
Sorting part 2 1/30/2003 7:01 PM

1

More Sorting v 1.1 1

Quick-Sort

7 4 9 6 2 → 2 4 6 7 9

4 2 → 2 4 7 9 → 7 9

2 → 2 9 → 9

More Sorting v 1.1 2

Outline and Reading

Quick-sort (§4.3)
Algorithm
Partition step
Quick-sort tree
Execution example

Analysis of quick-sort (4.3.1)

More Sorting v 1.1 3

Quick-Sort
Quick-sort is a randomized
sorting algorithm based
on the divide-and-conquer
paradigm:

Divide: pick a random
element x (called pivot) and
partition S into

L elements less than x
E elements equal x
G elements greater than x

Recur: sort L and G
Conquer: join L, E and G

x

x

L GE

x

More Sorting v 1.1 4

Partition
We partition an input
sequence as follows:

We remove, in turn, each
element y from S and
We insert y into L, E or G,
depending on the result of
the comparison with the
pivot x

Each insertion and removal
is at the beginning or at the
end of a sequence, and
hence takes O(1) time
Thus, the partition step of
quick-sort takes O(n) time

Algorithm partition(S, p)
Input sequence S, position p of pivot
Output subsequences L, E, G of the

elements of S less than, equal to,
or greater than the pivot, resp.

L, E, G ← empty sequences
x ← S.remove(p)
while ¬S.isEmpty()

y ← S.remove(S.first())
if y < x

L.insertLast(y)
else if y = x

E.insertLast(y)
else { y > x }

G.insertLast(y)
return L, E, G

More Sorting v 1.1 5

Quick-Sort Tree
An execution of quick-sort is depicted by a binary tree

Each node represents a recursive call of quick-sort and stores
Unsorted sequence before the execution and its pivot
Sorted sequence at the end of the execution

The root is the initial call
The leaves are calls on subsequences of size 0 or 1

7 4 9 6 2 → 2 4 6 7 9

4 2 → 2 4 7 9 → 7 9

2 → 2 9 → 9

More Sorting v 1.1 6

Execution Example
Pivot selection

7 2 9 4 → 2 4 7 9

2 → 2

7 2 9 4 3 7 6 1 → 1 2 3 4 6 7 8 9

3 8 6 1 → 1 3 8 6

3 → 3 8 → 89 4 → 4 9

9 → 9 4 → 4

Sorting part 2 1/30/2003 7:01 PM

2

More Sorting v 1.1 7

Execution Example (cont.)
Partition, recursive call, pivot selection

2 4 3 1 → 2 4 7 9

9 4 → 4 9

9 → 9 4 → 4

7 2 9 4 3 7 6 1 → 1 2 3 4 6 7 8 9

3 8 6 1 → 1 3 8 6

3 → 3 8 → 82 → 2

More Sorting v 1.1 8

Execution Example (cont.)
Partition, recursive call, base case

2 4 3 1 →→ 2 4 7

1 → 1 9 4 → 4 9

9 → 9 4 → 4

7 2 9 4 3 7 6 1 → → 1 2 3 4 6 7 8 9

3 8 6 1 → 1 3 8 6

3 → 3 8 → 8

More Sorting v 1.1 9

Execution Example (cont.)
Recursive call, …, base case, join

3 8 6 1 → 1 3 8 6

3 → 3 8 → 8

7 2 9 4 3 7 6 1 → 1 2 3 4 6 7 8 9

2 4 3 1 → 1 2 3 4

1 → 1 4 3 → 3 4

9 → 9 4 → 4

More Sorting v 1.1 10

Execution Example (cont.)

