TCSS 343a

Fall 2002

Midterm

Write the answers to each problem below each question. If you need more space, use the back of each sheet of paper. You should manage your time, and do problems that are easy for you first.

1) Suppose we have an unsorted array A of n elements, and we want to know if the array contains any duplicate elements.

a) <10 pts> Clearly outline an efficient method for solving this problem. By efficient, I mean your method should use O(n log n) key comparisons in the worst case.

First, sort the entries in the array A with mergesort. Then loop through the sorted array once, checking adjacent entries to see if they are the same. If they are the same, then you have found duplicates, otherwise, if you get through the array and no adjacent entries are the same, then there are no duplicates.
b) <5 pts> What is the asymptotic order of the running time of your method (of part a) in the worst case? Clearly explain how you obtain your result.

We know mergesort takes n lg n comparisons in the worst case. Also comparing adjacent entries in the sorted takes up to n-1 comparisons. Thus, the worst case number of comparisons is n lg n + n-1, which is still ((n log n).

c) <10 pts> Suppose we know that the n elements are integers from the range 1, 2, …, 2n, so that operations besides comparing keys may be done. You may also assume that n < 231. Outline an efficient method for solving this same problem that is specialized to use this information. For your algorithm, we measure the performance by counting the number of times each integer from the array is accessed. Under this metric, the worst-case cost your algorithm should have an asymptotic order lower than ((n log n).

Create an integer array B of size 2n that keeps track of the number of times each integer occurs (so position B[i-1] stores the number of occurrences of integer i).

Step through the unsorted array A once, each time incrementing the appropriate counter in B. If any counter in B ever is incremented to a value bigger than one, than you know that you have duplicates. Thus, after counting the occurrences of all integers in unsorted array A, check for duplicates by stepping through B and seeing if any entry is (2.

d) <5 pts> What is the asymptotic order of the running time of your alternative method (of part c) in the worst case? Clearly explain how you obtain your result.

The counting step goes through A once, resulting in n accesses. The stepping through B phase requires up to 2n accesses to array B. In any event, this algorithm is ((n).
2) Consider the ordered array search problem: we are given an array E containing n items, E is sorted, so E[0] < E[1] < … < E[n-1], and we are given a value K to find inside the array. For simplicity, assume E contains integers. We wish to return the value index such that E[index] == K, and the value –1 if K is not present in E.

a) <15 pts> Here is one possible solution: Starting at the beginning of array E, Compare K to every third entry, until K itself or an entry larger than K is found, and then, in the latter case, searches for K among the preceding two entries. Write out this particular algorithm to find K.

int skipsearch(int []E, int K, int n) {

int i,j;

boolean stopped_before_end = false;

// begin phase one

for (i=2; i <n; i = i + 3) { // check every 3rd item.

if (E[i] >= K) {

stopped_before_end = true;

break;

}

}

// end phase one

// begin phase two

if (stopped_before_end == true) {

// now we know K is at position i, i-1, or i-2, or not in array

if (K==E[i]) return i;

else if (K==E[i-1]) return i-1;

else if (K==E[i-2]) return i-2;

else return –1;

}

else { // we stopped at end of array or went past end; there

 // may be items to check at the end

 // sequentially check remaining items

for(j=i-3+1; j < n; j++)

if (K==E[j]) return j;

return –1;

}

// end phase two

}

NOTE: there are many other possible solutions to this problem.

b) <10 pts> How many key comparisons (comparisons between K and entries of E) does your algorithm do in the worst case?

In the first phase, when marching through checking every 3rd item, skipsearch does n/3 comparisons (worst-case). (One key comparison per iteration in this loop, and the loop is executed n/3 times). In the subsequent phase, if stopped_before_end is true, skipsearch does up to does 3 more key comparisons. If stopped_before_end is false, skipsearch does up to 2 addition key comparisons. Regardless of the value of stopped_before_end, at most 3 additional comparisons are done, so the worst-case total is n/3 + 3. (One possible worst case is when n is a multiple of 3, and the item K is found at E[n-3]).

NOTE: Depending on your algorithm, your final answer may be different.

c) <10 pts> Suppose you have a size 5 array, and there is an equal chance that the item will be found in any part of the array. Also assume that the item is definitely in the array (there is no chance that the item will not be in the array). Under these assumptions, what is the average-case number of key comparisons required by your algorithm for this array of size 5?

