Minimum Spanning Trees

Minimum Spanning Trees v1.3 1

Outline and Reading (
& 4 %
4 Minimum Spanning Trees (§7.3)

= Definitions
= A crucial fact

The Prim-Jarnik Algorithm (§7.3.2)

Kruskal's Algorithm (§7.3.1)

Baruvka's Algorithm (§7.3.3)

Minimum Spanning Trees v1.3 2

‘Minimum Spanning Tree

Spanning subgraph
= Subgraph of a graph G
containing all the vertices of G
Spanning tree
= Spanning subgraph that is
itself a (free) tree
Minimum spanning tree (MST)
= Spanning tree of a weighted
graph with minimum total
edge weight
4 Applications
= Communications networks
= Transportation networks

Minimum Spanning Trees v1.3 3

Prim-Jarnik’s Algorithm

@ Like Dijkstra’s algorithm only simpler

4% Grow the MST from arbitrary vertex s

% Greedily add vertices into cloud based on distance to any
vertex in cloud

4 At v, need to store d(v) = minimum weight edge
connecting v to a cloud vertex

4 At each step:

= We add to the cloud the
vertex u outside the cloud
with the smallest distance
label

= We update the labels of the
vertices adjacent to u (edge
relaxation)

Minimum Spanning Trees VI.3 4

Consider an edge e =(u,z)
such that

= uis the vertex most recently
added to the cloud i
= zis notin the cloud

@ The relaxation of edge e
updates distance d(z) as
follows:

d(z) < min{d(z),e}

Minimum Spanning Trees v1.3 5

Prim’s Example

Minimum Spanning Trees v1.3 6

'Example (contd.)

Minimum Spanning Trees v1.3 7

Cycle Property

Cycle Property:
= Let 7 be a minimum
spanning tree of a
weighted graph G
u Let e be an edge of G
that is not in 7and C let
be the cycle formed by e

with 7 Replacing f with e yields
= Forevery edge fof C, ﬂ a better spanning tree
weight(f) < weight(e)
Proof:

= By contradiction

u I weight(f) > weight(e) we
can get a spanning tree
of smaller weight by
replacing e with f

Minimum Spanning Trees v1.3 8

Correctness of Prim’s

Let T, be tree produced by Prim’s after kth
iteration. Let G, be the the subgraph of G
induced by T,. Then T, is a MST of G,.

Minimum Spanning Trees v1.3 9

Prim-Jarnik’s Algorithm (cont.)

% A priority queue stores Algorithm PrimJarnikMST(G)
the vertices outside the ?:a“f:n'e‘:ﬂ({’t:*}?”“‘ priority queue
K)
cloud for all v € G.vertices()
= Key: distance if v=s
= Element: vertex els\:tl)z.\mnce(v, 0)
Locator-based methods setDistance(v, ©)
o . setTreeEdge(v, D)
" fg(\:;_g:‘)‘) returns.a 1 < Q.insert(getDistance(v), v)
setLocator(v,[)
. repln('el(ey(l,l«)_ changes while —Q.isEmpiy()
the key of an item u < Q.removeMin()
We store three labels fol:z:E (L’ € (:.u{cnlﬂuikdga\'(u)
a | z .opposite(u,e)
with each vertex: ,f& weight(e)
Distance if r < getDistance(z)
" T dge in MST J(’f[;i.\'ﬂln(‘t’(.',,l‘)
= Iree edgein setTreeEdge(z,e)
= Locator in priority queue Q.replaceKey(getLocator(z),r)
Minimum Spanning Trees v1.3 10

Example graph

Start at 1, run Prim’s

Minimum Spanning Trees v1.3 11

“Analysis

4 Graph operations
= Method incidentEdges is called once for each vertex
4 Label operations

= We set/get the distance, tree and locator labels of vertex z O(deg(z))
times

= Setting/getting a label takes O(1) time
4 Priority queue operations

= Each vertex inserted and removed once taking O(log n) time each time
for 2n times.

= The key of a vertex w in the priority queue is modified at most deg(w)
times, where each key change takes O(log n) time
4 Prim-Jarnik’s algorithm runs in O((n + m) log n) time provided the
graph is represented by the adjacency list structure
4 The running time is O(m log n) since the graph is connected
4 What is running time for unsorted-sequence based priority queue?

