TCSS 342, Autumn 2004

Homework #4: Sieve of Eratosthenes

Assigned:
Wed 2004/10/20

Due:

Mon 2004/10/25, 10:30am

Your assignment is to implement the Sieve of Eratosthenes algorithm for finding prime numbers, as describe below, and then analyze it to determine its run-time performance. Your program should match

Background:

A prime number is a positive integer that has no factors other than 1 and itself. Another way to say this is that for a prime number p, if a * b = p, then either (a = 1 and b = p) or (a = p and b = 1). For example, 12 is not a prime number because 3 * 4 = 12 and 6 * 2 = 12. But 23 is a prime number, because there are no factors for 23 other than 1 and 23. The number 2 is considered to be the smallest prime number; 1 itself does not count. Prime numbers are important in several areas of computer science such as cryptography.

There are several ways to determine whether a number is prime. One such algorithm is called the Sieve of Eratosthenes. Eratosthenes was a Greek mathematician around 200 BC. In fact, Eratosthenes' algorithm is very efficient for creating lists of prime numbers up to a given maximum. The algorithm is as follows:

Consider the list of integers between 2 and max. (For this example, we will use max = 25.)

 Current: 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Start out by removing the 2 from the front of the list (called current), and placing it on a list that keeps track of primes. Then remove all multiples of 2 from current:

 Primes: 2

 Current: 3 5 7 9 11 13 15 17 19 21 23 25

Remove the next number from the front of current, which in this case is 3, placing it in the list of primes. then remove all its multiples from current.

 Primes: 2 3

 Current: 5 7 11 13 17 19 23 25

Continue in this fashion, taking the next number on the front of current, removing its multiples from the list until it is empty.

This is an exercise in practicing the use of queues; you are only allowed to use queues for this assignment. You may not use any other data structures (not even Arrays!). Thus, you will be enqueuing and dequeuiing java Integer objects from the queues in your program.

Program Behavior:

When your program runs, it should print the prompt, Enter a maximum integer >: to the user and read an integer from the keyboard console. After the user types their maximum integer and presses Enter, your program should print out a message for every prime number up to and including that maximum. The following is an example of the output (user input is in bold italic):

Enter a maximum integer >: 25
2 is prime!

3 is prime!

5 is prime!

7 is prime!

11 is prime!

13 is prime!

17 is prime!

19 is prime!

23 is prime!
If no prime numbers are found up to the given maximum integer, your program should print the message, No primes found to the user. The following is an example of the output:

Enter a maximum integer >: 1

No primes found
Note that since prime numbers are positive, a negative maximum value should result in no primes being found.

Program Implementation and Analysis details:
Write a class named Sieve in a file Sieve.java. Your Sieve class should contain the following methods:

public static void main(String[] args)

Runs the program as outlined previously, prompting the user for the maximum value and then invoking printAllPrimes.

public static void printAllPrimes(int max)

Finds all primes up to the given maximum, inclusive, using the Sieve of Eratosthenes algorithm described previously.

The input should be read from System.in using a Scanner. A Scanner.java file is included with the starter code (Get the starter code from the class website). Read the javadoc comments to see how to use it; there is also a UseScanner.java file that illustrates the use of the Scanner. Note that the Scanner class is part of Java 1.5; since Java 1.5 is not in the computer labs yet, we have provided a Scanner.java file for you to use that implements some of the functionality of Scanner in Java 1.5.

Your program should also use the LinkedQueue class provided in the starter code. This is the code from our book and is in package jss2; you will need to import jss2.* in your Sieve.java file. Since this code uses packages, you will need to do one of the following to get it working. Either create Sieve.java Since the same directory as Scanner.java, and do all your compilation there, or set your CLASSPATH to include the current directory where your working, as well as the QueueCode/ directory where Scanner.java is located.

You must also make your program efficient so that if there cannot be any multiples of the current prime number in the list, you should not search the list. For example, if you are looking for primes up to 200, then there are no multiples of the prime 101 remaining in the current list once 101 is placed in the primes list; you should not be searching the list for multiples of 101. This is due to the following reason: Any number of the form 101x where x is an integer must satisfy x ≥ 101 because all multiples of all numbers less than 101 have already been removed. Thus the first multiple of 101 in the list can be no smaller than 1012.

You will need to analyze your method printAllPrimes(n) to estimate its asymptotic worst-case run-time cost in terms of n. Your answer should be of the form “printAllPrimes(n) runs in at most O(f(n)) time and at least W(g(n)) time,” where f(n) and g(n) are some functions of n (for example, n2 or n3). You also need to provide an explanation of how you got your result; the explanation is more important than the actual answer. Be sure to talk about the costs of the methods called (like enqueue and dequeue).

Your program will be graded on correctly printing primes, the use of queues as your sole data structure, general style (comments, indenting, …), and efficiency.

Turn-in details:

You should turn-in a listing of Sieve.java and your analysis of Sieve.java in class. You should also electronically turn-in your Sieve.java file via the E-Submit process.

3 / 3

