
Merge Sort 5/6/2003 1:27 PM

1

Dynamic Programming version 1.4 1

Dynamic Programming

Dynamic Programming version 1.4 2

Outline and Reading
The General Technique (§5.3.2)
0-1 Knapsack Problem (§5.3.3)
Matrix Chain-Product (§5.3.1)

Dynamic Programming version 1.4 3

Dynamic Programming
revealed

Break problem into subproblems that are
shared
have subproblem optimality (optimal subproblem
solution helps solve overall problem)
subproblem optimality means can write recursive
realtionship between subproblems!
Defining subproblems is hardest part!

Compute solutions to small subproblems
Store solutions in array A.
Combine already computed solutions into
solutions for larger subproblems
Solutions Array A is iteratively filled

(Optional: reduce space needed by reusing
array)

Dynamic Programming version 1.4 4

Computing Fibonacci

Dynamic Programming
is a general algorithm
design paradigm:

Iteratively solves small
subproblems which are
combined to solve overall
problem.

Fibonacci numbers
defined

F0 = 0
F1 = 1
Fn = Fn-1 + Fn-2, for n > 1

Recursive solution:
int fib(int x)

if (x=0) return 0;
else if (x=1) return 1;
else return fib(x-1) +

fib(x-2);

Dynamic Programming
Solution:

f[0]=0; f[1]=1;
for i ←2 to x do

f[i] ← f[i-1] + f[i-2];
return f[x];

Dynamic Programming version 1.4 5

Reducing Space for
Computing Fibonacci

store only previous 2 values to compute next
value

int fib(x)
if (x=0) return 0;
else if (x=1) return 1;
else

int last ← 1; nextlast ← 0;
for i ← 2 to x do

temp ← last + nextlast;
nextlast ← last;
last ← temp;

return temp;

Dynamic Programming version 1.4 6

The General Dynamic
Programming Technique

Applies to a problem that at first seems to
require a lot of time (possibly exponential),
provided we have:

Simple subproblems: the subproblems can be
defined in terms of a few variables, such as j, k, l,
m, and so on.
Subproblem optimality: the global optimum value
can be defined in terms of optimal subproblems
Subproblem overlap: the subproblems are not
independent, but instead they overlap (hence,
should be constructed bottom-up).

Merge Sort 5/6/2003 1:27 PM

2

Dynamic Programming version 1.4 7

The 0/1 Knapsack Problem
Given: A set S of n items, with each item i having

bi - a positive benefit
wi - a positive weight

Goal: Choose items with maximum total benefit but with
weight at most W.
If we are not allowed to take fractional amounts, then
this is the 0/1 knapsack problem.

In this case, we let T denote the set of items we take

Objective: maximize

Constraint:

∑
∈Ti

ib

∑
∈

≤
Ti

i Ww
Dynamic Programming version 1.4 8

Given: A set S of n items, with each item i having
bi - a positive benefit
wi - a positive weight

Goal: Choose items with maximum total benefit but with
weight at most W.

Example

Weight:
Benefit:

1 2 3 4 5

4 in 2 in 2 in 6 in 2 in

$20 $3 $6 $25 $80

Items:

9 in

Solution:
• 5 (2 in)
• 3 (2 in)
• 1 (4 in)

“knapsack”

Dynamic Programming version 1.4 9

A 0/1 Knapsack Algorithm,
First Attempt

Sk: Set of items numbered 1 to k.
Define B[k] = best selection from Sk.
Problem: does not have subproblem optimality:

Consider S={(3,2),(5,4),(8,5),(4,3),(10,9)} benefit-weight pairs

Best for S4:

Best for S5:

Dynamic Programming version 1.4 10

A 0/1 Knapsack Algorithm,
Second Attempt

Sk: Set of items numbered 1 to k.
Define B[k,w] = best selection from Sk
with weight exactly equal to w
Good news: this does have subproblem
optimality:

I.e., best subset of Sk with weight limit exactly w is
either the best subset of Sk-1 w/ weight w or the best
subset of Sk-1 w/ weight w-wk plus benefit of item k.