There is a 1/5 probability of finding the item K in any of the 5 possible positions, and no chance that K is not in the array E. Here is a table of the number of key comparisons needed for each possible position of K:

	Position
	Prob.
	#key comp.
	notes

	E[0]
	1/5
	4
	1 comp. in phase one, 3 in phase two w/ stopped_before_end == true

	E[1]
	1/5
	3
	1 comp. in phase one, 2 in phase two w/ stopped_before_end == true

	E[2]
	1/5
	2
	1 comp. in phase one, 1 in phase two w/ stopped_before_end == true

	E[3]
	1/5
	2
	1 comp. in phase one, 1 in phase two w/ stopped_before_end == false

	E[4]
	1/5
	3
	1 comp. in phase one, 2 in phase two w/ stopped_before_end == false

Total Average case = 1/5 * 4 + 1/5 * 3 + 1/5 * 2 + 1/5 * 2 + 1/5 * 3 = 2.8 key comparisons.

NOTE: Depending on your algorithm, your final answer may be different.

d) <10 pts> Now assume you have a size n array. Under the same assumptions as part c, what is the average-case number of key comparisons needed by your algorithm? In addition to the assumption that K is definitely in the array and has probability 1/n of being found in any one of the n positions, you may assume that n is a multiple of 3 to slightly simplify the analysis.

Extend the table above to see the following pattern:

The number of key comparisons needed for each position starting from 0 are:

4,3,2, 5,4,3, 6,5,4, 7,6,5, 8,7,6, …

In other words, the number of key comparisons for position E[i] is

floor(i/3) + 4 when i%3 = 0 (i is multiple of 3)

floor(i/3) + 3 when i%3 = 1 (i is (multiple of 3) + 1)

floor(i/3) + 2 when i%3 = 2.

We have the following 3 summations to compute the average case number of key comparisons, one for i%3=0, one for i%3=1, and one for i%3=2:

Average-case # key comp =
[image: image1.wmf])

3

(

1

3

/

1

+

å

=

i

n

n

i

 +
[image: image2.wmf])

2

(

1

3

/

1

+

å

=

i

n

n

i

+
[image: image3.wmf])

1

(

1

3

/

1

+

å

=

i

n

n

i

Combining terms and simplifying, we get
[image: image4.wmf](

)

å

å

=

=

+

+

+

÷

ø

ö

ç

è

æ

·

3

/

1

3

/

1

1

2

3

1

1

3

n

i

n

i

n

i

n

Which is
[image: image5.wmf])

6

(

3

1

1

3

3

3

÷

ø

ö

ç

è

æ

+

÷

÷

ø

ö

ç

ç

è

æ

÷

ø

ö

ç

è

æ

+

÷

ø

ö

ç

è

æ

n

n

n

n

n

= n/3 + 1 + 2 = n/3 + 3.

NOTE: Depending on your algorithm, your final answer may be different.

The next two questions are about the following program. It is a divide and conquer method for computing the sum of a subsequence of the floating-point numbers inside an array of doubles. A call subseq_sum(E,i,j) should return the sum of the entries of E between i and j, including index i, but not including index j.

/** Preconditions: E is an array of doubles containing k numbers,

 * E[0], E[1], … E[k-1].

 *

i and j are integers satisfying
0 (i (k-1 and

 *

1 (j (k.

 * Postconditions: You provide them!

 */

double subseq_sum(double [] E, int i, int j) {

/*1*/
if (j <= i) {

/*2*/

return 0.0;

}

/*3*/
else if (j==i +1) {

/*4*/

return E[i];

}

/*5*/
else {

/*6*/

int mid = (i + j)/2;

/*7*/

int double leftsum = subseq_sum(E,i,mid);

/*8*/

int double rightsum = subseq_sum(E,mid,j);

/*9*/

return leftsum + rightsum;

}

}

e) <5 pts> What are the correct postconditions for this algorithm? (What is true about the return result for subseq_sum?)

subseq_sum returns E[i] +E[i+1] + E[i+2] + … + E[j-1].

f) <5 pts> Suppose you wanted to prove the correctness of this algorithm using induction on n, the number of array entries that you are summing up. What is the value of n in terms of the variables i and j?

n = j – i

g) <10 pts> Let Sn be the statement that subseq_sum satisfies the postcondition when it is called with parameters that imply a size of n. Of the following 5 statements below, choose the ones that accurately describe what a valid correctness proof for this algorithm could show in the inductive step (there may be more than one). Explain your reasoning:

i. for all n ≥ 1, Sn-1 implies Sn.

ii. for all n > 1, Sn-1 implies Sn
iii. for all n > 1, Sn-2 and Sn-1 imply Sn.

iv. for all n > 1, Sn/2 implies Sn
v. for all n > 1, S1, S2, S3, ..., and Sn-1 imply Sn
I accepted several different kinds of answers for this problem, as after thinking about it, I thought the question was ambiguous and somewhat flawed. I meant to ask about which method could you actually use to prove the correctness of subseq_sum, given the specifics of the problem; some people interpreted the question as what are the possible valid methods for induction proofs (independent of this particular subseq_sum algorithm). In general, if you gave reasonable reasons, I gave you some or full credit. Lets look at the cases in more detail:

(v): This is the general strong induction technique, where we assume all previous cases with smaller sizes work, and show that the current case works. This method is always a valid induction proof method provided we also show the base cases

S0 and S1 work.

