
Heaps 1/23/2003 6:52 PM

1

More Data Structures v1.1 1

More Data Structures

Priority Queues, Comparators,
Locators, Dictionaries

More Data Structures v1.1 2

Priority Queues and Heaps

2

65

79

More Data Structures v1.1 3

Priority Queue
ADT (§ 2.4.1)

A priority queue stores a
collection of items
An item is a pair
(key, element)
Main methods of the Priority
Queue ADT

insertItem(k, o)
inserts an item with key k
and element o
removeMin()
removes the item with
smallest key and returns its
element

Additional methods
minKey(k, o)
returns, but does not
remove, the smallest key of
an item
minElement()
returns, but does not
remove, the element of an
item with smallest key
size(), isEmpty()

Applications:
Standby flyers
Auctions
Stock market

More Data Structures v1.1 4

Total Order Relation

Keys in a priority
queue can be
arbitrary objects
on which an order
is defined
Two distinct items
in a priority queue
can have the
same key

Mathematical concept of
total order relation ≤
Reflexive property:
x ≤ x
Antisymmetric property:
x ≤ y ∧ y ≤ x ⇒ x = y
Transitive property:
x ≤ y ∧ y ≤ z ⇒ x ≤ z

More Data Structures v1.1 5

Comparator ADT (§ 2.4.1)
A comparator encapsulates
the action of comparing two
objects according to a given
total order relation
A generic priority queue
uses an auxiliary
comparator
The comparator is external
to the keys being compared
When the priority queue
needs to compare two keys,
it uses its comparator

Methods of the Comparator
ADT, all with Boolean
return type

isLessThan(x, y)
isLessThanOrEqualTo(x,y)
isEqualTo(x,y)
isGreaterThan(x, y)
isGreaterThanOrEqualTo(x,y)
isComparable(x)

More Data Structures v1.1 6

Sorting with a
Priority Queue (§ 2.4.2)

We can use a priority
queue to sort a set of
comparable elements

Insert the elements one
by one with a series of
insertItem(e, e)
operations
Remove the elements in
sorted order with a series
of removeMin()
operations

The running time of this
sorting method depends on
the priority queue
implementation

Algorithm PQ-Sort(S, C)
Input sequence S, comparator C
for the elements of S
Output sequence S sorted in
increasing order according to C
P ← priority queue with

comparator C
while ¬S.isEmpty ()

e ← S.remove (S. first ())
P.insertItem(e, e)

while ¬P.isEmpty()
e ← P.removeMin()
S.insertLast(e)

Heaps 1/23/2003 6:52 PM

2

More Data Structures v1.1 7

List-based Priority Queue
Implementation with an
unsorted list

Performance:
insertItem takes O(1) time
since we can insert the item
at the beginning or end of
the sequence
removeMin, minKey and
minElement take O(n) time
since we have to traverse
the entire sequence to find
the smallest key

Implementation with a
sorted list

Performance:
insertItem takes O(n) time
since we have to find the
place where to insert the
item
removeMin, minKey and
minElement take O(1) time
since the smallest key is at
the beginning of the
sequence

4 5 2 3 1 1 2 3 4 5

More Data Structures v1.1 8

Selection-Sort

Selection-sort is the variation of PQ-sort where the
priority queue is implemented with an unsorted
sequence

Running time of Selection-sort:
Inserting the elements into the priority queue with n
insertItem operations takes O(n) time
Removing the elements in sorted order from the priority
queue with n removeMin operations takes time
proportional to

1 + 2 + …+ n
Selection-sort runs in O(n2) time

4 5 2 3 1

More Data Structures v1.1 9

Insertion-Sort

Insertion-sort is the variation of PQ-sort where the
priority queue is implemented with a sorted
sequence

Running time of Insertion-sort:
Inserting the elements into the priority queue with n
insertItem operations takes time proportional to

1 + 2 + …+ n
Removing the elements in sorted order from the priority
queue with a series of n removeMin operations takes
O(n) time

Insertion-sort runs in O(n2) time

1 2 3 4 5

More Data Structures v1.1 10

What is a heap (§2.4.3)
A heap is a (proper) binary
tree storing keys at its
internal nodes and
satisfying the following
properties:

Heap-Order: for every
internal node v other than
the root,
key(v) ≥ key(parent(v))
Complete Binary Tree: let h
be the height of the heap

for i = 0, … , h − 1, there are
2i nodes of depth i
at depth h − 1, the internal
nodes are to the left of the
external nodes

2

65

79

The last node of a heap
is the rightmost internal
node of depth h − 1

last node

More Data Structures v1.1 11

Height of a Heap (§2.4.3)
Theorem: A heap storing n keys has height O(log n)
Proof: (we apply the complete binary tree property)

Let h be the height of a heap storing n keys
Since there are 2i keys at depth i = 0, … , h − 2 and at least one key
at depth h − 1, we have n ≥ 1 + 2 + 4 + … + 2h−2 + 1
Thus, n ≥ 2h−1 , i.e., h ≤ log n + 1

1

2

2h−2

1

keys
0

1

h−2

h−1

depth

More Data Structures v1.1 12

Heaps and Priority Queues
We can use a heap to implement a priority queue
We store a (key, element) item at each internal node
We keep track of the position of the last node
For simplicity, we show only the keys in the pictures

(2, Sue)

(6, Mark)(5, Pat)

(9, Jeff) (7, Anna)

Heaps 1/23/2003 6:52 PM

3

More Data Structures v1.1 13

Insertion into a
Heap (§2.4.3)

Method insertItem of the
priority queue ADT
corresponds to the
insertion of a key k to
the heap
The insertion algorithm
consists of three steps

Find the insertion node z
(the new last node)
Store k at z and expand z
into an internal node
Restore the heap-order
property (discussed next)

2

65

79

insertion node

2

65

79 1

z

z

More Data Structures v1.1 14

Upheap
After the insertion of a new key k, the heap-order property may be
violated
Algorithm upheap restores the heap-order property by swapping k
along an upward path from the insertion node
Upheap terminates when the key k reaches the root or a node
whose parent has a key smaller than or equal to k
Since a heap has height O(log n), upheap runs in O(log n) time

2

15

79 6z

1

25

79 6z

More Data Structures v1.1 15

Removal from a Heap (§2.4.3)
Method removeMin of
the priority queue ADT
corresponds to the
removal of the root key
from the heap
The removal algorithm
consists of three steps

Replace the root key with
the key of the last node w
Compress w and its
children into a leaf
Restore the heap-order
property (discussed next)

2

65

79

last node

w

7

65

9
w

More Data Structures v1.1 16

Downheap
After replacing the root key with the key k of the last node, the
heap-order property may be violated
Algorithm downheap restores the heap-order property by
swapping key k along a downward path from the root
Upheap terminates when key k reaches a leaf or a node whose
children have keys greater than or equal to k
Since a heap has height O(log n), downheap runs in O(log n) time

7

65

9
w

5

67

9
w

More Data Structures v1.1 17

Vector-based Heap
Implementation (§2.4.3)

Represent a heap with n keys by
means of a vector of length n + 1
For the node at rank i

the left child is at rank 2i
the right child is at rank 2i + 1

Links between nodes are not
explicitly stored
The leaves are not represented
The cell of at rank 0 is not used
Last node at rank n
Operation insertItem corresponds
to inserting at rank n + 1
Operation removeMin corresponds
to removing at rank n
Yields in-place heap-sort

2

65

79

2 5 6 9 7
1 2 3 4 50

More Data Structures v1.1 18

PQ using Vector-based Heap

InsertItem(k,o)
Insert pair (k,o) at rank n+1, followed by Upheap(n+1) call
to restore heap-order property

UpHeap(k)
// swaps item at rank k upward into correct position
If k=1 then return; // already bubbled up to root.
If rank k item is smaller than its parents

Swap rank k item with its parent (rank k/2)
Upheap(k/2).

O(log n) time for insertItem.

Heaps 1/23/2003 6:52 PM

4

More Data Structures v1.1 19

PQ using Vector-based Heap
removeMin()

Swap rank 1 item with rank n item;
remove rank n item; store it in temp.
call Downheap(1) to restore heap-order property.
return temp.

