Hashing practice sheet.

Using the standard java hash function, the hash code for a String object is computed as

 s[0]*31^(n-1) + s[1]*31^(n-2) + ... + s[n-1]

 using int arithmetic, where s[i] is the ith character of the string, n is the length of the string, and ^ indicates exponentiation. (The hash value of the empty string is zero.)

Choose any 3 of the following strings, and compute their hash code using the standard java hash function. Then compare answers with others to get the complete list of hash code values. For your reference, in the ASCII code, a= 97, b= 98, m=109, n=110, and p=112.

1. banana

2. panama

3. am

4. ma

5. nab

6. ban

7. papa

8. manna

9. anna

10. pan

A. Now assuming you have a linear probing implementation of a hash table whose size is 62, show what happens as each word is inserted into the table.

B. Then do the same thing for a quadratic probing implementation.

C. Finally, do the same thing for a double hashing implementation, where the secondary hash is a simple function (first character of string + last character of string).

D. What happens in a linear probing implementation when the hash table size is 59?

Suppose you were hashing objects based on a key consisting of calendar dates, with a month, a day, and a year. Which of the following would be good hash functions, and why? Which would not be good hash functions, and why? Can you design a better one than the ones below?

(All computations use integer arithmetic)

hash function 1: month + day + year / 100

hash function 2: month * 10^7 + day * 10^4 + year

hash function 3: month*31 + day

hash function 4: reverse the digits (in base 10) of the following: (day – month)^2

Write the two methods

void add(String s) : adds a string to the hash table

boolean contains(String s) : searches for a string in the hash table

Assume these are part of a SimpleHashSet class that implements a linear probing, open addressing hash table. The instance variable String data[] stores the strings. You do not have to worry about dynamically expanding the table if it is full.