Minimum Spanning Trees v1.3 12

Kruskal’s MST algorithm

% Another greedy strategy for finding MST
Gradually turn forest into tree as edges are added
4 Add cheapest edge possible
= Don't add edge if it forms cycle
#® Overview:
kruskalMST (Graph G)
Initalize F (forest) to empty.
Place all edges in PQ according to cost
For each edge (u,v) in PQ (in sorted order)
if (u,v) does not make a cycle in F
add (u,v)to F
return F;

Minimum Spanning Trees v1.3 13

Partition Property

Partition Property:

= Consider a partition of the vertices of
G into subsets U and V

= Let ¢ be an edge of minimum weight
across the partition

= There is a minimum spanning tree of
G containing edge e

Proof: ﬂReplacingfwith eyields

= Let 7 be an MST of G another MST

= If T does not contain e, consider the
cycle € formed by e with Tand let f
be an edge of € across the partition

= By the cycle property,

weight(f) < weight(e)

= Thus, weight(f) = weight(e)

= We obtain another MST by replacing
f with e

Minimum Spanning Trees v1.3 14

Kruskal’s Algorithm

4 Each vertex starts in its Algorithm KruskalMST(G)

it for each vertex Vin G do
own cloud (a partltlon) define a Cloud(v) of € {v}

4 Clouds merge together as let Q be a priority queue.
edges are added Insert all edges into Q using their
;. weights as the key
A priority queue stores TED
edges in weight order while T has fewer than n-1 edges do
. e edge e = T.removeMin()
= Key: weight Let u, v be the endpoints of e
= Element: edge if Cloud(v) # Cloud(u) then
Only edges between Addedgeeto T
C|0L\I/C|S v?ill not form Merge Cloud(v) and Cloud(u)

return 7'

cycles
= add cheapest edge
between clouds
@ At end of algorithm:
= All vertices in one cloud
= Edges added form MST

Minimum Spanning Trees v1.3 15

Kruskal
Examplg//zg o

Minimum Spanning Trees v1.3 16

Minimum Spanning Trees v1.3 17

Example

Minimum Spanning Trees v1.3 18

Minimum Spanning Trees v1.3 22

Minimum Spanning Trees v1.3 23

Minimum Spanning Trees v1.3 24

Minimum Spanning Trees v1.3 25

Minimum Spanning Trees v1.3 26

Minimum Spanning Trees v1.3 27

Minimum Spanning Trees v1.3 28

Minimum Spanning Trees v1.3 29

Data Structure for
Kruskal Algortihm

The algorithm maintains a forest of trees
4 An edge is accepted it if connects distinct trees

% We need a data structure that maintains a partition,
i.e., a collection of disjoint sets, with the operations:

-find(u): return the set storing u

-union(u,v): replace the sets storing u and v with
their union

Minimum Spanning Trees v1.3 30

Representation of a
Partition

Each set is stored in a sequence
4 Each element has a reference back to the set
= operation find(u) takes O(1) time, and returns the set of
which u is a member.
= in operation union(u,v), we move the elements of the
smaller set to the sequence of the larger set and update
their references
= the time for operation union(u,v) is min(n,,n,), where n,
and n, are the sizes of the sets storing u and v
Whenever an element is processed, it goes into a
set of size at least double, hence each element is
processed at most log n times

Minimum Spanning Trees v1.3 31

Partition-Based
Implementation

4 A partition-based version of Kruskal’s Algorithm
performs cloud merges as unions and tests as finds.
Algorithm Kruskal(G):
Input: A weighted graph G.
Output: An MST T for G.
Let P be a partition of the vertices of G, where each vertex forms a separate set.

Let Q be a priority queue storing the edges of G, sorted by their weights
Let T be an initially-empty tree
while O is not empty do

(u,v) < Q.removeMinElement()

if P.find(x) != P.find(v) then Running time:
Add (uy)to T 0
m log n
P.union(z,v) (g)
return 7'
Minimum Spanning Trees v1.3 32

‘Baruvka'’s Algorithm

Like Kruskal’s Algorithm, Baruvka'’s algorithm grows many
“clouds” at once.

Algorithm BaruvkaMST(G)
T € V {just the vertices of G}
while 7 has fewer than n-1 edges do
for each connected component C'in 7 do
Let edge e be the smallest-weight edge from C to another component in 7.
if ¢ is not already in 7 then
Add edgeeto T
return 7'

4 Each iteration of the while-loop halves the number of connected
components in T.
= The running time is O(m log n).

Minimum Spanning Trees v1.3 33

Baruvka
Example

Minimum Spanning Trees v1.3 34

Minimum Spanning Trees v1.3

35

Minimum Spanning Trees v1.3

36