Downheap(k)
// Swaps item at rank k downard into correct position
If 2k> n then return; // item has no children
If rank k item is not smaller than its children

Let j be rank of child of rank k item with smaller key
(j= 2k or 2k+1).

Swap rank k item with rank j item
Downheap(j)

O(log n) time to removeMin.

More Data Structures v1.1 20

Heap-Sort (§2.4.4)

Consider a priority
queue with n items
implemented by means
of a heap

the space used is O(n)
methods insertItem and
removeMin take O(log n)
time
methods size, isEmpty,
minKey, and minElement
take time O(1) time

Using a heap-based
priority queue, we can
sort a sequence of n
elements in O(n log n)
time
The resulting algorithm
is called heap-sort
Heap-sort is much
faster than quadratic
sorting algorithms, such
as insertion-sort and
selection-sort

More Data Structures v1.1 21

PQ Implementations

O(n log n)O(log n)O(log n)(Vector-
based) heap

O(n2)O(n)O(1)unsorted list

O(n2)O(1)O(n)sorted list

PQ-Sort
cost

remove-
Min

insert-
Item

Implemen-
tation:

Space is O(n) for all implementations.

More Data Structures v1.1 22

In-place sorting

Sort in-place – only use O(1) extra space.
For array-based implementations, PQ-Sort takes 2n
space.
Implement in-place sorting by having priority queue
use input array to store values.
For heap-sort:

Use reverse comparator (so we remove maximum)
Phase I: As items are inserted, heap expands from left to
right.
Phase II: As items removed, they are placed from right to
left; heap contracts from right to left.

More Data Structures v1.1 23

Locators
3 a

1 g 4 e

More Data Structures v1.1 24

Outline and Reading

Locators (§2.4.4)
Locator-based methods (§2.4.4)
Implementation
Positions vs. Locators

Heaps 1/23/2003 6:52 PM

5

More Data Structures v1.1 25

Locators
A locators identifies and tracks a
(key, element) item within a data
structure
A locator sticks with a specific
item, even if that element
changes its position in the data
structure
Intuitive notion:

claim check
reservation number

Methods of the locator ADT:
key(): returns the key of the
item associated with the locator
element(): returns the element
of the item associated with the
locator

Application example:
Orders to purchase and
sell a given stock are
stored in two priority
queues (sell orders and
buy orders)

the key of an order is
the price
the element is the
number of shares

When an order is placed,
a locator to it is returned
Given a locator, an order
can be canceled or
modified

More Data Structures v1.1 26

Locator-based Methods
Locator-based priority queue
methods:

insert(k, o): inserts the item
(k, o) and returns a locator
for it
min(): returns the locator of
an item with smallest key
remove(l): remove the item
with locator l
replaceKey(l, k): replaces
the key of the item with
locator l
replaceElement(l, o):
replaces with o the element
of the item with locator l

locators(): returns an
iterator over the locators
of the items in the priority
queue

More Data Structures v1.1 27

Dictionaries

6

92

41 8

<

>

=

More Data Structures v1.1 28

Outline and Reading
Dictionary ADT (§2.5.1)
Log file (§2.5.1)
Binary search (§3.1.1)
Lookup table (§3.1.1)
Binary search tree (§3.1.2)

Search (§3.1.3)
Insertion (§3.1.4)
Deletion (§3.1.5)
Performance (§3.1.6)

More Data Structures v1.1 29

Dictionary ADT
The dictionary ADT models a
searchable collection of key-
element items
The main operations of a
dictionary are searching,
inserting, and deleting items
Multiple items with the same
key are allowed
Applications:

address book
credit card authorization
mapping host names (e.g.,
cs16.net) to internet addresses
(e.g., 128.148.34.101)

Dictionary ADT methods:
findElement(k): if the
dictionary has an item with
key k, returns its element,
else, returns the special
element NO_SUCH_KEY
insertItem(k, o): inserts item
(k, o) into the dictionary
removeElement(k): if the
dictionary has an item with
key k, removes it from the
dictionary and returns its
element, else returns the
special element
NO_SUCH_KEY
size(), isEmpty()
keys(), Elements()

More Data Structures v1.1 30

Log File
A log file is a dictionary implemented by means of an unsorted
sequence

We store the items of the dictionary in a sequence (based on a
doubly-linked lists or a circular array), in arbitrary order

