University of Washington, Tacoma

TCSS 342, Autumn 2004, Section B
Programming Assignment 1 (Linked List with iterator)

Assigned: Wednesday, October 13, 2004

Due: Wednesday, October 20, 10:30 AM

This programming assignment focuses on implementation and efficiency of linked lists and list iterators. This is an individual assignment. It should be turned in online through the course webpage e-submit system.

For this program, you will be given an incomplete class MyLinkedList in file MyLinkedList.java that contains an almost-complete implementation of the interface java.util.List. This file, along with a testing class, can be downloaded from the course web page. (You should perform your own testing and should not assume that the provided test file is exhaustive.) Your assignment is to complete the implementation as specified below, as well as making a few performance-increasing optimizations to the MyLinkedList class.

The following methods are already defined for you, with behavior as described in the relevant Java API for the List interface (which can be found at http://java.sun.com/j2se/1.4.2/docs/api/java/util/List.html):

	· public MyLinkedList()

· public void add(int index, Object element)

· public boolean add(Object element)

· public void addFirst(Object element)

· public void addLast(Object element)

· public void clear()

· public boolean contains(Object element)

· public Object get(int index)

· public int indexOf(Object element)

· public boolean isEmpty()

· public int lastIndexOf(Object element)

· public Object remove(int index)

· public boolean remove(Object element)

· public boolean removeAll(Collection c)

· public Object set(int index, Object value)

· public int size()

· public List subList(int startIndex, int endIndex) (not supported)
· public Object[] toArray()

· public Object[] toArray(Object[] array)
· public String toString()

You must make the following modifications to the MyLinkedList:

1. Implement the following list of methods, to complete the implementation of java.util.List.

For methods that take a Collection c as an argument, You may assume that this != c, that c != null, and that neither collection will be modified during the execution of your code.

	· public boolean addAll(Collection c)
Appends all of the elements in the specified collection to the end of this list, in the order that they are returned by the specified collection's iterator.

Returns true if this list changed as a result of the call. This will always be true if c has any elements inside it.

· public boolean addAll(int index, Collection c)
Inserts all of the elements in the specified collection into this list, starting at the specified position. Shifts the element currently at that position (if any) and any subsequent elements to the right (increases their indices). The new elements will appear in the list in the order that they are returned by the specified collection's iterator.

Returns true if this list changed as a result of the call. This will always be true if c has any elements inside it.

Your implementation's runtime should be O(n) where n = index + c.size(). (That is, the runtime should be proportional to the time necessary to advance through your list to the given index, plus the number of elements from c to be added.)

· public boolean containsAll(Collection c)
Returns true if this collection contains all of the elements in the specified collection.

Your implementation should iterate over the specified collection c, checking each element returned by the iterator in turn to see if it is contained in this list. If all elements are contained, true is returned, otherwise false.

Your implementation's runtime should be O(mn) where m = c.size() and n = this.size(). (That is, the runtime should be proportional to the time necessary to search through your list for each element in c.)

· public Iterator iterator()
Returns an iterator over the elements in this list (in proper sequence).
Your implementation should merely return a list iterator over the list that begins at index 0.

· public ListIterator listIterator()
Returns an iterator of the elements in this list (in proper sequence). This operation is the same as creating a list iterator at index 0.

· public ListIterator listIterator(int index)
Returns a list iterator of the elements in this list (in proper sequence), starting at the specified position in this list. The specified index indicates the first element that would be returned by an initial call to the iterator's next method. More details about your ListIterator implementation are provided later.

· public boolean retainAll(Collection c)
Retains only the elements in this list that are contained in the specified collection. In other words, removes from this list all of its elements that are not contained in the specified collection.

Your implementation should iterate over this list, checking each element returned by the iterator in turn to see if it is contained in the specified collection. If it is not contained, it is removed from this list with the iterator's remove method.

Returns true if this list changed as a result of the call.

Your implementation's runtime should be O(mn) where m = c.size() and n = this.size(). (That is, the runtime should be proportional to the time necessary to search through your list to find and remove each element contained in c.)

