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Dynamic Programming
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Outline and Reading
The General Technique (§5.3.2)
0-1 Knapsack Problem (§5.3.3)
Matrix Chain-Product (§5.3.1)
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Dynamic Programming 
revealed

Break problem into subproblems that are
shared
have subproblem optimality (optimal subproblem
solution helps solve overall problem)
subproblem optimality means can write recursive 
realtionship between subproblems!
Defining subproblems is hardest part!

Compute solutions to small subproblems
Store solutions in array A. 
Combine already computed solutions into 
solutions for larger subproblems
Solutions Array A is iteratively filled

(Optional:  reduce space needed by reusing 
array)
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Computing Fibonacci

Dynamic Programming 
is a general algorithm 
design paradigm:

Iteratively solves small 
subproblems which are 
combined to solve overall 
problem. 

Fibonacci numbers 
defined

F0 = 0
F1 = 1
Fn = Fn-1 + Fn-2, for n > 1

Recursive solution:
int fib(int x) 

if (x=0) return 0;
else if  (x=1) return 1;
else return fib(x-1) + 

fib(x-2);

Dynamic Programming 
Solution:

f[0]=0; f[1]=1;
for i ←2 to x do 

f[i] ← f[i-1] + f[i-2];
return f[x]; 
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Reducing Space for 
Computing Fibonacci  

store only previous 2 values to compute next 
value

int fib(x) 
if (x=0) return 0;
else if (x=1) return 1;
else 

int last ← 1; nextlast ← 0;
for i ← 2 to x do

temp ← last + nextlast;
nextlast ← last;
last ← temp; 

return temp;
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The General Dynamic 
Programming Technique

Applies to a problem that at first seems to 
require a lot of time (possibly exponential), 
provided we have:

Simple subproblems: the subproblems can be 
defined in terms of a few variables, such as j, k, l, 
m, and so on.
Subproblem optimality: the global optimum value 
can be defined in terms of optimal subproblems
Subproblem overlap: the subproblems are not 
independent, but instead they overlap (hence, 
should be constructed bottom-up).
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The 0/1 Knapsack Problem
Given: A set S of n items, with each item i having

bi - a positive benefit
wi - a positive weight

Goal: Choose items with maximum total benefit but with 
weight at most W.
If we are not allowed to take fractional amounts, then 
this is the 0/1 knapsack problem.

In this case, we let T denote the set of items we take

Objective: maximize

Constraint:

∑
∈Ti

ib

∑
∈

≤
Ti

i Ww
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Given: A set S of n items, with each item i having
bi - a positive benefit
wi - a positive weight

Goal: Choose items with maximum total benefit but with 
weight at most W.

Example

Weight:
Benefit:

1 2 3 4 5

4 in 2 in 2 in 6 in 2 in

$20 $3 $6 $25 $80

Items:

9 in

Solution:
• 5 (2 in)
• 3 (2 in)
• 1 (4 in)

“knapsack”
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A 0/1 Knapsack Algorithm, 
First Attempt

Sk: Set of items numbered 1 to k.
Define B[k] = best selection from Sk.
Problem: does not have subproblem optimality:

Consider S={(3,2),(5,4),(8,5),(4,3),(10,9)} benefit-weight pairs

Best for S4:

Best for S5:
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A 0/1 Knapsack Algorithm, 
Second Attempt

Sk: Set of items numbered 1 to k.
Define B[k,w] = best selection from Sk
with weight exactly equal to w
Good news: this does have subproblem
optimality:

I.e., best subset of Sk with weight limit exactly w is 
either the best subset of Sk-1 w/ weight w or the best 
subset of Sk-1 w/ weight w-wk plus benefit of item k.
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Towards the 0/1 Knapsack 
Algorithm
Sk: Set of items numbered 1 to k = {(b1,w1), (b2,w2), 
…, (bk,wk)}
Define B[k,j] = maximum benefit of optimal subset 
from Sk with total weight at most j
Recursive definition of B[k,j]:
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Towards the 0/1 Knapsack 
Algorithm

B[k,j] = maximum benefit 
of optimal subset from Sk
with total weight at most j
Recursive version of 
algorithm based on 
recursive subproblem
relationship. 
Not a dynamic 
programming version. 

Algorithm rec01Knap(S, W):
Input: set S of k items w/ benefit b1, b2, …

bk,; weights w1, w2, … wkj and max. 
weight W

Output: benefit of best subset with 
weight at most W

if k=0 then   {S = emptyset}
return 0

remove item k (benefit-weight (bk,wk)) 
from S

if wk > W then  {item k does not fit}
return rec01Knap(S,W)

return max(rec01Knap(S,W),
rec01Knap(S,W-wk) + bk) 
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Towards the 0/1 Knapsack 
Algorithm

Modified recursive version 
that stores subproblem
solutions

First allocate global array 
B of size n+1 by W
Then initialize all entries 
of B[i,j] to –1  
B stores results of 
recursive calls
Entries in B are 
computed when 
necessary

This is considered a 
dynamic programming 
version.

