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Outline and Reading

# The General Technique (§5.3.2)
# 0-1 Knapsack Problem (§5.3.3)
# Matrix Chain-Product (§5.3.1)
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Dynamic Programming
‘revealed

% Break problem into subproblems that are

= shared

have subproblem optimality (optimal subproblem
solution helps solve overall problem)

subproblem optimality means can write recursive
realtionship between subproblems!

Defining subproblems is hardest part!

# Compute solutions to small subproblems

# Store solutions in array A.

4 Combine already computed solutions into
solutions for larger subproblems

# Solutions Array A is iteratively filled

# (Optional: reduce space needed by reusing
array)
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Computing Fibonacci

# Dynamic Programming # Recursive solution:
is a general algorithm = int fib(int x)
design paradigm: if (x=0) return 0;
= Iteratively solves small else if (x=1) return 1;
subproblems which are else return fib(x-1) +

combined to solve overall fib(x-2);
problem.
4 Fibonacci numbers 4 Dynamic Programming
defined Solution:
. Fp= « f0]=0; f1]=1;
. F = fori <2 to x do

f[i] « f[i-1] + f[i-2];

= F,=F_+F., forn>1 return f[xJ;
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Reducing Space for
Computing Fibonacci

# store only previous 2 values to compute next
value
= int fib(x)
if (x=0) return 0;
else if (x=1) return 1;
else
int last <— 1; nextlast <— 0;
fori < 2toxdo
temp < last + nextlast;
nextlast <« last;
last «<— temp;
return temp;
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The General Dynamic
Programming Technique

k # Applies to a problem that at first seems to

require a lot of time (possibly exponential),

provided we have:

= Simple subproblems: the subproblems can be
defined in terms of a few variables, such as j, k, |,
m, and so on.

= Subproblem optimality: the global optimum value
can be defined in terms of optimal subproblems

= Subproblem overlap: the subproblems are not
independent, but instead they overlap (hence,
should be constructed bottom-up).

Dynamic Programming version 1.4 6




‘The 0/1 Knapsack Problem ;

% Given: Aset Sof n items, with each item i having
= b, - a positive benefit
= W, - a positive weight
4 Goal: Choose items with maximum total benefit but with
weight at most W.
4 If we are not allowed to take fractional amounts, then
this is the 0/1 knapsack problem.
= In this case, we let T denote the set of items we take

= Objective: maximize Zbi
iel
» Constraint: ZW,. <w
iel
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'Example %/

# Given: A set S of n items, with each item i having
= b, - a positive benefit
= W, - a positive weight

4 Goal: Choose items with maximum total benefit but with
weight at most W.

“knapsack”

. Solution:
Items: [\/:L «5(2in)
«3(2in)

" o 1(4i
Welght: 4in  2in 2in 6in 2in @in)
Benefit: $20 43  $6 $25 480
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A 0/1 Knapsack Algorithm,

First Attempt hs
, N
@ S,: Set of items numbered 1 to k. LT)JQ

4 Define B[k] = best selection from S,.

@ Problem: does not have subproblem optimality:
= Consider S={(3,2),(5,4),(8,5),(4,3),(10,9)} benefit-weight pairs

Best for 54: |=.:-| (EXT) | 15,51 |-4_\.|

Best for Sg: ™ [0
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A 0/1 Knapsack Algorithm, /7 /h
‘Second Attempt ~

(iﬁ%ﬁ
| ®S,: Set of items numbered 1 to k. L

#Define B[k,w] = best selection from S,
with weight exactly equal to w

#Good news: this does have subproblem
optimality:

Blk,w] =

Blk—-1,w] if w>w
ax{B[k -1,w], Blk—1,w—w,]+b,} else

# I.e., best subset of S, with weight limit exactly w is
either the best subset of S, ; w/ weight w or the best
subset of S, ; w/ WEI%ht w-w, plus benefit of item k
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Towards the 0/1 Knapsack
“Algorithm

#(S,: Set of items numbered 1 to k = {(b,,w,), (b,W,};
o (bW}

@ Deﬁne B[k,j] = maximum benefit of optimal subset
from S, with total weight at most j

# Recursive definition of B[k,j]:

0 ifk=0
Blk, jl1= Blk-1,/] ifw, >
max{B[k -1, ], Blk-1,j—w,]+b} otherwise
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Towards the 0/1 Knapsack /A fh

Algorithm =
¢ >
NY 0 ifk=0 L;JQ
Blk, j1= Blk-1,/] it w, > j
max{B[k—1, ], Blk—1,j—w,]+b,} otherwise
Algorithm rec0IKnap(S, W):
® B[k J] = maximum beneﬁt Input: set S of k items w/ benefit b, b,, ...
it by,; weights wy, w,, ... Wy and max.
of optimal subset from S, weight W
with total weight at most j Output: benefit of best subset with

weight at most W

4% Recursive version of if =0 then {8 = emptyset}

algorlt_hm based on return 0
recursive subproblem remove item k (benefit-weight (b,.w,))
relationship. from S