Recursive call, pivot selection

7 9 7 1 → 1 3 8 6

8 → 8

7 2 9 4 3 7 6 1 → 1 2 3 4 6 7 8 9

2 4 3 1 → 1 2 3 4

1 → 1 4 3 → 3 4

9 → 9 4 → 4

9 → 9

More Sorting v 1.1 11

Execution Example (cont.)
Partition, …, recursive call, base case

7 9 7 1 → 1 3 8 6

8 → 8

7 2 9 4 3 7 6 1 → 1 2 3 4 6 7 8 9

2 4 3 1 → 1 2 3 4

1 → 1 4 3 → 3 4

9 → 9 4 → 4

9 → 9

More Sorting v 1.1 12

Execution Example (cont.)
Join, join

7 9 7 → 17 7 9

8 → 8

7 2 9 4 3 7 6 1 → 1 2 3 4 6 7 7 9

2 4 3 1 → 1 2 3 4

1 → 1 4 3 → 3 4

9 → 9 4 → 4

9 → 9

Sorting part 2 1/30/2003 7:01 PM

3

More Sorting v 1.1 13

Worst-case Running Time
The worst case for quick-sort occurs when the pivot is the unique
minimum or maximum element
One of L and G has size n − 1 and the other has size 0
The running time is proportional to the sum

n + (n − 1) + … + 2 + 1
Thus, the worst-case running time of quick-sort is O(n2)

timedepth

1n − 1

……

n − 11

n0

…

More Sorting v 1.1 14

Expected Running Time
Consider a recursive call of quick-sort on a sequence of size s

Good call: the sizes of L and G are each less than 3s/4
Bad call: one of L and G has size greater than 3s/4

A call is good with probability 1/2
1/2 of the possible pivots cause good calls:

7 9 7 1 → 1

7 2 9 4 3 7 6 1 9

2 4 3 1 7 2 9 4 3 7 61

7 2 9 4 3 7 6 1

Good call Bad call

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Good pivotsBad pivots Bad pivots

More Sorting v 1.1 15

Sorting Lower Bound

More Sorting v 1.1 16

Comparison-Based
Sorting (§ 4.4)

Many sorting algorithms are comparison based.
They sort by making comparisons between pairs of objects
Examples: bubble-sort, selection-sort, insertion-sort, heap-sort,
merge-sort, quick-sort, ...

Let us therefore derive a lower bound on the running
time of any algorithm that uses comparisons to sort n
elements, x1, x2, …, xn.

Is xi < xj?

yes

no

More Sorting v 1.1 17

Counting Comparisons
Let us just count comparisons then.
Each possible run of the algorithm corresponds
to a root-to-leaf path in a decision tree

xi < xj ?

xa < xb ?

xm < xo ? xp < xq ?xe < xf ? xk < xl ?

xc < xd ?

More Sorting v 1.1 18

Decision Tree Height
The height of this decision tree is a lower bound on the running time
Every possible input permutation must lead to a separate leaf
output.

If not, some input …4…5… would have same output ordering as
…5…4…, which would be wrong.

Since there are n!=1*2*…*n leaves, the height is at least log (n!)
minimum height (time)

log (n!)

xi < xj ?

xa < xb ?

xm < xo ? xp < xq ?xe < xf ? xk < xl ?

xc < xd ?

n!

Sorting part 2 1/30/2003 7:01 PM

4

More Sorting v 1.1 19

The Lower Bound
Any comparison-based sorting algorithms takes at
least log (n!) time
Therefore, any such algorithm takes time at least

That is, any comparison-based sorting algorithm must
run in Ω(n log n) time.

).2/(log)2/(
2

log)!(log
2

nnnn
n

=





≥

More Sorting v 1.1 20

Bucket-Sort and Radix-Sort

0 1 2 3 4 5 6 7 8 9
B

1, c 7, d 7, g3, b3, a 7, e

∅ ∅ ∅ ∅ ∅ ∅ ∅

More Sorting v 1.1 21

Bucket-Sort (§ 4.5.1)

Let be S be a sequence of n (key, element)
items with keys in the range [0, N − 1]
Bucket-sort uses the keys as indices into an
auxiliary array B of sequences (buckets); N
total buckets.
Phase 1: Empty sequence S by moving each item

(k, o) into its bucket B[k]
Phase 2: For i = 0, …, N − 1, move the items of

bucket B[i] to the end of sequence S

More Sorting v 1.1 22

Example
Key range [0, 9]

7, d 1, c 3, a 7, g 3, b 7, e

1, c 3, a 3, b 7, d 7, g 7, e

Phase 1

Phase 2
0 1 2 3 4 5 6 7 8 9

B

1, c 7, d 7, g3, b3, a 7, e

∅ ∅ ∅ ∅ ∅ ∅ ∅

More Sorting v 1.1 23

Bucket-Sort (§ 4.5.1)
Phase 1: Move items into

buckets
Phase 2: Move buckets into

sequence, in order.

