TCSS 342 In-class exercise (10/04/04) (revised 10/5)

SOLUTIONS.

Exercise 1: What is the running time (expressed in Big-Oh notation) of the following code fragment?

sum = 0;

for (i = 0; i < n; i++) {

 for (j = 0; j < n * n; j++) {

 sum++;

 }

}

Clearly the loop on i executes n times, and the loop on j executes n2 time (independent of the value of i), so we get n3 executions of sum++, and O(n3).

For the more detailed summation analysis, you could write

[image: image1.wmf]3

1

0

2

1

0

1

0

2

1

n

n

n

i

n

i

n

j

=

=

å

å

å

-

=

-

=

-

=

Exercise 2: What is the running time (expressed in Big-Oh notation) of the following code fragment?

sum = 0;

for (i = 0; i < n; i++) {

 for (j = 0; j < i * i; j++) {

 for (k = 0; k < j; k++) {

 sum++;

 }

 }

}

Clearly the loop on i executes n times; this time, however, the loop on j executes i2 times, and the loop on k executes j times. We can do a simple bound by looking at the maximum values of i, j, and k. Since i is at most n, j is at most n2, and k is at most n2. This means we execute sum++ at most n*n2*n2=n5 time; This is O(n5). Since i, j, and k are often smaller than there maximum values, we still don't we can bound this by something smaller, like n4, if we count only those operations that actually occur.

In the more detailed summation analysis, you write a summation with nested summation signs, and solve the summations from the innermost one outward.

[image: image2.wmf].

)

(

2

1

2

)

1

(

1

1

0

2

4

0

2

2

1

0

1

0

1

0

1

0

1

0

2

2

å

å

å

å

å

å

å

-

=

=

-

=

-

=

-

=

-

=

-

=

-

=

-

=

=

n

i

n

i

n

i

i

j

n

i

i

j

j

k

i

i

i

i

j

We already know this sum is at most n5; to prove that in fact the running time is (n5), we can reason about the above result and show that it is greater than cn5 for some constant c. To see this first consider the sum
[image: image3.wmf].

1

0

4

å

-

=

n

i

i

 We form a lower bound on this by adding up the last n/2 values of the summation, from i=n/2 to i=n-1; Each of these numbers is at least (n/2)4, so adding up n/2 values of at least (n/2)4 in value yields a sum of at least (n/2)* (n/2)4 = (n/2)5. That means this sum is (n5). You can do a similar sort of thing to see that
[image: image4.wmf]å

-

=

1

0

2

n

i

i

is O(n3), and thus the total summation must be (n5).

Note: it is possible to calculate the exact summation; you would get

[image: image5.wmf]=

+

å

-

=

1

0

2

4

)

(

n

i

i

i

[image: image6.wmf] -

 +

 +

 -

1

5

n

5

1

2

n

4

2

3

n

3

2

15

n

1

2

n

2

This is clearly (n5).
Exercise 3: What is the running time (expressed in Big-Oh notation) of the following code fragment?

sum = 0;

for (i = 0; i < n; i++) {

 for (j = 0; j < i * i; j++) {

 if (i==0 || j % i == 0) {

 for (k = 0; k < j; k++) {

 sum++;

 }

 }

 }

}

The same simple analysis from above shows that this loop is at most O(n5). The question is how many times the conditional in the if statement is true; if it true many times, then perhaps the running time is smaller, say, O(n4). So let's figure out when the "if conditional" is true.

for i=0, the conditional is true for all values of j. (however the loop on j is executed 0 times here)

for i=1, the conditional is true for all values of j.

for i=2, the conditional is true for all even values of j.

for i=3, the conditional is true for all values of j that are multiples of 3.

This pattern continues, so in fact, the loop on j is executed i times, once with j=0, once

with j=i, once with j=2i, once with j=3i, …. up to once with j=(i-1)*i. Thus, the summation could be written as
[image: image7.wmf].

1

1

1

1

0

1

0

å

å

å

-

=

-

=

-

=

n

i

i

h

hi

k

Here I've replaced the usual j index with h, and used the substitution j=hi. We now get

[image: image8.wmf]å

å

å

å

å

å

å

å

å

-

=

-

=

-

=

-

=

-

=

-

=

-

=

-

=

-

=

-

=

÷

ø

ö

ç

è

æ

-

=

÷

ø

ö

ç

è

æ

=

=

1

0

2

3

1

0

1

0

1

0

1

0

1

0

1

1

1

0

1

0

.

2

2

)

1

(

1

n

i

n

i

n

i

i

h

n

i

i

h

n

i

i

h

hi

k

i

i

i

i

i

h

i

hi

This can be shown to be (n4) using the same techniques as the previous exercise. An exact calculation would yield [image: image9.wmf] +

 -

 -

1

8

n

4

1

12

n

3

1

8

n

2

1

12

n

_1158579537.unknown

_1158579721.unknown

_1158581331.unknown

_1158667893.unknown

_1158579663.unknown

_1158578876.unknown

_1158579484.unknown

