Computing and Software Systems 343, Autumn 2003
Mathematical Principles of Computing II

Assignment 5. Version 1.0.

Due Wednesday, Nov. 5. Each problem is worth 5 points. 

1. Several students have tried to show why Quicksort runs in (n log n) time in the best case, given the assumption that the n input items are distinct.  For each statement, say whether the justification is correct. If it is not correct, explain why. 

a. In the best-case, the pivot in the partition step divides the array roughly in half, with one side containing items smaller than the pivot, and one side containing items larger than the pivot, both of which we recursively sort. There will be roughly log n recursive calls, each with cost n; this results in O(n log n) cost. 

b. Consider the quick-sort tree in the best case. The children of each node has roughly half the size of the parent, minus one for removing a pivot. Thus we save 1 pivot at the root, 2 at level 1, and so on. We have

s0 = n

s1 = n –1  

s2 = n –(1+2) = n –3
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si = n –(1 + 2 + 22 +  … + 2i-1) = n –(2i –1). 


c. 
With O(log n) levels, this translates into O(n log n) time. 

d. With the pivot splitting the array into roughly half each time, the partitioning taking O(n) time, and the recursive sorts of the 2 halves, we can use the recurrence equation 

T(1) = 1

T(n)= 2 T(n/2) + cn
to represent the cost of quicksort in the best case, where c is some

constant.  To solve this equation, divide both sides by n, and repeatedly

substitute to get the following:


[image: image2.wmf]
There will be a total of log2n equations. So iteratively substituting shows

 T(n)/n = clog2n + T(1)/1 = clog2n + 1.

This means T(n) = cnlog2n + n. This shows the cost is O(n log n).

e. In this problem, we look at the exact number of key comparisons for several sorting algorithms. 

i. Give the asymptotic order of the exact number of key comparisons performed in the worst-case for the following sorting algorithms:

ii. PQ-Sort using a sorted list (i.e. insertion sort)

iii. PQ-Sort using a heap (i.e. heap-sort)

iv. MergeSort

f. QuickSort

g. Give the asymptotic order of the exact number of key comparisons performed in the average-case for the QuickSort.

2. For each answer that is O(n log n) from parts (a) and (b), rewrite the answer by  giving the constant in front of the n log n. For example, if QuickSort in the worst-case takes exactly 5n log2n + 2n + 2 comparisons in the worst case, then write5n log2n  instead of O(n log n). 

3. Another student has tried to argue why Quicksort runs in (n log n) time in the best case, given the assumption that the n input items are distinct. State whether the following argument is correct. If it is not correct, explain why: 

a. We know that the average case cost for quicksort (Theorem 4.11) is O(n log n). Quicksort’s best case cost must be faster than the average case cost, and thus is (n log n) or possibly faster. The sorting lower bound (Theorem 4.12) says that any comparison-based algorithm must take at least (n log n) time. Since Quicksort is a comparison-based algorithm, it also must take at least n log n) time in the best-case. Thus, the best-case cost cannot be faster than (n log n) and must be exactly (n log n).

4. C-4.10. A clear text description or high-level pseudocode is sufficient for this problem. 

5. Redo the previous problem (C-4.10) with the additional assumption that the ID’s of the candidates are all 4-digit numbers. This time, design an O(n) time algorithm. Once again, a clear text or high-level pseudocode is sufficient for this problem. 

6. Exactly how many key comparisons are made in the MaxAndMin algorithm (from the midterm) on input size n? Show how you got your result. 

7. Pick two 4-digit numbers (base 10). Multiply them using the big integer multiply algorithm (given on the next page). Show your work by drawing the recursion tree for the algorithm, and showing what each recursive call returns, as well as what each recursive call computes for Chigh, Cmid, and Clow (when applicable). 

Note: In this array implementation of big integers, the digits are stored in order with the units digit stored first. For big integer A, A[i] is the digit in the 10i place.
Algorithm BigIntMult(A, B, n)

Input: Arrays A and B representing big integers, and n is an integer representing the number of digits in A as well as the number of digits in B. Assumes n is a power of two.  

Output: Array C of length 2n, a big integer whose value is A times B. 

if  n=1

   C ( new 2 digit integer with value A[0] * B[0]

else

   A1 ( big integer constructed from A[n/2] up through [n-1]

   A2 ( big integer constructed from A[0] up through [n/2 -1]

   B1 ( big integer constructed from B[n/2] up through [n-1]

   B2 ( big integer constructed from B[0] up through [n/2 -1]

   high ( BigIntMult(A1, B1, n/2)

   Adiff ( big integer with value A1 – A2. 

   Bdiff ( big integer with value B1 – B2.

   temp ( BigIntMult(Adiff, Bdiff, n/2).

   low ( BigIntMult(A2, B2, n/2)

   mid ( big integer with value high + low – temp.

   Chigh ( big integer with value high * 10n
   Cmid ( big integer with value mid * 10n/2
   Clow ( low

a.    C ( big integer with value Chigh + Cmid  + Clow

b. return C
8. [Extra Credit]: C-5.7.
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