Dynamic Programming

S,
~
S
- S
S
S

Dynamic Programming version 1.4 1

Outline and Reading

The General Technique (§5.3.2)
0-1 Knapsack Problem (§5.3.3)
Matrix Chain-Product (§5.3.1)

Dynamic Programming version 1.4 2

Dynamic Programming
‘revealed

% Break problem into subproblems that are

= shared

have subproblem optimality (optimal subproblem
solution helps solve overall problem)

subproblem optimality means can write recursive
realtionship between subproblems!

Defining subproblems is hardest part!

Compute solutions to small subproblems

Store solutions in array A.

4 Combine already computed solutions into
solutions for larger subproblems

Solutions Array A is iteratively filled

(Optional: reduce space needed by reusing
array)
Dynamic Programming version 1.4 3

Computing Fibonacci

Dynamic Programming # Recursive solution:
is a general algorithm = int fib(int x)
design paradigm: if (x=0) return 0;
= Iteratively solves small else if (x=1) return 1;
subproblems which are else return fib(x-1) +

combined to solve overall fib(x-2);
problem.
4 Fibonacci numbers 4 Dynamic Programming
defined Solution:
. Fp= « f0]=0; f1]=1;
. F = fori <2 to x do

f[i] « f[i-1] + f[i-2];

= F,=F_+F., forn>1 return f[xJ;

Dynamic Programming version 1.4 4

Reducing Space for
Computing Fibonacci

store only previous 2 values to compute next
value
= int fib(x)
if (x=0) return 0;
else if (x=1) return 1;
else
int last <— 1; nextlast <— 0;
fori < 2toxdo
temp < last + nextlast;
nextlast <« last;
last «<— temp;
return temp;

Dynamic Programming version 1.4 5

The General Dynamic
Programming Technique

k # Applies to a problem that at first seems to

require a lot of time (possibly exponential),

provided we have:

= Simple subproblems: the subproblems can be
defined in terms of a few variables, such as j, k, |,
m, and so on.

= Subproblem optimality: the global optimum value
can be defined in terms of optimal subproblems

= Subproblem overlap: the subproblems are not
independent, but instead they overlap (hence,
should be constructed bottom-up).

Dynamic Programming version 1.4 6

‘The 0/1 Knapsack Problem ;

% Given: Aset Sof n items, with each item i having
= b, - a positive benefit
= W, - a positive weight
4 Goal: Choose items with maximum total benefit but with
weight at most W.
4 If we are not allowed to take fractional amounts, then
this is the 0/1 knapsack problem.
= In this case, we let T denote the set of items we take

= Objective: maximize Zbi
iel
» Constraint: ZW,. <w
iel
Dynamic Programming version 1.4 7

'Example %/

Given: A set S of n items, with each item i having
= b, - a positive benefit
= W, - a positive weight

4 Goal: Choose items with maximum total benefit but with
weight at most W.

“knapsack”

. Solution:
Items: [\/:L «5(2in)
«3(2in)

" o 1(4i
Welght: 4in 2in 2in 6in 2in @in)
Benefit: $20 43 $6 $25 480

Dynamic Programming version 1.4 8

A 0/1 Knapsack Algorithm,

First Attempt hs
, N
@ S,: Set of items numbered 1 to k. LT)JQ

4 Define B[k] = best selection from S,.

@ Problem: does not have subproblem optimality:
= Consider S={(3,2),(5,4),(8,5),(4,3),(10,9)} benefit-weight pairs

Best for 54: |=.:-| (EXT) | 15,51 |-4_\.|

Best for Sg: ™ [0

Dynamic Programming version 1.4 9

A 0/1 Knapsack Algorithm, /7 /h
‘Second Attempt ~

(iﬁ%ﬁ
| ®S,: Set of items numbered 1 to k. L

#Define B[k,w] = best selection from S,
with weight exactly equal to w

#Good news: this does have subproblem
optimality:

Blk,w] =

Blk—-1,w] if w>w
ax{B[k -1,w], Blk—1,w—w,]+b,} else

I.e., best subset of S, with weight limit exactly w is
either the best subset of S, ; w/ weight w or the best
subset of S, ; w/ WEI%ht w-w, plus benefit of item k