2. Make modifications to some of the existing methods of the MyLinkedList class to improve their runtime efficiency, as follows:

The current implementation of several methods unnecessarily have runtime O(n2) because they repeatedly call the get method, which is O(n). Modify the following methods to use your ListIterator instead, so that they complete in O(n) time with the correct result. You will be graded both on successfully reducing your runtime to O(n) and on using the ListIterator to do it. These are the methods to modify:

	· public int indexOf(Object element)

· public int lastIndexOf(Object element)

· public Object[] toArray(Object[] array)

· public String toString()

List iterator class details:
To implement the listIterator methods and several other portions of the code for this program, you must write a class that implements the java.util.ListIterator interface. The relevant Java documentation for this interface is available at http://java.sun.com/j2se/1.4.2/docs/api/java/util/ListIterator.html.

Implement your list iterator as an inner class inside the MyLinkedList class, so that it has access to the fields and methods of the MyLinkedList object that created it. Your list iterator should only allocate a fixed amount of storage; it may not contain, for example, an array of all the elements in the list. Please put brief comments on your iterator class and its methods.

The ListIterator interface has the following methods. Since our MyLinkedList class is a singly-linked list, you may omit all methods related to backward iteration and previous elements; methods you do not need to implement will be crossed out below. All methods of your list iterator class except its constructor must run in O(1) time.

	· public YourClassName(int index)
Constructs your list iterator such that the first element that will be returned by a call to next will be the element at the given index. This constructor is not part of the java.util.ListIterator interface but is recommended.

· public void add(Object element)
Inserts the specified element into the list. The element is inserted immediately before the next element that would be returned by next, if any. (If the list contains no elements, the new element becomes the sole element on the list.)

The new element is inserted before the implicit cursor: a subsequent call to next would be unaffected. (This call also increases by 1 the value that would be returned by a call to nextIndex.)

· public boolean hasNext()
Returns true if this list iterator has more elements remaining. (In other words, returns true if a call to next would return an element rather than throwing an exception.)

· public Object next()
Returns the next element in the list--this is the element whose index would currently be returned by nextIndex(), as well as the element that would be returned by a call to get(nextIndex()) on the list. This method may be called repeatedly to iterate through the list and return each element of it.

Your implementation should throw a NoSuchElementException if the iterator has already finished iterating over all elements of the list.

· public int nextIndex()
Returns the index of the element that would be returned by a subsequent call to next. (Returns the list's size if the list iterator is at the end of the list.)

· public void remove()
Removes from the list the last element that was returned by next. You do not need to support the ability to call remove more than once per call to next (that is, the ability to remove the last element seen and no more). You also do not need to support removal if your iterator's add method has been called since the last call to next. Signify unsupported removal states by throwing an IllegalStateException.

· public void set(Object element)
Replaces the last element returned by next with the specified element (optional operation). You do not need to support the ability to call set after either remove or add have been called on your iterator after the last call to next.

· public boolean hasPrevious()
· public Object previous()
· public int previousIndex()
You do not need to implement these methods.

Implementation Suggestions and Hints:
After successfully implementing your list iterator, you should then use it to improve the runtime of the methods described previously. To get an example of how an iterator can be used to write methods such as retainAll, look at the provided version of removeAll as an example.

If you want to compare your class's behavior against what is expected, try substituting a java.util.LinkedList for your MyLinkedList in the testing code and re-running it.

If you have trouble successfully implementing the iterator, a quick hack to get a ListIterator is the following:

ListIterator itr = Arrays.asList(this.toArray()).listIterator();

The code above copies the elements of your MyLinkedList into a temporary second List, and returns a list iterator for this second list. It will work for read-only operations but not for removals or other modifications, because it would modify the second list and not your own. Using hacks like the above are considered unacceptable for this assignment because of their unnecessarily slow runtime (the line above is O(n) because it must copy all the elements of your list.)

In general if there is a method that you do not wish to implement right away, right its header and throw an UnsupportedOperationException inside. This will allow your code to compile so that you can test incrementally. This is the technique used in the provided listIterator template for those listIterator methods that you do not need to implement (hasPrevious, previous, previousIndex). These methods need not change.

