Computing and Software Systems 343, Autumn 2003
Mathematical Principles of Computing II

Assignment 3. Version 1.0.

Due Monday, Oct. 20. Each problem is worth 5 points, unless otherwise specified.

1. R-5.4b and R-5.4c

2. R-4.11

3. Determine if the following code correctly solves the “longest contiguous subsequence summing to 25” problem from hw1. If it is not correct, explain why, and show how a few minor changes to the code will make it correct.

Algorithm FindSubSeqSum25(A, n)

Input: Array A of n positive integers.

Output: (sublength, substart), where sublength is the length of the longest

contiguous subsequence in A that sums up to 25, and substart is the

index of the start of the subsequence in A. If sublength is 0, then no

subsequence adding up to 25 was found, and the return value for substart

will also be 0.

1.
sublength (0

2.
substart (0

3.
for i (0 to n-1 do

4.

sum (A[i]

5.

length (0

6.

j (i + 1

7.

while sum < 25 and j < n do

8.

sum (sum + A[j]

9.

length (length + 1

10.

j (j + 1

11.

if sum = 25 and sublength < length

12.

substart (i

13.

sublength (length

14.

else if sum < 25

15.

break out of for loop

16.
return (sublength, substart)

4. Three different people have each tried to write a loop invariant for the outermost loop of the (possibly corrected) code from the problem above. For each statement, determine if the statement is a loop invariant that could be used to show the code is correct. Explain why each statement is a correct loop invariant, or why it is incorrect or incomplete.

a. After iteration i of the for loop, sublength is the length of the maximum contiguous subsequence that adds up to 25 that is found so far up to iteration i, and substart is the starting index of that subsequence.

b. After iteration i of the for loop, the variable sum (25.

c. After iteration i of the for loop, sublength is the number of integers in a sequence that add up to 25, and substart is the start index.

5. Consider a slightly modified version of Mergesort, which we will call Merge3sort. In Merge3sort we dividing the input sequence into three thirds, and recursively sort each third with Merge3sort. After Merge3sort finishes sorting the three subproblems, it then merges all three sorted sequences together into one sorted array. Write the pseudocode for Merge3sort. You may use the merge and the partition methods defined on the slides for Mergesort. (Dividing a sequence into three parts and merging three sequences together would require two calls to partition, and two calls to merge, respectively).

6. Write a recurrence equation representing the worst-case cost of your Merge3sort algorithm, in terms of primitive operations. For simplicity, make the following assumptions: Assume partition(S,k) requires exactly 2n operations when its input sequence S is size n, and that merge(A,B) requires exactly 3n operations when merging n total elements together (n = size of A + size of B).

7. Solve your recurrence equation for Merge3Sort.

8. [Extra Credit]: C-4.14

