Quick-Sort

(225224 (29529
k=2]) [b=29

Outline and Reading

#Quick-sort (§4.3)
= Algorithm
= Partition step
= Quick-sort tree
= Execution example
4 Analysis of quick-sort (4.3.1)

‘Quick-Sort

Quick-sort is a randomized
sorting algorithm based D
on the divide-and-conquer D Ot O
paradigm:

= Divide: pick a random
element x (called pivot) and

partition S into @E |:|

+ L elements less than x

+ E elements equal x L E G
+ G elements greater than x
= Recur: sort Land G
= Conquer: join L, E and G 0 D |:|
More Sorting v 1.1 3

More Sorting v 1.1 2
Partiti T
We partition an input Algorithm partition(S, p)
sequence as follows: Input sequence S, position p of pivot

Output subsequences L, E, G of the
clements of S less than, equal to,
or greater than the pivot, resp.

= We remove, in turn, each
element y from § and

= Weinsertyinto L, E or G,
depending on the result of
the comparison with the
pivot x

Each insertion and removal

L, E, G < empty sequences
X « S.remove(p)
while —S.isEmpty()

¥ < S.remove(S.first())

B A ify<
is at the beginning or at the e
L.insertLast(y)
end of a sequence, and e
else if y = x

hence takes O(1) time E.insertLasi(y)
Thus, the partition step of else {y>x) -

quick-sort takes O(n) time G.insertLast(y)
return L, E, G

More Sorting v 1.1 4

Quick-Sort Tree

% An execution of quick-sort is depicted by a binary tree
= Each node represents a recursive call of quick-sort and stores
+ Unsorted sequence before the execution and its pivot
+ Sorted sequence at the end of the execution
= The root is the initial call
= The leaves are calls on subsequences of size 0 or 1

(74962>24679]

(42> 24]

=2 (] [629

More Sorting v 1.1 5

Execution Example

#Pivot selection

(72943761)

More Sorting v 1.1 6

Execution Example (cont.)

@ Partition, recursive call, pivot selection

(72943761 J

More Sorting v 1.1 7

Execution Example (cont.)

#Partition, recursive call, base case

(72943761 J

More Sorting v 1.1 8

Execution Example (cont.)

#Recursive call, ..., base case, join

(72943761 J

(243151234

-
TS CF =3 1) S R S
=
More Sorting v 1.1 9

Execution Example (cont.)

#Recursive call, pivot selection

(72943761 J
>
(24a3151234] (792 J
(> @E2a29
-
More Sorting v 1.1 10

Execution Example (cont.)

#Partition, ..., recursive call, base case

(72943761 J
(243151234] 797
NN
(151] (43534 (] 959
T 653

More Sorting v 1.1 11

Execution Example (cont.)

#Join, join
(72943761512346779]
- A
(243151234 797 - 779

(151] (43534 (] 059
(] -4
More Sorting v 1.1 12

‘Worst-case Running Time

#® The worst case for quick-sort occurs when the pivot is the unique
minimum or maximum element
4 One of L and G has size n — 1 and the other has size 0
4 The running time is proportional to the sum
n+m-1)+...+2+1
% Thus, the worst-case running time of quick-sort is O(n?)
depth time

More Sorting v 1.1 13

Expected Running Time

4 Consider a recursive call of quick-sort on a sequence of size s
= Good call: the sizes of L and G are each less than 3s/4
= Bad call: one of L and G has size greater than 3s/4

72943761
& > Y
(31) Gz)
Good call Bad call
A call is good with probability 1/2
= 1/2 of the possible pivots cause good calls:
(12345678910111213141516 |
Bad pivots Good pivots Bad pivots
More Sorting v 1.1 14

Sorting Lower Bound

More Sorting v 1.1 15

Comparison-Based
Sorting (§ 4.4)

Many sorting algorithms are comparison based.
= They sort by making comparisons between pairs of objects
= Examples: bubble-sort, selection-sort, insertion-sort, heap-sort,
merge-sort, quick-sort, ...
Let us therefore derive a lower bound on the running
time of any algorithm that uses comparisons to sort n
elements, Xy, X5, ..., X,.

yes

More Sorting v 1.1 16

Counting Comparisons

| @Letus just count comparisons then.

Each possible run of the algorithm corresponds
to a root-to-leaf path in a decision tree

More Sorting v 1.1 17

‘Decision Tree Height

The height of this decision tree is a lower bound on the running time
Every possible input permutation must lead to a separate leaf
output.
= If not, some input ...4...5... would have same output ordering as
...5...4..., which would be wrong.
Since there are n!=1*%2*.*n |eaves, the height is at least log (n!)

minimum height (time)

log (n!)

n!
More Sorting v 1.1 1 18

‘The Lower Bound

4 Any comparison-based sorting algorithms takes at
least log (n!) time

Therefore, any such algorithm takes time at least

n

log (n!) > log [gjz =(n/2)log(n/2).