Dynamic Programming Version 1.4

Towards the 0/1 Knapsack
“Algorithm

#(S,: Set of items numbered 1 to k = {(b,,w,), (b,W,};
o (bW}

@ Deﬁne B[k,j] = maximum benefit of optimal subset
from S, with total weight at most j

Recursive definition of B[k,j]:

0 ifk=0
Blk, jl1= Blk-1,/] ifw, >
max{B[k -1,], Blk-1,j—w,]+b} otherwise

Dynamic Programming version 1.4 11

Towards the 0/1 Knapsack /A fh

Algorithm =
¢ >
NY 0 ifk=0 L;JQ
Blk, j1= Blk-1,/] it w, > j
max{B[k—1,], Blk—1,j—w,]+b,} otherwise
Algorithm rec0IKnap(S, W):
® B[k J] = maximum beneﬁt Input: set S of k items w/ benefit b, b,, ...
it by,; weights wy, w,, ... Wy and max.
of optimal subset from S, weight W
with total weight at most j Output: benefit of best subset with

weight at most W

4% Recursive version of if =0 then {8 = emptyset}

algorlt_hm based on return 0
recursive subproblem remove item k (benefit-weight (b,.w,))
relationship. from S

% Not a dynamic if w, > W then {item k does not fit}

programming version. return rec0lKnap(S,W)
return max(rec01Knap(S, W),
rec01Knap(S,W-w,) +b,)
Dynamic Prograpming version 1.4 12

Towards the 0/1 Knapsack

Algorithm v
¢ 0 ifk=0 CIE
B[k.ﬂ:{ 2

Blk-1,/] ifw, >
max{B[k -1,], B[k—1,j-w,]+b,} otherwise

Algorithm rec01Knap(S, W):
Input: sct S of & items w/ benefit b, b,, ...,b,:
weights w, wy, ... w;; and max. weight W

4P

Modified recursive version
that stores subproblem
solutions

" ;"’OSF gggcr?ielgggbvz;l array weight at most W

= Then initialize all entries if k=0 then refurn 0
of Bi,j] to -1 remove item k (benefit-weight (b,,w,)) from S

= B stores results of if B[k-1, W)= -1 then B[k-1,W]=rec01Knap(S,W)
recursive calls if w, > I then

Entries in B are return Blk-1, W]

computed when if Blk-1, W= ,]=1 then

. n.ecessar)./ Blk-1,W - w,|=rec0IKnap(S,W -w,)

This is considered a return max(Blk-1, W), BIk-1,W - w,]+b,)

Output: benefit of best subset with

dynamic programming
version. Dynamic Programming version 1.4 13

The 0/1 Knapsack
“Algorithm- Iterative

0 ifk=0
Blk, j1= Blk-1,/] if w, > j
max{B[k -1,], Blk-1,j-w,]+b,} otherwise

Algorithm 01Knapsack(S, W):
Input: sct S of n items w/ benefit b;
and weight w;; max. weight W

» Recursive computation

not necessary

Compute iteratively,
bottom-up

All B[k-1,*] must be for k < 1 to n do
computed before B[k, *] for j < 1to W do
because of subproblem if w, > then
dependencies Blkyj] < Blk-1,j]

This is also dynamic else

R Blk,j] < max(B[k-1,],
programming. Blk-1j-w,]+b,) y

Output: benefit of best subset with
weight at most W

for w < 0 to I do {base case}
B[0,w] < 0

14

Dynamic Pro poon Ll

The 0/1 Knapsack
'Algorithm- Iterative

ifk=0
Blk, j1= Blk—1,/] if w, >/
max {B[k—1,], Blk—1,j-w,]+b,} otherwise

Algorithm 01Knapsack(S, W):

Not necessary to use all the

space

Keep track of one row at a

time

@ Overwrite results from
previous row as new values
computed

Must compute right to left (W
downto 1) so that the next
row (B[k,*]) uses results from
the previous row (B[k-1,*]).

