Computing and Software Systems 343, Spring 2007
Design and analysis of algorithms.

Assignment 6. Version 1.0.

Due Friday, May. 25, 7 PM. (I know this is not a class day)

Power Grid
Learning Objectives
· Reading, understanding, and using the graph ADT

· Dijkstra’s algorithm and its implementation

The power grid (the infrastructure and wires needed to provide electricity) in Tacoma has been destroyed by a huge fire. An emergency plan has been put into place, but it is expensive and so therefore cannot be a long-term solution. You are part of the reconstruction team. You are one of the software engineers who need to figure out a good way to connect the power grid.

You have decided that the best way to do this is to first list all the places that need power. Each one of these places will be represented by a vertex in a graph. Making a direct power connection between some pairs of places will be impossible (because connecting them would require digging up parts of the city that can't be disrupted or because it would require construction that is far too expensive). Of the remaining possible connections, your fellow engineers have already determined a physical path to follow when wiring two places together. This is represented by an edge in the graph, and the cost of that edge represents the length of the wires needed to connect the two places.

You are planning the future of Tacoma, and plan to use the power lines in the power grid as a way of supplying not just electricity, but also data signals that can hook computers up to the internet. So you plan to have one source location that will connect directly to the internet, and you plan to connect potential computers at the various nodes in the graph to the internet through the power line wires going to the source vertex. The best such network will have low latency; to achieve this, you need to minimize the length of wires that the signals from each vertex will have to travel in order to get to the source vertex. The head of your software design team has decided that Dijkstra’s single-source shortest-path tree algorithm is the best way to solve this problem.

You are provided with code that implements a simple graph ADT. You will need to write code that implements Dijkstra's algorithm.

· You should allow the user to specify a graph file that has place and cost data, as well as which vertex is the source. (Terminal input is fine – you do not need to write a GUI; look at the given example graph files to see the input text file format for graphs).
· As output, you should print out at least one of the following:
 the set of edges in the shortest-path tree your algorithm generates, or
 for each vertex, the parent vertex of that vertex in the shortest path tree.
· As output, you should also print out the costs of traveling from the source to each destination vertex.
· If n is the number of vertices, and m is the number of edges, your algorithm must run in O(n2) time. You may elect to, as extra credit, make it run in O(min(m log n, n2)) time.
· In addition to your code, submit a report (as described below; the report should include answers to the time-efficiency questions and sample runs of the program).
· You should e-submit the homework, both your code, and your report.

Tips
Familiarize yourself with the graph ADT code before doing anything. Notice that when the graph data is read in, it returns a hash table that maps labels to vertices. (Why is that necessary?) Then read and understand how Dijkstra's algorithm works. Think about how to use a priority queue, what sort of implementation for the priority queue you want to use, and how that affects the overall run-time. Only after this will you be ready to write code.

Note that you do not have to create another graph structure for representing the shortest path tree—the output only specifies that you can print out the edges in the shortest-path tree in some way.

You may also want to familiarize yourself with the other code that is provided, namely, the unsorted array priority queue code. Although you are not required to use this additional code, knowing how to use it in the context of Dijkstra’s algorithm may help reduce the time it takes to implement your solution.

One solution to the assignment is to follow the pseudocode for dijkstra’s on the slides, using the unsorted array proirty queue that uses locator. Locators are not strictly necessary though; it is possible to use just the SimpleGraph code, mark vertices according to their current distance form the source, and do searches over the graph to find out which vertex to add next.

The Starter Code is available in dijkstra.zip from our class website.

You should generate your own test cases and test them on your code. You should try at least some small test cases that you figure out by hand, and then verify that your by-hand results are the same as the results of your algorithm.

Software Engineering
It is a good idea to comment your code and use good programming practices (good variable names and good indentation), so that it is easy to figure out what it is doing when/if you detect a bug.

What to Turn In
· Electronically turn in any code you created; (you do not need to submit files that are provided to you. (Use e-submit link from our website).

· Finally, turn in a report (also via e-submit) that has the following information:

1. A printout of at least one test case you generated. Your test case should not be too small (at least 8 vertices).

2. A printout of the output of your algorithm on at least one test case.

3. An answer to the following questions:

4. For each major method call that your implementation of Dijkstra’s algorithm makes, state its worst-case run-time cost. This includes the cost of the methods in any priority queue implementation that you use. Be sure to state what the variable(s) represent, (so for O(n), what does n represent?) Be sure to include method calls to the various SimpleGraph methods that you use, and the priority queue methods that you use (if any).
5. Explain the overall worst-case run-time cost of your implementation of Dijkstra’s on a graph with n vertices and m edges.
6. What main thing(s) have you learned from this assignment?

7. Would you like your score on this assignment emailed to you, or would you prefer your results on dead trees given back to you in class? Also, do you wish to have your current grade emailed to you?

Grading
This programming assignment will be graded primarily on functionality, secondarily on the report and question answers, but with some points also going toward code organization and readability.

Bonus (Extra credit)

1. (Up to 5 points) Make a non-trivial improvement to your application. A GUI would be the obvious thing to do (2 points), but for more of a challenge, come up with some sort of feature in this application that involves modifying or adding to the algorithm. For example, displaying the graph somehow and showing each edge as it is added (by coloring it or making the line thicker) to the final minimum spanning tree would be challenging. Describe what you did and why you think it is a non-trivial improvement in your report.

