Huffman Codes

Are all characters “created” equal? ASCII and UNICODE treat all characters as “equals”. All are assigned the same number of bits. This approach makes it a lot easier to process long binary strings.

The following variable length coding for characters presents an alternative: frequently occurring characters are represented by short paths while rare characters by longer paths.

[image: image1.png]0 1
o Kk
0 1 0 J
01 G 01 0 1
0 1 0 1 01 \1 . i
. : 0 4 0 1 o \d

of 1+ of \v oJENT - OF '\ o\

For instance, the string NOT TODAY PLEASE will be coded as:

00000101100101001101110101010010000100001000010111010111110010001111

This is a 68 bits string. In ASCII the same string will be 128 bits long and in UNICODE it will be 256 bits long.

How do we extract the individual characters?

1. Read the next bit.

2. Start at the root.

3. If you read 0 go left, 1 go right.

4. If the node is a leaf, output its character, go back to 1.

Example:

00000 1011 001 01 001 1011 101010 1001 00001000 01 00001011 101011 11 1001 00011 11

 N O T T O D A Y P L E A S E

What is the best binary tree for encoding characters? Which tree achieves the optimal compression (smallest number of bits)?

Huffman’s algorithm provides the answer to this question.

[image: image2.png]The relative frequency with which each of twenty-six characters of the alphabet and
the blank space between words occur in English text is as follows:

A & B & B "} F ° B 9

} K L
& B B = W ;6 & = 1 5 %2
8 N 8 ! @& ®» % ®» °»L ¥V W X Y 2
& @ I 1 a4 W &8 8§ w1 15 1

· Step 1. Obtain the frequency of each letter in the text you wish to compress (see example above).

· Step 2. Start with n trees, each with a single node (root). Place in the root one of the characters and its frequency.

· Step 3. Combine the two cheapest trees to a single tree whose root holds the sum of the two children’s frequencies.

· Repeat step 3 until you obtain a single binary tree. This is the optimal tree.

See example below.

[image: image3.png]&

9 | @@@
Q@ e @ ea O

®HH @H OO Q))

& @ OGN ® @
O OO () ®» OO @

G

GHO

(0

Note: The root holds the number of characters in the text to be compressed. The sum of the numbers stored in all nodes will be the number of bits used to compress the file (in this case, 1000 characters). In practice, we can use these frequencies, and obtain a sub optimal compression, which might be adequate for most purposes.

_1051601556.psd

_1051601736.psd

_1051601369.psd

