Transitive Closure

Given a digraph G, the transitive closure of G is the digraph G^* such that
- G^* has the same vertices as G
- If G has a directed path from u to v ($u \neq v$), G^* has a directed edge from u to v

The transitive closure provides reachability information about a digraph.

Computing the Transitive Closure

We can perform DFS starting at each vertex
- DFS(G, v) finds nodes reachable from v
- for each reachable node w, add edge (v, w) to G^*
- $O(n(n+m))$

Alternatively ... Use dynamic programming: The Floyd-Warshall Algorithm

Floyd-Warshall Transitive Closure

Idea #1: Number the vertices 1, 2, ..., n. Call them $v_1, v_2, ..., v_n$.

Idea #2: Consider paths that use only vertices $v_1, v_2, ..., v_k$ as intermediate vertices

On path P_2, intermediate vertices are X, W, Y.

Subproblem definition: G_k is a graph where
- directed edge (v_i, v_j) if G has a directed path from v_i to v_j with intermediate vertices in the set $\{v_1, v_2, ..., v_k\}$.
Floyd-Warshall Transitive Closure

- Constructing G_k from G_{k-1}:
 - For each pair of vertices (v_i, v_j) in G_{k-1}:
 - If (v_i, v_j) is in G_{k-1}, then it is also in G_k.
 - If (v_i, v_k) and (v_k, v_j) are in G_{k-1}, then (v_i, v_j) is in G_k.

 Uses only vertices numbered 1,...,k.

- (add this edge if it's not already in)

Floyd-Warshall’s Algorithm

- Floyd-Warshall’s algorithm numbers the vertices of G as $v_1, ..., v_n$ and computes a series of digraphs $G_0, ..., G_n$.
 - $G_0 = G$.
 - In phase k, digraph G_k is computed from G_{k-1}.

We have that $G_n = G*$.

Running time: $O(n^3)$, assuming areAdjacent is $O(1)$ (e.g., adjacency matrix).

Algorithm

```
Algorithm FloydWarshall(G)
Input digraph G
Output transitive closure G* of G
i ← 0
for all v ∈ G.vertices()
disjoint v as v_i
i ← i + 1
G_0 ← G
for k ← 1 to n do
  G_k ← G_{k-1}
  for i ← 1 to n (i ≠ k) do
    for j ← 1 to n (j ≠ i, k) do
      if G_{k-1}.areAdjacent(v_i, v_k) ∧ G_{k-1}.areAdjacent(v_k, v_j)
        G_k.insertDirectedEdge(v_i, v_j, k)
return G_n
```

Floyd-Warshall Example

- Diagram showing vertices and edges in a graph with vertices SFO, LAX, JFK, BOS, ORD, MIA, LAX, SFO, ORD.
Floyd-Warshall, Iteration 1

Floyd-Warshall, Iteration 2

Floyd-Warshall, Iteration 3
Floyd-Warshall, Conclusion

[Diagram of a network with labeled nodes and arrows indicating connections.]