Computing and Software Systems 343, Autumn 2003
Mathematical Principles of Computing II

Assignment 6. Version 1.0.

Due Wednesday, Nov. 12.

In this assignment, we will study the change making problem. In this problem, you are given n coin denominations in cents:
cn > cn-1 > … > c1, and an amount x in change, and you want to return the number of coins needed to make x in change. For the dynamic programming solution, you should return an optimal solution representing the fewest number of coins possible that will make x cents in change.

You may assume that c1 = 1, so that it is always possible to make amount x in change.

You will be programming (in Java) solutions to this program. Your program should read a list of coin denomination types from a text file. It should then ask the user for the input x, and it should output the number of coins necessary for making x in change. You may use the ArrayIO files from homework #1 to do the reading in of the input. You may also assume the input text is sorted in increasing order, so that the input text file looks like:

 1 5 10 12 20

Your program should output the number of coins required

1. In this problem you will design and write a dynamic programming algorithm that solves this problem. Code should be submitted on Blackboard. Answers to questions should be submitted on paper.

a. (5 points) Describe the subproblems you wish to solve for your dynamic programming solution.

b. (10 points) Implement a dynamic programming solution in Java; it should print out the fewest number of coins necessary for making change.

c. (5 points) Analyze the worst-case running-time and space requirements for your solution, in terms of n and x.

2. (5 points) Implement the following greedy algorithm for making change in Java, and submit it on Blackboard: Keep track of how much change you have left to make; at each step, always return the largest coin type you can. Your algorithm should output the number of coins used by this algorithm to make x in change. (Note: this is not necessarily the same as the optimal fewest number of coins).

3. Extra Credit (up to 5 points)

a. For both your greedy solution and the dynamic programming solution above, change your program to output the actual coin types used in addition to printing out the number of coins.

b. Give an example of an input where the optimal solution (from the dynamic programming solution) gives a much better (fewer coins) result than the greedy solution. What input maximizes the difference between the two solutions?