+−−−
>−

=
else}],1[],,1[max{

 if],1[
],[

kk

k

bwwkBwkB
wwwkB

wkB

Dynamic Programming version 1.4 11

Towards the 0/1 Knapsack
Algorithm
Sk: Set of items numbered 1 to k = {(b1,w1), (b2,w2),
…, (bk,wk)}
Define B[k,j] = maximum benefit of optimal subset
from Sk with total weight at most j
Recursive definition of B[k,j]:







+−−−
>
=

−=
otherwise}],1[],,1[max{

 if
0 if

],1[
0

],[
kk

k
bwjkBjkB

jw
k

jkBjkB

Dynamic Programming version 1.4 12

Towards the 0/1 Knapsack
Algorithm

B[k,j] = maximum benefit
of optimal subset from Sk
with total weight at most j
Recursive version of
algorithm based on
recursive subproblem
relationship.
Not a dynamic
programming version.

Algorithm rec01Knap(S, W):
Input: set S of k items w/ benefit b1, b2, …

bk,; weights w1, w2, … wkj and max.
weight W

Output: benefit of best subset with
weight at most W

if k=0 then {S = emptyset}
return 0

remove item k (benefit-weight (bk,wk))
from S

if wk > W then {item k does not fit}
return rec01Knap(S,W)

return max(rec01Knap(S,W),
rec01Knap(S,W-wk) + bk)







+−−−
>
=

−=
otherwise}],1[],,1[max{

 if
0 if

],1[
0

],[
kk

k
bwjkBjkB

jw
k

jkBjkB

Merge Sort 5/6/2003 1:27 PM

3

Dynamic Programming version 1.4 13

Towards the 0/1 Knapsack
Algorithm

Modified recursive version
that stores subproblem
solutions

First allocate global array
B of size n+1 by W
Then initialize all entries
of B[i,j] to –1
B stores results of
recursive calls
Entries in B are
computed when
necessary

This is considered a
dynamic programming
version.

Algorithm rec01Knap(S, W):
Input: set S of k items w/ benefit b1, b2, …,bk,;

weights w1, w2, … wkj and max. weight W
Output: benefit of best subset with

weight at most W
if k=0 then return 0
remove item k (benefit-weight (bk,wk)) from S
if B[k-1, W]= –1 then B[k-1,W]=rec01Knap(S,W)
if wk > W then

return B[k-1, W]
if B[k-1, W- wk]= –1 then

B[k-1,W - wk]=rec01Knap(S,W -wk)
return max(B[k-1, W], B[k-1,W - wk]+bk)







+−−−
>
=

−=
otherwise}],1[],,1[max{

 if
0 if

],1[
0

],[
kk

k
bwjkBjkB

jw
k

jkBjkB

Dynamic Programming version 1.4 14

The 0/1 Knapsack
Algorithm- Iterative

Algorithm 01Knapsack(S, W):
Input: set S of n items w/ benefit bi

and weight wi; max. weight W
Output: benefit of best subset with

weight at most W
for w ← 0 to W do {base case}

B[0,w] ← 0
for k ← 1 to n do

for j ← 1 to W do
if wk > j then

B[k,j] ← B[k-1,j]
else

B[k,j] ← max(B[k-1,j],
B[k-1,j-wk]+bk)







+−−−
>
=

−=
otherwise}],1[],,1[max{

 if
0 if

],1[
0

],[
kk

k
bwjkBjkB

jw
k

jkBjkB

Recursive computation
not necessary
Compute iteratively,
bottom-up
All B[k-1,*] must be
computed before B[k,*]
because of subproblem
dependencies
This is also dynamic
programming.