Algorithm rec01Knap(S, W):
Input: set S of k items w/ benefit b1, b2, …,bk,; 

weights w1, w2, … wkj and max. weight W
Output: benefit of best subset with 

weight at most W
if k=0 then return 0
remove item k (benefit-weight (bk,wk)) from S
if B[k-1, W]= –1 then B[k-1,W]=rec01Knap(S,W)
if wk > W then 

return B[k-1, W]
if B[k-1, W- wk]= –1 then   

B[k-1,W - wk]=rec01Knap(S,W -wk)
return max(B[k-1, W], B[k-1,W - wk]+bk)
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The 0/1 Knapsack 
Algorithm- Iterative

Algorithm 01Knapsack(S, W):
Input: set S of n items w/ benefit bi

and weight wi; max. weight W
Output: benefit of best subset with 

weight at most W
for w ← 0 to W do {base case}

B[0,w] ← 0
for k ← 1 to n do

for j ← 1 to W do
if wk > j then 

B[k,j] ← B[k-1,j]
else

B[k,j] ← max(B[k-1,j],
B[k-1,j-wk]+bk) 
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Recursive computation 
not necessary
Compute iteratively, 
bottom-up
All B[k-1,*] must be 
computed before B[k,*] 
because of subproblem
dependencies
This is also dynamic 
programming.
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The 0/1 Knapsack 
Algorithm- Iterative

Algorithm 01Knapsack(S, W):
Input: set S of n items w/ benefit bi

and weight wi; max. weight W
Output: benefit of best subset with 

weight at most W
for w ← 0 to W do {base case}

B[0, w] ← 0
for k ← 1 to n do

for j ← W downto 1 do
if wk > j then 

B[k, j] ← B[k-1, j]
else

B[k, j] ← max(B[k-1, j],
B[k-1, j-wk]+bk) 


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Not necessary to use all the 
space
Keep track of one row at a 
time
Overwrite results from 
previous row as new values 
computed
Must compute right to left (W 
downto 1) so that the next 
row (B[k,*]) uses results from 
the previous row (B[k-1,*]).
Simplify this to get version in 
book. Dynamic Programming version 1.4 16

The 0/1 Knapsack 
Algorithm- Iterative

Algorithm 01Knapsack(S, W):
Input: set S of n items w/ benefit bi

and weight wi; max. weight W
Output: benefit of best subset with 

weight at most W
for w ← 0 to W do {base case}

B[w] ← 0
for k ← 1 to n do

for j ← W downto 1 do
if wk > j then 

B[ j] ← B[ j]
else

B[ j] ← max(B[ j],
B[ j-wk]+bk) 


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Not necessary to use all the 
space
Keep track of one row at a 
time
Overwrite results from 
previous row as new values 
computed
Must compute right to left (W 
downto 1) so that the next 
row (B[k,*]) uses results from 
the previous row (B[k-1,*]).
Simplify this to get version in 
book.
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The 0/1 Knapsack 
Algorithm

The book version:
When value does not change 
from one row to the next, 
then no need to assign same 
value. 

Running time: O(nW).
Not a polynomial-time 
algorithm if W is large
This is a pseudo-polynomial
time algorithm

Algorithm 01Knapsack(S, W):
Input: set S of n items w/ benefit bi

and weight wi; max. weight W
Output: benefit of best subset with 

weight at most W
for w ← 0 to W do

B[w] ← 0
for k ← 1 to n do

for w ← W downto wk do
if B[w-wk]+bk > B[w] then

B[w] ← B[w-wk]+bk
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line-breaking problem

Given sequence of words from one paragraph
Return where line-breaks should occur
Minimize empty space on each line (except 
for last line of paragraph)
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A simple version:
letters and spaces have equal width
input is set of n word lengths, w1, w2, … wn

also given line width limit L.
each length wi includes one space
Placing words i up to j on one line means

Penalty for extra spaces                  is X3

Minimize sum of penalties from each line (no last 
line penalty)

line-breaking problem
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Example problem

Paragraph is:
Those who cannot remember the past are 
condemned to repeat it.