Performance:
insertItem takes O(1) time since we can insert the new item at the
beginning or at the end of the sequence
findElement and removeElement take O(n) time since in the worst
case (the item is not found) we traverse the entire sequence to
look for an item with the given key

The log file is effective only for dictionaries of small size or for
dictionaries on which insertions are the most common
operations, while searches and removals are rarely performed
(e.g., historical record of logins to a workstation)

Heaps 1/23/2003 6:52 PM

6

More Data Structures v1.1 31

Binary Search
Binary search performs operation findElement(k) on a dictionary
implemented by means of an array-based sequence, sorted by key

At each recursive call, ask if number is higher, lower, or equal to
midpoint.
at each step, the number of candidate items is halved
terminates after a logarithmic number of steps

Example: findElement(7)

1 3 4 5 7 8 9 11 14 16 18 19

1 3 4 5 7 8 9 11 14 16 18 19

1 3 4 5 7 8 9 11 14 16 18 19

1 3 4 5 7 8 9 11 14 16 18 19

0

0

0

0

ml h

ml h

ml h

l=m =h
More Data Structures v1.1 32

Lookup Table
A lookup table is a dictionary implemented by means of a sorted
sequence

We store the items of the dictionary in an array-based sequence,
sorted by key
We use an external comparator for the keys

Performance:
findElement takes O(log n) time, using binary search
insertItem takes O(n) time since in the worst case we have to shift
n/2 items to make room for the new item
removeElement take O(n) time since in the worst case we have to
shift n/2 items to compact the items after the removal

The lookup table is effective only for dictionaries of small size or
for dictionaries on which searches are the most common
operations, while insertions and removals are rarely performed
(e.g., credit card authorizations)

More Data Structures v1.1 33

Binary Search Tree
A binary search tree is a
binary tree storing keys
(or key-element pairs)
at its internal nodes and
satisfying the following
property:

Let u, v, and w be three
nodes such that u is in
the left subtree of v and
w is in the right subtree
of v. We have
key(u) ≤ key(v) ≤ key(w)

External nodes do not
store items

An inorder traversal of a
binary search trees
visits the keys in
increasing order

6

92

41 8

More Data Structures v1.1 34

Search
To search for a key k,
we trace a downward
path starting at the root
The next node visited
depends on the
outcome of the
comparison of k with
the key of the current
node
If we reach a leaf, the
key is not found and we
return NO_SUCH_KEY
Example:
findElement(4)

Algorithm findElement(k, v)
if T.isExternal (v)

return NO_SUCH_KEY
if k < key(v)

return findElement(k, T.leftChild(v))
else if k = key(v)

return element(v)
else { k > key(v) }

return findElement(k, T.rightChild(v))

6

92

41 8

<

>

=

More Data Structures v1.1 35

Insertion
To perform operation
insertItem(k, o), we search
for key k
Assume k is not already in
the tree, and let let w be
the leaf reached by the
search
We insert k at node w and
expand w into an internal
node
Example: insert 5

6

92

41 8

6

92

41 8

5

<

>

>

w

w

More Data Structures v1.1 36

Deletion
To perform operation
removeElement(k), we
search for key k
Assume key k is in the tree,
and let let v be the node
storing k
If node v has a leaf child w,
we remove v and w from the
tree with operation
removeAboveExternal(w)
Example: remove 4

6

92

41 8

5

v
w

6

92

51 8

<

>

Heaps 1/23/2003 6:52 PM

7

More Data Structures v1.1 37

Deletion (cont.)
We consider the case where
the key k to be removed is
stored at a node v whose
children are both internal

we find the internal node w
that follows v in an inorder
traversal
we copy key(w) into node v
we remove node w and its
left child z (which must be a
leaf) by means of operation
removeAboveExternal(z)

Example: remove 3

3

1

8

6 9

5

v

w

z

2

5

1

8

6 9

v

2

More Data Structures v1.1 38

Performance
Consider a dictionary
with n items
implemented by means
of a binary search tree
of height h

the space used is O(n)
methods findElement ,
insertItem and
removeElement take
O(h) time

The height h is O(n) in
the worst case and
O(log n) in the best
case