Dynamic Programming version 1.4 15

The 0/1 Knapsack
Algorithm- Iterative

Algorithm 01Knapsack(S, W):
Input: set S of n items w/ benefit bi

and weight wi; max. weight W
Output: benefit of best subset with

weight at most W
for w ← 0 to W do {base case}

B[0, w] ← 0
for k ← 1 to n do

for j ← W downto 1 do
if wk > j then

B[k, j] ← B[k-1, j]
else

B[k, j] ← max(B[k-1, j],
B[k-1, j-wk]+bk)







+−−−
>
=

−=
otherwise}],1[],,1[max{

 if
0 if

],1[
0

],[
kk

k
bwjkBjkB

jw
k

jkBjkB

Not necessary to use all the
space
Keep track of one row at a
time
Overwrite results from
previous row as new values
computed
Must compute right to left (W
downto 1) so that the next
row (B[k,*]) uses results from
the previous row (B[k-1,*]).
Simplify this to get version in
book. Dynamic Programming version 1.4 16

The 0/1 Knapsack
Algorithm- Iterative

Algorithm 01Knapsack(S, W):
Input: set S of n items w/ benefit bi

and weight wi; max. weight W
Output: benefit of best subset with

weight at most W
for w ← 0 to W do {base case}

B[w] ← 0
for k ← 1 to n do

for j ← W downto 1 do
if wk > j then

B[j] ← B[j]
else

B[j] ← max(B[j],
B[j-wk]+bk)







+−−−
>
=

−=
otherwise}],1[],,1[max{

 if
0 if

],1[
0

],[
kk

k
bwjkBjkB

jw
k

jkBjkB

Not necessary to use all the
space
Keep track of one row at a
time
Overwrite results from
previous row as new values
computed
Must compute right to left (W
downto 1) so that the next
row (B[k,*]) uses results from
the previous row (B[k-1,*]).
Simplify this to get version in
book.

Dynamic Programming version 1.4 17

The 0/1 Knapsack
Algorithm

The book version:
When value does not change
from one row to the next,
then no need to assign same
value.

Running time: O(nW).
Not a polynomial-time
algorithm if W is large
This is a pseudo-polynomial
time algorithm

Algorithm 01Knapsack(S, W):
Input: set S of n items w/ benefit bi

and weight wi; max. weight W
Output: benefit of best subset with

weight at most W
for w ← 0 to W do

B[w] ← 0
for k ← 1 to n do

for w ← W downto wk do
if B[w-wk]+bk > B[w] then

B[w] ← B[w-wk]+bk





+−−−
>−

=
else}],1[],,1[max{

 if],1[
],[

kk

k

bwwkBwkB
wwwkB

wkB

Dynamic Programming version 1.4 18

line-breaking problem

Given sequence of words from one paragraph
Return where line-breaks should occur
Minimize empty space on each line (except
for last line of paragraph)

Merge Sort 5/6/2003 1:27 PM

4

Dynamic Programming version 1.4 19

A simple version:
letters and spaces have equal width
input is set of n word lengths, w1, w2, … wn

also given line width limit L.
each length wi includes one space
Placing words i up to j on one line means

Penalty for extra spaces is X3

Minimize sum of penalties from each line (no last
line penalty)

line-breaking problem

Lw
j

ik
i ≤∑

=

∑
=

−=
j

ik
iwLX

Dynamic Programming version 1.4 20

Example problem

Paragraph is:
Those who cannot remember the past are
condemned to repeat it.

Word lengths are 6,4,7,9,4,5,4,10,3,7,4.
Suppose line width L = 17.
Find an optimal way of separating words into
lines that minimizes penalty.

Dynamic Programming version 1.4 21

linebreak DP

for i ← n-1 downto 0 do
if (w[i] + w[i+1] + … + w[n-1] < L)

lineB[i] ← 0;
else

mincost ← Infinity;
k ← 1;
while (k words starting from w[i] fit on a line)

// meaning (w[i] + w[i+1] + … + w[i+k-1] <= L)
linecost ← penalty from placing words w[i] to w[i+k-1]

on one line.
totalcost ← linecost + lineB[i+k];
mincost ← min(totalcost, mincost) // track min. so far
k++;

lineB[i]=mincost;

Dynamic Programming version 1.4 22

linebreak DP cost

O(nL); L is maximum width
Linear if L is considered constant
Space O(n).

Dynamic Programming version 1.4 23

Matrix Chain-Products
Review: Matrix Multiplication.