Simplify this to get version in

Input: set S of n items w/ benefit b;
and weight w;; max. weight W
Output: benefit of best subset with
weight at most W
for w < 0 to I do {base case}
Btgs w] « 0
for ki < 1 to n do
for j < W downto / do
if w, > j then
Blderj] < Bl]
else
BHej] < max(BH jl,
Bkt jow, | +h,)

4 15

book. Dynamic Pros

The 0/1 Knapsack
“Algorithm- Iterative

ifk=0
Blk, j1= Blk—1,/] ifw, >
max{B[k—1,], Blk—1,j—w,]+b,} otherwise

Algorithm 01Knapsack(S, W):
Input: set S of n items w/ benefit b;

+ Not necessary to use all the and weight w;; max. weight W

space Output: benefit of best subset with
» Keep track of one row at a weight at most W
time for w « 0 to I do {base case}
@ Overwrite results from Blw] <0
previous row as new values for k < 1 to n do
computed . for j < ¥ downto I do
& (I\j/lust coTpute Rghthto left (W if w, > j then
ownto 1) so that the next Bljl < Bl

row (B[k,*]) uses results from
the previous row (B[k-1,*]).
Simplify this to get version in

else

Bl jl < max(B[],
‘.ABI.,'WAI+bA)

book. Dynamic Pro e

The 0/1 Knapsack

“Algorithm

Blk,w]= {

4 The book version:
= When value does not change
from one row to the next,
then no need to assign same
value.
Running time: O(nW).
4 Not a polynomial-time
algorithm if W is large
4 This is a pseudo-polynomial
time algorithm

Dynamic Progral

Blk—1,w] if w, >w
max {B[k —1,w], Blk—

Lw—w,]+b,} else

Algorithm 01Knapsack(S, W):
Input: set S of # items w/ benefit b;
and weight w;; max. weight W'
Output: benefit of best subset with
weight at most W

for w < 0 to /¥ do
Blw] « 0
for ki < 1 to n do
for w < /¥ downto w, do
if B[w-w,|+b, > B[w] then
Blw] < Blw-w,]+b,

mming version 1.4 17

line-breaking problem

4 Given sequence of words from one paragraph
Return where line-breaks should occur

4 Minimize empty space on each line (except
for last line of paragraph)

Dynamic Programming version 1.4 18

line-breaking problem

A simple version:

letters and spaces have equal width

input is set of 7 word lengths, w;, w,, ... w,
also given line width limit £.

each length w; includes one space

Placing w9rds i up to j on one line means

Zw, <L
k=i

J
Penalty for extra spaces X=L~ZW, is X3

k=i
Minimize sum of penalties from each line (no last
line penalty)

Dynamic Programming version 1.4 19

'Example problem

4 Paragraph is:
Those who cannot remember the past are
condemned to repeat it.

4 Word lengths are 6,4,7,9,4,5,4,10,3,7 4.
4 Suppose line width L = 17.

4 Find an optimal way of separating words into
lines that minimizes penalty.

Dynamic Programming version 1.4 20

linebreak DP

4 for i < n-1 downto 0 do
if (w[i] + w[i+1] + ... + w[n-1] <L)
lineB[i] «- 0;
else
mincost « Infinity;

<« 1;
while (k words starting from w[i] fit on a line)
// meaning (W[i] + w[i+1] + ... + w[i+k-1] <=L)
linecost «— penalty from placing words wli] to w[i+k-1]
on one line.
totalcost « linecost + lineB[i+k];
mincost « min(totalcost, mincost) // track min. so far
k++;
lineB[i]=mincost;

Dynamic Programming version 1.4 21

linebreak DP cost

% O(nL); L is maximum width
% Linear if L is considered constant
% Space O(n).