Analysis:
Phase 1 takes O(n) time
Phase 2 takes O(n + N) time

Bucket-sort takes O(n + N)
time
Correctness:

What are loop invariants for
Phase 1 and 2?

Algorithm bucketSort(S, N)
Input sequence S of (key, element)

items with keys in the range
[0, N − 1]

Output sequence S sorted by
increasing keys

B ← array of N empty sequences
while ¬S.isEmpty()

f ← S.first()
(k, o) ← S.remove(f)
B[k].insertLast((k, o))

for i ← 0 to N − 1
while ¬B[i].isEmpty()

f ← B[i].first()
(k, o) ← B[i].remove(f)
S.insertLast((k, o))

More Sorting v 1.1 24

Bucket-Sort Properties

Keys have a fixed range of values.
Keys are NOT compared.
bucketSort is a stable sort.
Stable Sort Property:

Any two items with the same key will be in
the same relative order after sorting.

Sorting part 2 1/30/2003 7:01 PM

5

More Sorting v 1.1 25

Lexicographic Order
A d-tuple is a sequence of d keys (k1, k2, …, kd), where
key ki is said to be the i-th dimension of the tuple
Example:

The Cartesian coordinates of a point in space are a 3-tuple

The lexicographic order of two d-tuples is recursively
defined as follows

(x1, x2, …, xd) < (y1, y2, …, yd)
⇔

x1 < y1 ∨ x1 = y1 ∧ (x2, …, xd) < (y2, …, yd)

I.e., the tuples are compared by the first dimension,
then by the second dimension, etc.

More Sorting v 1.1 26

Radix-Sort (§ 4.5.2)
Radix-sort uses
bucket-sort to sort
each dimension in a
stable manner.
Radix-sort is
applicable to tuples
where the keys in
each dimension i
are integers in the
range [0, N − 1]
Radix-sort runs in
time O(d(n + N))

Algorithm radixSort(S, N)
Input sequence S of d-tuples such

that (0, …, 0) ≤ (x1, …, xd) and
(x1, …, xd) ≤ (N − 1, …, N − 1)
for each tuple (x1, …, xd) in S

Output sequence S sorted in
lexicographic order

for i ← d downto 1
bucketSort(S, N, i)
(bucketSorts S on dimension i)

Example:
(7,4,6) (5,1,5) (2,4,6) (2, 1, 4) (3, 2, 4)
(2, 1, 4) (3, 2, 4) (5,1,5) (7,4,6) (2,4,6)
(2, 1, 4) (5,1,5) (3, 2, 4) (7,4,6) (2,4,6)
(2, 1, 4) (2,4,6) (3, 2, 4) (5,1,5) (7,4,6)

More Sorting v 1.1 27

Radix-Sort for
Base 10 Numbers

Consider a sequence of n
d-digit integers

x = xd − 1 … x1x0
We represent each element
as a d-tuple of integers in
the range [0, 9] and apply
bucket-sort with N = 10
This application of the
radix-sort algorithm runs in
O(dn) time
For example, we can sort a
sequence of 10-digit
integers in linear time

Algorithm base10RadixSort(S)
Input sequence S of d-digit

integers
Output sequence S sorted
replace each element x

of S with the item (0, x)
for i ← 0 to d − 1

replace the key k of
each item (k, x) of S
with digit xi of x

bucketSort(S, 10)

More Sorting v 1.1 28

Example
Sorting a sequence of 4-digit integers

1001

4329

6457

0839

7436

1001

7436

6457

4329

0839

1001

4329

7436

0839

6457

1001

4329

7436

6457

0839

0839

1001

4329

6457

7436

