodes in the trees are at depth (log n) - 1, one-fourth are at depth (log n) – 2, etc. In the one tree scheme, assume that the frequent and infrequent names are spread out evenly throughout the tree. (The reason for this assumption is that if the frequent names were near the bottom of the tree, then its performance would be worse.) In the two-tree scheme, assume that names are equally likely to be looked up within each tree.

2. When you buy a ticket in the State Lottery, you choose six different numbers between 1 and 49. The lottery officials keep a dictionary keyed on the set of six numbers chosen on each ticket. After the officials pick the winning numbers, they access this dictionary to identify the winning ticket or tickets, if any. Since millions of tickets are sold, the officials have decided to keep the dictionary in external storage with a directory in an internal hash table. (That is, the internal hash table indicates where on disk to look for items associated with the computed hash value.) Their computer consultant, S. L. Ow, has recommended that they use the hash function
 h(x1, x2, x3, x4, x5, x6) = (x1 + x2 + x3 + x4 + x5 + x6) mod m, where m is the number of external buckets in which the records will be stored. Give a critique of this recommendation. (Is this a good way to do this? Why or why not?) Suggest a better alternative if you believe it is not a good idea.
3. Suppose that H1 and H2 are two binary heaps (min heaps) of size n1 and n2, respectively, that n1 ≥ n2, and that every element of H2 is greater than every element of H1.
a. Explain how to add elements of H2 to H1 so that the new H1 is a binary heap with all n1 + n2 elements. This should take O(n2) time. (It would take O(n1 + n2) time if you collected all n1 + n2 elements and performed buildHeap on them.) Briefly explain why your algorithm works.

b. Give an example of how your algorithm from part a. fails if n2 > n1.
4. Start with an empty (2,4) tree and insert the following keys in the given order: 2, 8, 12, 16, 10, 11, 1, 5, 6. Show the tree after each insertion. Assume we are using the Split-full-nodes on the way down the tree strategy.

5. For the tree you ended with in part 4, draw the corresponding red-black tree.