Word lengths are 6,4,7,9,4,5,4,10,3,7,4.
Suppose line width L = 17. 
Find an optimal way of separating words into 
lines that minimizes penalty.
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linebreak DP

for i ← n-1 downto 0 do
if (w[i] + w[i+1] + … + w[n-1] < L) 

lineB[i] ← 0;
else 

mincost ← Infinity;
k ← 1;
while (k words starting from w[i] fit on a line)

// meaning (w[i] + w[i+1] + … + w[i+k-1] <= L)
linecost ← penalty from placing words w[i] to w[i+k-1]

on one line.
totalcost ← linecost + lineB[i+k];
mincost ← min(totalcost, mincost)  // track min. so far
k++;

lineB[i]=mincost; 
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linebreak DP cost

O(nL); L is maximum width
Linear if L is considered constant
Space O(n). 
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Matrix Chain-Products
Review: Matrix Multiplication.

C = A*B
A is d × e and B is e × f

O(def ) time (def multiplications)

A C

B

d d

f

e

f

e

i

j

i,j
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Matrix Chain-Products
Matrix Chain-Product:

Compute A=A0*A1*…*An-1

Ai is di × di+1

Problem: How to parenthesize? [for 
minimizing ops]

Example
B is 3 × 100
C is 100 × 5
D is 5 × 5
(B*C)*D takes 1500 + 75 = 1575 ops
B*(C*D) takes 1500 + 2500 = 4000 ops
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An Enumeration Approach
Matrix Chain-Product Alg.:

Try all possible ways to parenthesize 
A=A0*A1*…*An-1

Calculate number of ops for each one
Pick the one that is best

Running time:
The number of paranethesizations is equal 
to the number of binary trees with n nodes
This is exponential!
It is called the Catalan number, and it is 
almost 4n.
This is a terrible algorithm!

Dynamic Programming version 1.4 26

A Greedy Approach
Idea #1: repeatedly select the product that 
uses (up) the most operations.
Counter-example: 

A is 10 × 5
B is 5 × 10
C is 10 × 5
D is 5 × 10
Greedy idea #1 gives (A*B)*(C*D), which takes 
500+1000+500 = 2000 ops
A*((B*C)*D) takes 500+250+250 = 1000 ops
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Another Greedy Approach
Idea #2: repeatedly select the product that uses 
the fewest operations.
Counter-example: 

A is 101 × 11
B is 11 × 9
C is 9 × 100
D is 100 × 99
Greedy idea #2 gives A*((B*C)*D)), which takes 
109989+9900+108900=228789 ops
(A*B)*(C*D) takes 9999+89991+89100=189090 ops

The greedy approach is not giving us the 
optimal value.
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A “Recursive” Approach
Define subproblems:

Find the best parenthesization of Ai*Ai+1*…*Aj.
Let Ni,j denote the number of operations done by this 
subproblem.
The optimal solution for the whole problem is N0,n-1.

Subproblem optimality: The optimal solution can be 
defined in terms of optimal subproblems

There has to be a final multiplication (root of the expression 
tree) for the optimal solution.  
Say, the final multiply is at index i: (A0*…*Ai)*(Ai+1*…*An-1).
Then the optimal solution N0,n-1 is the sum of two optimal 
subproblems, N0,i and Ni+1,n-1 plus the time for the last multiply.
If subproblems were not optimal, neither is global solution.
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A Characterizing 
Equation

Define global optimal in terms of optimal subproblems, 
by checking all possible locations for final multiply. 

Recall that Ai is a di × di+1 dimensional matrix.
So, a characterizing equation for Ni,j is the following:

Note that subproblems are not independent--the 
subproblems overlap (are shared)

}{min 11,1,, +++<≤
++= jkijkkijkiji dddNNN
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A Dynamic Programming 
Algorithm
Construct optimal 
subproblems
“bottom-up.” 
Ni,i’s are easy, so 
start with them
Then do length 
2,3,… subproblems, 
and so on.
Array Ni,j stores 
solutions
Running time: O(n3)

Algorithm matrixChain(S):
Input: sequence S of n matrices to be multiplied
Output: number of operations in an optimal 

paranthesization of S
for i ← 1 to n-1 do

Ni,i ← 0
for b ← 1 to n-1 do

for i ← 0 to n-b-1 do
j ← i+b
Ni,j ← +infinity
for k ← i to j-1 do

Ni,j ← min{Ni,j , Ni,k +Nk+1,j +di dk+1 dj+1}
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answerN 0 1

0
1

2 …

n-1

…

n-1j

i

A Dynamic Programming 
Algorithm Visualization
The bottom-up 
construction fills in the 
N array by diagonals
Ni,j gets values from 
pervious entries in i-th
row and j-th column 
Filling in each entry in 
the N table takes O(n) 
time.
Total run time: O(n3)
Getting actual 
parenthesization can be 
done by remembering 
“k” for each N entry

}{min 11,1,, +++<≤
++= jkijkkijkiji dddNNN