Dynamic Programming version 1.4 22

'Matrix Chain-Products "‘"’1‘

"4 Review: Matrix Multiplication.

s C=A*B
n Aisdxeand Bise x f f
e—1 (_H
Cli, j1= Y Ali,k1* B[k, /] B
k=0

n O(def) time (def multiplications) e

==l

H_/

Dynamic Programming version 1.4 f 23

‘Matrix Chain-Products "‘"’1‘

"4 Matrix Chain-Product:
= Compute A=A *A *. *A
s As dI X d|+1
= Problem: How to parenthesize? [for
minimizing ops]
@ Example
= Bis3 x 100
= Cis 100 x 5
n Dis5x5
= (B*C)*D takes 1500 + 75 = 1575 ops
= B*(C*D) takes 1500 + 2500 = 4000 ops

Dynamic Programming version 1.4 24

An Enumeration Approach

| % Matrix Chain-Product Alg.:
= Try all possible ways to parenthesize
A=AGFA* KA \
= Calculate number of ops for each one
= Pick the one that is best
4 Running time:
= The number of paranethesizations is equal
to the number of binary trees with n nodes
= This is exponential!

= It is called the Catalan number, and it is
almost 4.

= This is a terrible algorithm!

Dynamic Programming version 1.4 25

#Idea #1: repeatedly select the product that
uses (up) the most operations.
Counter-example:
n Ais10 x5
= Bis5x 10
« Cis10 x5
= Dis5x 10
= Greedy idea #1 gives (A*B)*(C*D), which takes
500+1000+500 = 2000 ops
» A*((B*C)*D) takes 500+250+250 = 1000 ops

Dynamic Programming version 1.4 26

SZ
‘Another Greedy Approach

% Idea #2: repeatedly select the product that uses
the fewest operations.
4 Counter-example:
= Ais 101 x 11
= Bisl1l x9
= Cis9 x 100
= Dis 100 x 99
= Greedy idea #2 gives A*((B*C)*D)), which takes
109989+9900+108900=228789 ops
s (A*B)*(C*D) takes 9999+89991+89100=189090 ops
The greedy approach is not giving us the
optimal value.

Dynamic Programming version 1.4 27

A “Recursive” Approach

| & Define subproblems:
= Find the best parenthesization of A*A, *..*A,.

= Let N;; denote the number of operations done by this
subproblem.

= The optimal solution for the whole problem is Ny ;.

4 Subproblem optimality: The optimal solution can be

defined in terms of optimal subproblems
There has to be a final multiplication (root of the expression
tree) for the optimal solution.
Say, the final multiply is at index i: (Ag*... *A)*(A, *.. %A, 1)
Then the optimal solution N, ., is the sum of two optimal
subproblems, Ny; and Ny, ., plus the time for the last multiply.
If subproblems were not optimal, neither is global solution.

Dynamic Programming version 1.4 28

A Characterizin
T K

Equation

Define global optimal in terms of optimal subproblems,
by checking all possible locations for final multiply.
= Recall that A is a d, x d,,, dimensional matrix.
= So, a characterizing equation for N;; is the following:

N,

i,j =

min{N, + N,

i<k<j

+ didk+1dj+1}

+1,j

Note that subproblems are not independent--the
subproblems overlap (are shared)

Dynamic Programming version 1.4 29

A Dynamic Programming
“Algorithm

4 Construct optimal
subproblems Algorithm matrixChain(S):

“bottom-up.” Input: sequence S of n matrices to be multiplied
N, /s are easy, so Output: number of operations in an optimal
stért with them paranthesization of §
#| Then do length for i < | to n-1 do
2,3,... subproblems, Ni<0
and so on. for b « 1 to n-1 do
@ Array N;;stores for i < 0 to n-b-1 do
solutions Jjith
Running time: O(n?) N, « +infinity

for & < ito j-I do

Ny« mi"{fvi,,' s Nik TNisay i dyy di}

Dynamic Programming version 1.4 30

A Dynamic Programming

“Algorithm

&

&

The bottom-up

construction fillsinthe NJo 1 2 joe

N array by diagonals
N;; gets values from

pervious entries in i-th

row and j-th column

» Filling in each entry in
the N table takes O(n)

time.
Total run time: O(n3)

» Getting actual
parenthesization can be

done by remembering
“k” for each N entry

N, =min{N,, +N,
ick<j

Visualization

ij +1,/

+dd,d,,)

a1 answer

0

1

n-1

Dynamic Programming version 1.4

31