That is, any comparison-based sorting algorithm must
run in Q(n log n) time.

More Sorting v 1.1 19

Bucket-Sort and Radix-Sort

PEILE R EE E R EE
0123456789

More Sorting v 1.1 20

Bucket-Sort (§ 4.5.1)

Let be S be a sequence of n (key, element)
items with keys in the range [0, N - 1]

Bucket-sort uses the keys as indices into an
auxiliary array B of sequences (buckets); N
total buckets.

Phase 1: Empty sequence S by moving each item
(k, 0) into its bucket B[k]

Phase 2: For i=0, ..., N— 1, move the items of
bucket B[i] to the end of sequence S

More Sorting v 1.1 21

AENEINEIEIEIREIEL
01 2 3 4 5 6 7 8 9
ﬂPhaseZ

More Sorting v 1.1 22

«
Bucket-Sort (§ 4.5.1)

Phase 1: Move items into Algorithm bucketSort(S, N)
buckets Input sequence S of (key, element)
Phase 2: Move buckets into items with keys in the range

nce, in order [0.N-11
sequence, In order. Output sequence S sorted by

® Analysis: increasing keys
. B « array of N empty sequences
= Phase 1 takes O(n) tlme' while —S.isEmpiy()
= Phase 2 takes O(n + N) time e S first()
Bucket-sort takes O(n + N) (k, 0) « S.remove(f)
time Bl[k).insertLast((k, 0))

fori—0OtoN—-1
Correctness: while —Bl[i].isEmpty()
= What are loop invariants for f < Blil.first()
Phase 1 and 2? (k, 0) < Blil.remove(f)
S.insertLast((k, 0))

More Sorting v 1.1 23

Bucket-Sort Properties

#Keys have a fixed range of values.
#Keys are NOT compared.
#bucketSort is a stable sort.

4#Stable Sort Property:

= Any two items with the same key will be in
the same relative order after sorting.

More Sorting v 1.1 24

‘Lexicographic Order

A d-tuple is a sequence of d keys (k,, k, ..., k,;), where

key k; is said to be the i-th dimension of the tuple
% Example:

= The Cartesian coordinates of a point in space are a 3-tuple
4 The lexicographic order of two d-tuples is recursively

defined as follows

(X1, X5, 000y X)) < (V1 P25 0005 V)
f=4
X <PV X =PA (X, e, X)) < (g, e V)
I.e., the tuples are compared by the first dimension,
then by the second dimension, etc.

More Sorting v 1.1 25

‘Radix-Sort (§ 4

Radix-sort uses
bucket-sort to sort
each dimension in a
stable manner.

Radix-sort is
applicable to tuples
where the keys in
each dimension i
are integers in the
range [0, N — 1]

Radix-sort runs in
time O(d(n + N))

5.2)

Algorithm radixSort(S, N)

Input sequence S of d-tuples such
that (0, ..., 0) < (x}, ..., x,) and
(X v X) SN =1, ey N= 1)
for each tuple (x,, ..., x,) in.§

Output sequence S sorted in
lexicographic order

for i < d downto |
bucketSor«(S, N, i)
(bucketSorts S on dimension #)

Example:

(7.4,6) (5,1,5) (2.4.6) (2, 1,4) (3,2, 4)
(2, 1,4) (3,2, 4) (5,1,5) (7,4,6) (2,4,6)
(2,1,4) (5,1,5) (3,2, 4) (7,4,6) (2,4,6)
(2, 1,4) (2,4,6) (3,2, 4) (5.1,5) (7,4,6)

More Sorting v 1.1 26

Radix-Sort for
Base 10 Numbers g 3l

Consider a sequence of n

d-digit integers
X=X, o0 XX,

4 We represent each element Algorithm basel ORadixSort(S)

as a d-tuple of integers in Input scquence § of d-digit
integers

g:]eckrgggsgr‘[to\,l\l?t]ha[r\]’d*al%ply Output sequence S sorted

4 This application of the
radix-sort algorithm runs in
O(dn) time

4 For example, we can sort a
sequence of 10-digit
integers in linear time

replace each element x
of § with the item (0, x)
fori< Otod—1
replace the key k of
each item (k, x) of §
with digit x; of x
bucketSort(S, 10)

More Sorting v 1.1 27

More Sorting v 1.1 28

