University of Washington, Tacoma
TCSS 342B, Mathematical Principles of Computing I

Due: Wednesday, Dec. 9, 2004, 10:30 AM

If you requested it, then you will be assigned a partner. Ideally, you will be able to work together closely and debug and improve the comments and readability of each other's code.

Project Objectives

· Manipulate binary trees written by Lewis and Chase

· Learn to use the Heap ADT’s written by Lewis and Chase

· Reinforce good programming practices (comments, good variable names, indentation, etc.)

Project Description: Implement a Huffman encoder & decoder, as described below.

Huffman encoder for encoding a text file:

1. Read a text file and create a frequency count of all characters in the text file.
2. Output the frequency counts into a file (you get to decide the format). A simple format would be a writing out integers in a text file, two integers per line, the first one representing the character, the second representing the count.
3. Start with a “forest” of trees, each has a single node. The node will contain one of the characters read from the file and its “weight” (frequency).

4. Start by finding the two “lightest” weight trees into a single binary tree whose weight is the sum of the weights of the two trees. You must use a heap to find the lightest weight trees (all trees should be stored in the heap).

5. Next merge the two trees you found into one larger tree by creating a new root node whose children are the two trees you found.

6. Repeat steps 3 and 4, continually merging the lightest weight trees until a single binary tree is obtained. In this tree the leaves will contain all the characters stored in the file.

7. Create a table in which every character is coded as a binary string according to the following rule: start from the root. Follow the path from the root to a leaf. If you use the left child along the path insert a 0 in the binary string and if you use the right child insert a 1.

8. After the table is created, read the file, replace every character by its binary string of 0's and 1's and write the String to a file. Note that we are encoding things as a text file of 0's and 1's instead of as binary bits because it is human readable in a standard text editor and thus easier to debug.

Huffman decoder for decoding a text file:
1. Write a method that reads the frequency counts from the frequency count file that you made.

2. Do steps 3 through 6 of the encoding process to create the binary tree that represents the output codes for the text file.

3. Write a method that can read the file of 0's and 1's and decode it into the original text.

For extra credit:
1. Modify the code so that encode stores results in a binary file, and decode reads the binary bits in the binary file.

2. Modify the encoder so that instead of placing word frequency information in a separate file, it outputs information representing the codes (in some efficient form) as a header to the actual encoded text data in the encoded file. The decoder then needs to be able to read the header from the encoded file and figure out the binary tree that represents the codes. It can then decode the rest of the encoded file.

3. Modify the encoder so that it computes frequencies for each two character combination, and it creates a code where each leaf node represents a sequence of two characters. Your decoder must change to support this new format. Be sure you can still encode/decode files with an odd number of total characters. How does this method perform relative to the original method? When is it better and when is it worse at encoding text, in terms of the amount of compression obtained? Try both very short and very long pieces of text.

Implementation suggestions (you are not required to follow these)
1. Use FileReader to read characters directly from a file. (Demonstrated in FileIOTest.java). This can be used for reading the input text file.

2. Use FileWriter to write integers as Strings into a file, separating the integers with white space. (Demonstrated in UseScanner.java). This could be used for writing word frequencies out to a file. It could also be used for writing Strings of 0's and 1's, with no white space separation.

3. Use Scanner to read in tokens of integers separated by white space. (Demonstrated in UseScanner.java). This could be used for reading in the word frequency file.

4. Use comp.exe (available in Windows 2000 and Windows XP) to compare files to see if you are getting the correct result. On Unix systems, you can use diff.

5. Use BinaryTree to create your trees representing the Huffman code.

6. Use Heap to store BinaryTrees in the process of creating your code. Note that you only need to understand the interface HeapADT.java to use Heaps; understanding how heaps are implemented in Heap.java is required for the final exam but not necessary for completing this project.
Evaluation

As usual, you will be graded on two things: the correctness of your program (i.e., how well you followed directions, and how well your program does what we asked), and on the clarity of your program (i.e., how readable it is, and how well it communicates the intent of what you were trying to accomplish to the human reader). Clarity will benefit from good explanatory comments, good choice of variable names, good use of local names (if needed), and good use of indentation to group things.