% Not a dynamic if w, > W then {item k does not fit}

programming version. return rec0lKnap(S,W)
return max(rec01Knap(S, W),
rec01Knap(S,W-w,) +b,)
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Towards the 0/1 Knapsack

Algorithm v
¢ 0 ifk=0 CIE
B[k.ﬂ:{ 2

Blk-1,/] ifw, >
max{B[k -1, ], B[k—1,j-w,]+b,} otherwise

Algorithm rec01Knap(S, W):
Input: sct S of & items w/ benefit b, b,, ...,b,:
weights w, wy, ... w;; and max. weight W

4P

Modified recursive version
that stores subproblem
solutions

" ;"’OSF gggcr?ielgggbvz;l array weight at most W

= Then initialize all entries if k=0 then refurn 0
of Bi,j] to -1 remove item k (benefit-weight (b,,w,)) from S

= B stores results of if B[k-1, W)= -1 then B[k-1,W]=rec01Knap(S,W)
recursive calls if w, > I then

Entries in B are return Blk-1, W]

computed when if Blk-1, W= ,]=1 then

. n.ecessar)./ Blk-1,W - w,|=rec0IKnap(S,W -w,)

# This is considered a return max(Blk-1, W), BIk-1,W - w,]+b,)

Output: benefit of best subset with

dynamic programming
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The 0/1 Knapsack
“Algorithm- Iterative

0 ifk=0
Blk, j1= Blk-1,/] if w, > j
max{B[k -1, ], Blk-1,j-w,]+b,} otherwise

Algorithm 01Knapsack(S, W):
Input: sct S of n items w/ benefit b;
and weight w;; max. weight W

» Recursive computation

not necessary

# Compute iteratively,
bottom-up

# All B[k-1,*] must be for k < 1 to n do
computed before B[k, *] for j < 1to W do
because of subproblem if w, > then
dependencies Blkyj] < Blk-1,j]

# This is also dynamic else

R Blk,j] < max(B[k-1,],
programming. Blk-1j-w,]+b,) y

Output: benefit of best subset with
weight at most W

for w < 0 to I do {base case}
B[0,w] < 0

14
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The 0/1 Knapsack
'Algorithm- Iterative

ifk=0
Blk, j1= Blk—1,/] if w, >/
max {B[k—1, ], Blk—1,j-w,]+b,} otherwise

Algorithm 01Knapsack(S, W):

Not necessary to use all the

space

Keep track of one row at a

time

@ Overwrite results from
previous row as new values
computed

# Must compute right to left (W
downto 1) so that the next
row (B[k,*]) uses results from
the previous row (B[k-1,*]).

# Simplify this to get version in

Input: set S of n items w/ benefit b;
and weight w;; max. weight W
Output: benefit of best subset with
weight at most W
for w < 0 to I do {base case}
Btgs w] « 0
for ki < 1 to n do
for j < W downto / do
if w, > j then
Blderj] < Bl ]
else
BHej] < max(BH jl,
Bkt jow, | +h,)
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The 0/1 Knapsack
“Algorithm- Iterative

ifk=0
Blk, j1= Blk—1,/] ifw, >
max{B[k—1, ], Blk—1,j—w,]+b,} otherwise

Algorithm 01Knapsack(S, W):
Input: set S of n items w/ benefit b;

+ Not necessary to use all the and weight w;; max. weight W

space Output: benefit of best subset with
» Keep track of one row at a weight at most W
time for w « 0 to I do {base case}
@ Overwrite results from Blw] <0
previous row as new values for k < 1 to n do
computed . for j < ¥ downto I do
& (I\j/lust coTpute Rghthto left (W if w, > j then
ownto 1) so that the next Bljl < Bl

row (B[k,*]) uses results from
the previous row (B[k-1,*]).
# Simplify this to get version in

else

Bl jl < max(B[ ],
‘.ABI.,'WAI+bA)

book. Dynamic Pro e

The 0/1 Knapsack

“Algorithm

Blk,w]= {

4 The book version:
= When value does not change
from one row to the next,
then no need to assign same
value.
# Running time: O(nW).
4 Not a polynomial-time
algorithm if W is large
4 This is a pseudo-polynomial
time algorithm

Dynamic Progral

Blk—1,w] if w, >w
max {B[k —1,w], Blk—

Lw—w,]+b,} else

Algorithm 01Knapsack(S, W):
Input: set S of # items w/ benefit b;
and weight w;; max. weight W'
Output: benefit of best subset with
weight at most W

for w < 0 to /¥ do
Blw] « 0
for ki < 1 to n do
for w < /¥ downto w, do
if B[w-w,|+b, > B[w] then
Blw] < Blw-w,]+b,
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line-breaking problem

4 Given sequence of words from one paragraph
# Return where line-breaks should occur

4 Minimize empty space on each line (except
for last line of paragraph)
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line-breaking problem

# A simple version:

letters and spaces have equal width

input is set of 7 word lengths, w;, w,, ... w,
also given line width limit £.

each length w; includes one space

Placing w9rds i up to j on one line means

Zw, <L
k=i

J
Penalty for extra spaces X=L~ZW, is X3

k=i
Minimize sum of penalties from each line (no last
line penalty)
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'Example problem