(iv): In our divide and conquer algorithm, we want to assume that summing up the left half and summing up the right half works correctly, and show that the overall retrun result is correct. Since our input from the left and right half are about n/2, we want to show (roughly) that Sn/2 implies Sn. The more correct statement would be to show that
[image: image6.wmf]ë

û

é

ù

2

/

2

/

,

n

n

S

S

 imply Sn in our inductive step, so that it works even for odd n. Some correctly pointed out that as (iv) is written, it is not a valid induction proof method because S1 (or S1.5) does not imply S3.

(i),(ii),(iii): These methods will not work for proving subseq_sum because when proving something for a large value of n (take n=64 as an example), then you need to rely on the fact that Sn/2 is true in order to get the proper assumption. However, each of these methods are valid overall methods of induction proof if the proper base cases are shown to be true.

If you show base case S0 to be true, then (i) is a valid induction proof method. However, another reason (i) would not normally be used on proving subseq_sum correctness is because S0 and S1 are both base cases (no recursive calls) for subseq_sum, and S0 does not imply S1 in this particular problem.

If you show base case S0 to be true as well as S1, then (ii) and (iii) are a valid induction proof method.

h) <10 pts> Now let’s analyze the time complexity for subseq_sum. Let us count the number of additions of variables of type double in the subseq_sum program. (This does not include the additions between integers, such as the i+1 in the else if). Let T(n) denote the worst-case number of additions of type double when subseq_sum is called with size n. Write a recurrence equation for T(n). Show which line of code each term in your recurrence equation comes from (by referring to the line numbers).

T(n) = T(n/2) + T(n/2) + 1

Two T(n/2) terms from lines 7 and 8, the +1 is from line 9.

T(1) = 0

T(0) = 0

i) <10 pts> Solve the recurrence equation.

Using recurrence trees, we construct the table where at depth i, our field size is T(n/2i), the number of nodes is 2i, the cost per node is 1, and the rowsum is 2i.

The tree ends at depth D = lg n, where the cost per node and rowsum is 0.

Thus, the total cost (exact) is
[image: image7.wmf](

)

å

-

=

1

lg

0

2

n

i

i

= 2lg n–1 = n –1.

j) <5 pts> What is the asymptotic order of the worst-case time complexity for this problem?

((n).

k) <5 pts> What is the average case cost for this algorithm?

n-1, or ((n). Same as worst-case cost.

3) <20 pts> Recall that in a the topological sort problem we are given a directed graph, and we wish to find an ordering of the nodes such that if edge (i,j) is in the graph, then node i is before node j in the ordering. In the topological sort algorithm, we output the nodes in reverse finish time order, where the finish times are calculated by a depth first search on the graph. Note that a node is finished in DFS when all its outgoing edges have been checked.

a) Let G = (V,E) be a directed graph, where V= {H,I,J,K,L,M,N}, and E = {(H,K),(I,K),(J,H),(J,K),(L,J),(L,N),(M,J), (M,I),(N,H)}. Find the topological ordering that results from running depth first search, assuming the nodes in each adjacency lists are in alphabetical order, and that the array of adjacency lists is also in alphabetical order. Thus, DFS starts at node H.

Note: Although showing work is not required, it is strongly recommended in order to ensure partial credit in case you make a mistake. The intermediate steps are: 1) drawing the graph G and 2) computing the discover/finish times for each node in the graph.

The topological ordering is MLNJIHK.

Here are the discover/finish times for the nodes:

H 1/4

I 5/6

J 7/8

K 2/3

L 9/12

M 13/14

N 10/11

The master theorem: (not absolutely necessary to use, but you can use it to try to double check some of your results)

[image: image8.png]Theorem 3.17 (Master Theorem) With the terminology of the preceding discussion, the
solution of the recurrence equation

T(n) =b T(%) + f) (3.9)

(restated from Equations 3.3 and 3.8) has forms of solution as follows, where E =
lg(b)/ 1g(c) is the critical exponent defined in Definition 3.6.

1. If f(n)e O (nE—¢) for some positive €, then T'(n) € ©(nf), which is proportional to
the number of leaves in the recursion tree.

2. If f(n) e O (nE), then T(n) € O(f(n) log(n)), as all node depths contribute about
equally.

3. If f(n) € QnETE) for some positive €, and f(n) € O(nE+?) for some § > ¢, then
T (n) € ®(f(n)), which is proportional to the nonrecursive cost at the root of the
recursion tree.

PAGE
7

_1098530976.unknown

_1098530995.unknown

_1098532790.unknown

_1098533748.unknown

_1098530999.unknown

_1098530981.unknown

_1098530969.unknown

