Minimum Spanning Trees

Minimum Spanning Trees v1.3 1

Outline and Reading (
& 4 %
4 Minimum Spanning Trees (§7.3)

= Definitions
= A crucial fact

# The Prim-Jarnik Algorithm (§7.3.2)

# Kruskal's Algorithm (§7.3.1)

# Baruvka's Algorithm (§7.3.3)
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‘Minimum Spanning Tree

Spanning subgraph
= Subgraph of a graph G
containing all the vertices of G
Spanning tree
= Spanning subgraph that is
itself a (free) tree
Minimum spanning tree (MST)
= Spanning tree of a weighted
graph with minimum total
edge weight
4 Applications
= Communications networks
= Transportation networks
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Prim-Jarnik’s Algorithm

@ Like Dijkstra’s algorithm only simpler

4% Grow the MST from arbitrary vertex s

% Greedily add vertices into cloud based on distance to any
vertex in cloud

4 At v, need to store d(v) = minimum weight edge
connecting v to a cloud vertex

4 At each step:

= We add to the cloud the
vertex u outside the cloud
with the smallest distance
label

= We update the labels of the
vertices adjacent to u (edge
relaxation)
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# Consider an edge e =(u,z)
such that

= uis the vertex most recently
added to the cloud i
= zis notin the cloud

@ The relaxation of edge e
updates distance d(z) as
follows:

d(z) < min{d(z),e}
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Prim’s Example
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'Example (contd.)
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Cycle Property

Cycle Property:
= Let 7 be a minimum
spanning tree of a
weighted graph G
u Let e be an edge of G
that is not in 7and C let
be the cycle formed by e

with 7 Replacing f with e yields
= Forevery edge fof C, ﬂ a better spanning tree
weight(f) < weight(e)
Proof:

= By contradiction

u I weight(f) > weight(e) we
can get a spanning tree
of smaller weight by
replacing e with f
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Correctness of Prim’s

Let T, be tree produced by Prim’s after kth
iteration. Let G, be the the subgraph of G
induced by T,. Then T, is a MST of G,.
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Prim-Jarnik’s Algorithm (cont.)

% A priority queue stores Algorithm PrimJarnikMST(G)
the vertices outside the ?:a“f:n'e‘:ﬂ({’t:*}?”“‘ priority queue
K )
cloud for all v € G.vertices()
= Key: distance if v=s
= Element: vertex els\:tl)z.\mnce(v, 0)
# Locator-based methods setDistance(v, ©)
o . setTreeEdge(v, D)
" fg(\:;_g:‘)‘) returns.a 1 < Q.insert(getDistance(v), v)
setLocator(v,[)
. repln('el(ey(l,l«)_ changes while —Q.isEmpiy()
the key of an item u < Q.removeMin()
# We store three labels fol:z:E (L’ € (:.u{cnlﬂuikdga\'(u)
a | z .opposite(u,e)
with each vertex: ,f& weight(e)
Distance if r < getDistance(z)
" T dge in MST J(’f[;i.\'ﬂln(‘t’(.',,l‘)
= Iree edgein setTreeEdge(z,e)
= Locator in priority queue Q.replaceKey(getLocator(z),r)
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Example graph

Start at 1, run Prim’s
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“Analysis

4 Graph operations
= Method incidentEdges is called once for each vertex
4 Label operations

= We set/get the distance, tree and locator labels of vertex z O(deg(z))
times

= Setting/getting a label takes O(1) time
4 Priority queue operations

= Each vertex inserted and removed once taking O(log n) time each time
for 2n times.

= The key of a vertex w in the priority queue is modified at most deg(w)
times, where each key change takes O(log n) time
4 Prim-Jarnik’s algorithm runs in O((n + m) log n) time provided the
graph is represented by the adjacency list structure
4 The running time is O(m log n) since the graph is connected
4 What is running time for unsorted-sequence based priority queue?
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Kruskal’s MST algorithm

% Another greedy strategy for finding MST
# Gradually turn forest into tree as edges are added
4 Add cheapest edge possible
= Don't add edge if it forms cycle
#® Overview:
kruskalMST (Graph G)
Initalize F (forest) to empty.
Place all edges in PQ according to cost
For each edge (u,v) in PQ (in sorted order)
if (u,v) does not make a cycle in F
add (u,v)to F
return F;
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Partition Property

Partition Property:

= Consider a partition of the vertices of
G into subsets U and V

= Let ¢ be an edge of minimum weight
across the partition

= There is a minimum spanning tree of
G containing edge e

Proof: ﬂReplacingfwith eyields

= Let 7 be an MST of G another MST

= If T does not contain e, consider the
cycle € formed by e with Tand let f
be an edge of € across the partition

= By the cycle property,

weight(f) < weight(e)

= Thus, weight(f) = weight(e)

= We obtain another MST by replacing
f with e
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Kruskal’s Algorithm

4 Each vertex starts in its Algorithm KruskalMST(G)

it for each vertex Vin G do
own cloud (a partltlon) define a Cloud(v) of € {v}

4 Clouds merge together as let Q be a priority queue.
edges are added Insert all edges into Q using their
;. weights as the key
# A priority queue stores TED
edges in weight order while T has fewer than n-1 edges do
. e edge e = T.removeMin()
= Key: weight Let u, v be the endpoints of e
= Element: edge if Cloud(v) # Cloud(u) then
# Only edges between Addedgeeto T
C|0L\I/C|S v?ill not form Merge Cloud(v) and Cloud(u)

return 7'

cycles
= add cheapest edge
between clouds
@ At end of algorithm:
= All vertices in one cloud
= Edges added form MST
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Kruskal
Examplg//zg o
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Example
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Data Structure for
Kruskal Algortihm

# The algorithm maintains a forest of trees
4 An edge is accepted it if connects distinct trees

% We need a data structure that maintains a partition,
i.e., a collection of disjoint sets, with the operations:

-find(u): return the set storing u

-union(u,v): replace the sets storing u and v with
their union
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Representation of a
Partition

# Each set is stored in a sequence
4 Each element has a reference back to the set
= operation find(u) takes O(1) time, and returns the set of
which u is a member.
= in operation union(u,v), we move the elements of the
smaller set to the sequence of the larger set and update
their references
= the time for operation union(u,v) is min(n,,n,), where n,
and n, are the sizes of the sets storing u and v
# Whenever an element is processed, it goes into a
set of size at least double, hence each element is
processed at most log n times
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Partition-Based
Implementation

4 A partition-based version of Kruskal’s Algorithm
performs cloud merges as unions and tests as finds.
Algorithm Kruskal(G):
Input: A weighted graph G.
Output: An MST T for G.
Let P be a partition of the vertices of G, where each vertex forms a separate set.

Let Q be a priority queue storing the edges of G, sorted by their weights
Let T be an initially-empty tree
while O is not empty do

(u,v) < Q.removeMinElement()

if P.find(x) != P.find(v) then Running time:
Add (uy)to T 0
m log n
P.union(z,v) ( g )
return 7'
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‘Baruvka'’s Algorithm

# Like Kruskal’s Algorithm, Baruvka'’s algorithm grows many
“clouds” at once.

Algorithm BaruvkaMST(G)
T € V {just the vertices of G}
while 7 has fewer than n-1 edges do
for each connected component C'in 7 do
Let edge e be the smallest-weight edge from C to another component in 7.
if ¢ is not already in 7 then
Add edgeeto T
return 7'

4 Each iteration of the while-loop halves the number of connected
components in T.
= The running time is O(m log n).
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Baruvka
Example
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