Priority Queue Notes
Some material courtesy of Robert Sedgewick,

http://www.awprofessional.com/articles/article.asp?p=29793
Definition: A priority queue is a data structure of items with keys which supports two basic operations: insert a new item, and remove the item with the largest key.

(The above definition is assuming a maximizing priority queue. In a minimizing priority queue, the remove operation would remove the item with the smallest key. For these notes, we assume a maximizing priority queue).

If records can have duplicate keys, we take "maximum" to mean "any record with the largest key value."

The priority queue is a prototypical abstract data type (ADT): It represents a well-defined set of operations on data, and it provides a convenient abstraction that allows us to separate applications programs (clients) from various implementations. Priority queues can be specified as an interface in Java.

1) A letter means insert and an asterisk means remove the maximum in the sequence

P R I O * R * * I * T * Y * * * Q U E * * * U * E:
Give the sequence of values returned by the remove the maximum operations.

2) There are numerous options for implementing priority queues. One implementation is to use an unordered array as the underlying data structure. The remove the maximum operation is implemented by scanning the array to find the maximum, then exchanging the maximum item with the last item of the array, and then returning the maximum after decrementing the count representing the number of elements in the array. What is the performance of remove the maximum and insert in this implementation? Why?

3) To implement find the maximum in constant time, why not keep track of the maximum value inserted so far, then return that value for find the maximum?

For priority queues, it is easy to find implementations where either the insert or the remove the maximum operations takes constant time, but finding an implementation where both operations will be fast is a more difficult task. One method of doing so is to use a heap. In a heap, both operations take O(log n) time.

Advanced Priority Queues
Priority queues discussed above are the standard basic version. A more complex priority queue ADT would include several other additional operations, such as:

• Construct a priority queue from N given items.

• Change the priority of an arbitrary specified item.

• Remove an arbitrary specified item.

• Join two priority queues into one large one.

Much research has been devoted to making priority queues that have excellent performance on all the above operations simultaneously. These include data structures such as the fibonacci heap, and the pairing heap. However, keep in mind the simple implementations because they often can outperform more complicated ones in many practical situations. The running time of a client program using priority queues depends on the number of items AND on the mix of the various operations. The unordered array implementation could be the best implementation in the case where 99.9% of your operations are insert, the remaining .1% of your operations are removeMax. This is because the insert can be implemented with just a few instructions. While there are advanced implementations where insert takes O(1) time and removeMax takes O(log n) time on average, the O(1) time for insert in the advanced implementation represents many more instructions than in the time for insert into a simple unordered array.