C = A*B
A is d × e and B is e × f

O(def) time (def multiplications)

A C

B

d d

f

e

f

e

i

j

i,j

∑
−

=

=
1

0
],[*],[],[

e

k
jkBkiAjiC

Dynamic Programming version 1.4 24

Matrix Chain-Products
Matrix Chain-Product:

Compute A=A0*A1*…*An-1

Ai is di × di+1

Problem: How to parenthesize? [for
minimizing ops]

Example
B is 3 × 100
C is 100 × 5
D is 5 × 5
(B*C)*D takes 1500 + 75 = 1575 ops
B*(C*D) takes 1500 + 2500 = 4000 ops

Merge Sort 5/6/2003 1:27 PM

5

Dynamic Programming version 1.4 25

An Enumeration Approach
Matrix Chain-Product Alg.:

Try all possible ways to parenthesize
A=A0*A1*…*An-1

Calculate number of ops for each one
Pick the one that is best

Running time:
The number of paranethesizations is equal
to the number of binary trees with n nodes
This is exponential!
It is called the Catalan number, and it is
almost 4n.
This is a terrible algorithm!

Dynamic Programming version 1.4 26

A Greedy Approach
Idea #1: repeatedly select the product that
uses (up) the most operations.
Counter-example:

A is 10 × 5
B is 5 × 10
C is 10 × 5
D is 5 × 10
Greedy idea #1 gives (A*B)*(C*D), which takes
500+1000+500 = 2000 ops
A*((B*C)*D) takes 500+250+250 = 1000 ops

Dynamic Programming version 1.4 27

Another Greedy Approach
Idea #2: repeatedly select the product that uses
the fewest operations.
Counter-example:

A is 101 × 11
B is 11 × 9
C is 9 × 100
D is 100 × 99
Greedy idea #2 gives A*((B*C)*D)), which takes
109989+9900+108900=228789 ops
(A*B)*(C*D) takes 9999+89991+89100=189090 ops

The greedy approach is not giving us the
optimal value.

Dynamic Programming version 1.4 28

A “Recursive” Approach
Define subproblems:

Find the best parenthesization of Ai*Ai+1*…*Aj.
Let Ni,j denote the number of operations done by this
subproblem.
The optimal solution for the whole problem is N0,n-1.

Subproblem optimality: The optimal solution can be
defined in terms of optimal subproblems

There has to be a final multiplication (root of the expression
tree) for the optimal solution.
Say, the final multiply is at index i: (A0*…*Ai)*(Ai+1*…*An-1).
Then the optimal solution N0,n-1 is the sum of two optimal
subproblems, N0,i and Ni+1,n-1 plus the time for the last multiply.
If subproblems were not optimal, neither is global solution.

Dynamic Programming version 1.4 29

A Characterizing
Equation

Define global optimal in terms of optimal subproblems,
by checking all possible locations for final multiply.

Recall that Ai is a di × di+1 dimensional matrix.
So, a characterizing equation for Ni,j is the following:

Note that subproblems are not independent--the
subproblems overlap (are shared)

}{min 11,1,, +++<≤
++= jkijkkijkiji dddNNN

Dynamic Programming version 1.4 30

A Dynamic Programming
Algorithm
Construct optimal
subproblems
“bottom-up.”
Ni,i’s are easy, so
start with them
Then do length
2,3,… subproblems,
and so on.
Array Ni,j stores
solutions
Running time: O(n3)

Algorithm matrixChain(S):
Input: sequence S of n matrices to be multiplied
Output: number of operations in an optimal

paranthesization of S
for i ← 1 to n-1 do

Ni,i ← 0
for b ← 1 to n-1 do

for i ← 0 to n-b-1 do
j ← i+b
Ni,j ← +infinity
for k ← i to j-1 do

Ni,j ← min{Ni,j , Ni,k +Nk+1,j +di dk+1 dj+1}

Merge Sort 5/6/2003 1:27 PM

6

Dynamic Programming version 1.4 31

answerN 0 1

0
1

2 …

n-1

…

n-1j

i

A Dynamic Programming
Algorithm Visualization
The bottom-up
construction fills in the
N array by diagonals
Ni,j gets values from
pervious entries in i-th
row and j-th column
Filling in each entry in
the N table takes O(n)
time.
Total run time: O(n3)
Getting actual
parenthesization can be
done by remembering
“k” for each N entry

}{min 11,1,, +++<≤
++= jkijkkijkiji dddNNN