4 Paragraph is:
Those who cannot remember the past are
condemned to repeat it.

4 Word lengths are 6,4,7,9,4,5,4,10,3,7 4.
4 Suppose line width L = 17.

4 Find an optimal way of separating words into
lines that minimizes penalty.
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linebreak DP

4 for i < n-1 downto 0 do
if (w[i] + w[i+1] + ... + w[n-1] <L)
lineB[i] «- 0;
else
mincost « Infinity;

<« 1;
while (k words starting from w[i] fit on a line)
// meaning (W[i] + w[i+1] + ... + w[i+k-1] <=L)
linecost «— penalty from placing words wli] to w[i+k-1]
on one line.
totalcost « linecost + lineB[i+k];
mincost « min(totalcost, mincost) // track min. so far
k++;
lineB[i]=mincost;
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linebreak DP cost

% O(nL); L is maximum width
% Linear if L is considered constant
% Space O(n).
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'Matrix Chain-Products "‘"’1‘

"4 Review: Matrix Multiplication.

s C=A*B
n Aisdxeand Bise x f f
e—1 (_H
Cli, j1= Y Ali,k1* B[k, /] B
k=0

n O(def) time (def multiplications) e

==l

H_/
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‘Matrix Chain-Products "‘"’1‘

"4 Matrix Chain-Product:
= Compute A=A *A *. *A
s As dI X d|+1
= Problem: How to parenthesize? [for
minimizing ops]
@ Example
= Bis3 x 100
= Cis 100 x 5
n Dis5x5
= (B*C)*D takes 1500 + 75 = 1575 ops
= B*(C*D) takes 1500 + 2500 = 4000 ops
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An Enumeration Approach

| % Matrix Chain-Product Alg.:
= Try all possible ways to parenthesize
A=AGFA* KA \
= Calculate number of ops for each one
= Pick the one that is best
4 Running time:
= The number of paranethesizations is equal
to the number of binary trees with n nodes
= This is exponential!

= It is called the Catalan number, and it is
almost 4.

= This is a terrible algorithm!
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#Idea #1: repeatedly select the product that
uses (up) the most operations.
# Counter-example:
n Ais10 x5
= Bis5x 10
« Cis10 x5
= Dis5x 10
= Greedy idea #1 gives (A*B)*(C*D), which takes
500+1000+500 = 2000 ops
» A*((B*C)*D) takes 500+250+250 = 1000 ops
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SZ
‘Another Greedy Approach

% Idea #2: repeatedly select the product that uses
the fewest operations.
4 Counter-example:
= Ais 101 x 11
= Bisl1l x9
= Cis9 x 100
= Dis 100 x 99
= Greedy idea #2 gives A*((B*C)*D)), which takes
109989+9900+108900=228789 ops
s (A*B)*(C*D) takes 9999+89991+89100=189090 ops
# The greedy approach is not giving us the
optimal value.
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A “Recursive” Approach

| & Define subproblems:
= Find the best parenthesization of A*A, *..*A,.

= Let N;; denote the number of operations done by this
subproblem.

= The optimal solution for the whole problem is Ny ;.

4 Subproblem optimality: The optimal solution can be

defined in terms of optimal subproblems
There has to be a final multiplication (root of the expression
tree) for the optimal solution.
Say, the final multiply is at index i: (Ag*... *A)*(A, *.. %A, 1)
Then the optimal solution N, ., is the sum of two optimal
subproblems, Ny; and Ny, ., plus the time for the last multiply.
If subproblems were not optimal, neither is global solution.
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A Characterizin
T K

Equation

# Define global optimal in terms of optimal subproblems,
by checking all possible locations for final multiply.
= Recall that A is a d, x d,,, dimensional matrix.
= So, a characterizing equation for N;; is the following:

N,

i,j =

min{N, + N,

i<k<j

+ didk+1dj+1}

+1,j

# Note that subproblems are not independent--the
subproblems overlap (are shared)
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A Dynamic Programming
“Algorithm

4 Construct optimal
subproblems Algorithm matrixChain(S):

“bottom-up.” Input: sequence S of n matrices to be multiplied
# N, /s are easy, so Output: number of operations in an optimal
stért with them paranthesization of §
#| Then do length for i < | to n-1 do
2,3,... subproblems, Ni<0
and so on. for b « 1 to n-1 do
@ Array N;;stores for i < 0 to n-b-1 do
solutions Jjith
# Running time: O(n?) N, « +infinity

for & < ito j-I do

Ny« mi"{fvi,,' s Nik TNisay i dyy di}
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A Dynamic Programming

“Algorithm

&

&

The bottom-up

construction fillsinthe  NJo 1 2 joe

N array by diagonals
N;; gets values from

pervious entries in i-th

row and j-th column

» Filling in each entry in
the N table takes O(n)

time.
Total run time: O(n3)

» Getting actual
parenthesization can be

done by remembering
“k” for each N entry

N, =min{N,, +N,
ick<j

Visualization

ij +1,/

+dd,d,,)

a1 answer

0

1

n-1
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