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Quick-Sort

7  4  9  6 2  → 2  4  6 7  9

4 2  → 2  4 7 9  → 7 9

2 → 2 9 → 9
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Outline and Reading

Quick-sort (§4.3)
Algorithm
Partition step
Quick-sort tree
Execution example

Analysis of quick-sort (4.3.1)
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Quick-Sort
Quick-sort is a randomized 
sorting algorithm based 
on the divide-and-conquer 
paradigm:

Divide: pick a random 
element x (called pivot) and 
partition S into 

L elements less than x
E elements equal x
G elements greater than x

Recur: sort L and G
Conquer: join L, E and G

x

x

L GE

x
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Partition
We partition an input 
sequence as follows:

We remove, in turn, each 
element y from S and 
We insert y into L, E or G,
depending on the result of 
the comparison with the 
pivot x

Each insertion and removal 
is at the beginning or at the 
end of a sequence, and 
hence takes O(1) time
Thus, the partition step of 
quick-sort takes O(n) time

Algorithm partition(S, p)
Input sequence S, position p of pivot 
Output subsequences L, E, G of the 

elements of S less than, equal to,
or greater than the pivot, resp.

L, E, G ← empty sequences
x ← S.remove(p)
while ¬S.isEmpty()

y ← S.remove(S.first())
if y < x

L.insertLast(y)
else if y = x

E.insertLast(y)
else { y > x }

G.insertLast(y)
return L, E, G
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Quick-Sort Tree
An execution of quick-sort is depicted by a binary tree

Each node represents a recursive call of quick-sort and stores
Unsorted sequence before the execution and its pivot
Sorted sequence at the end of the execution

The root is the initial call 
The leaves are calls on subsequences of size 0 or 1

7  4  9  6 2  → 2  4  6 7  9

4 2  → 2  4 7 9  → 7 9

2 → 2 9 → 9
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Execution Example
Pivot selection

7  2  9  4  → 2  4  7  9

2 → 2

7  2  9  4 3  7  6 1 → 1  2  3  4  6  7  8  9

3  8  6  1  → 1  3  8  6

3 → 3 8 → 89  4  → 4  9

9 → 9 4 → 4
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Execution Example (cont.)
Partition, recursive call, pivot selection

2 4  3  1 → 2  4  7  9

9  4  → 4  9

9 → 9 4 → 4

7  2  9  4  3  7  6 1 → 1  2  3  4  6  7  8  9

3  8  6  1  → 1  3  8  6

3 → 3 8 → 82 → 2

More Sorting v 1.1 8

Execution Example (cont.)
Partition, recursive call, base case

2 4  3  1 →→ 2  4  7  

1 → 1 9  4  → 4  9

9 → 9 4 → 4

7  2  9  4 3  7  6 1 → → 1  2  3  4  6  7  8  9

3  8  6  1  → 1  3  8  6

3 → 3 8 → 8
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Execution Example (cont.)
Recursive call, …, base case, join

3  8  6  1  → 1  3  8  6

3 → 3 8 → 8

7  2  9  4 3  7  6 1 → 1  2  3  4  6  7  8  9

2 4  3  1 → 1  2 3  4

1 → 1 4  3 → 3 4

9 → 9 4 → 4
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Execution Example (cont.)

Recursive call, pivot selection

7  9  7 1  → 1  3  8  6

8 → 8

7  2  9  4 3  7  6 1 → 1  2  3  4  6  7  8  9

2 4  3  1 → 1  2 3  4

1 → 1 4  3 → 3 4

9 → 9 4 → 4

9 → 9
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Execution Example (cont.)
Partition, …, recursive call, base case

7  9  7 1  → 1  3  8  6

8 → 8

7  2  9  4 3  7  6 1 → 1  2  3  4  6  7  8  9

2 4  3  1 → 1  2 3  4

1 → 1 4  3 → 3 4

9 → 9 4 → 4

9 → 9
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Execution Example (cont.)
Join, join

7 9  7 → 17 7 9

8 → 8

7  2  9  4  3  7  6 1  → 1  2  3  4  6 7  7  9

2 4  3  1 → 1  2 3  4

1 → 1 4  3 → 3 4

9 → 9 4 → 4

9 → 9



Sorting part 2 1/30/2003 7:01 PM

3

More Sorting v 1.1 13

Worst-case Running Time
The worst case for quick-sort occurs when the pivot is the unique 
minimum or maximum element
One of L and G has size n − 1 and the other has size 0
The running time is proportional to the sum

n + (n − 1) + … + 2 + 1
Thus, the worst-case running time of quick-sort is O(n2)

timedepth

1n − 1

……

n − 11

n0

…
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Expected Running Time
Consider a recursive call of quick-sort on a sequence of size s

Good call: the sizes of L and G are each less than 3s/4
Bad call: one of L and G has size greater than 3s/4

A call is good with probability 1/2
1/2 of the possible pivots cause good calls:

7  9  7 1  → 1

7  2  9  4 3  7  6 1 9

2  4  3  1 7 2 9 4 3 7 61

7  2 9  4 3  7  6  1

Good call Bad call

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Good pivotsBad pivots Bad pivots
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Sorting Lower Bound
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Comparison-Based 
Sorting (§ 4.4)

Many sorting algorithms are comparison based.
They sort by making comparisons between pairs of objects
Examples: bubble-sort, selection-sort, insertion-sort, heap-sort, 
merge-sort, quick-sort, ...

Let us therefore derive a lower bound on the running 
time of any algorithm that uses comparisons to sort n 
elements, x1, x2, …, xn.

Is xi < xj?

yes

no
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Counting Comparisons
Let us just count comparisons then.
Each possible run of the algorithm corresponds 
to a root-to-leaf path in a decision tree

xi < xj ?

xa < xb ?

xm < xo ? xp < xq ?xe < xf ? xk < xl ?

xc < xd ?
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Decision Tree Height
The height of this decision tree is a lower bound on the running time
Every possible input permutation must lead to a separate leaf 
output.  

If not, some input …4…5… would have same output ordering as 
…5…4…, which would be wrong.

Since there are n!=1*2*…*n leaves, the height is at least log (n!)
minimum height (time)

log (n!)

xi < xj ?

xa < xb ?

xm < xo ? xp < xq ?xe < xf ? xk < xl ?

xc < xd ?

n!
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The Lower Bound
Any comparison-based sorting algorithms takes at 
least log (n!) time
Therefore, any such algorithm takes time at least

That is, any comparison-based sorting algorithm must 
run in Ω(n log n) time.
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Bucket-Sort and Radix-Sort

0 1 2 3 4 5 6 7 8 9
B

1, c 7, d 7, g3, b3, a 7, e

∅ ∅ ∅ ∅ ∅ ∅ ∅
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Bucket-Sort (§ 4.5.1)

Let be S be a sequence of n (key, element) 
items with keys in the range [0, N − 1]
Bucket-sort uses the keys as indices into an 
auxiliary array B of sequences (buckets);  N
total buckets.
Phase 1: Empty sequence S by moving each item  

(k, o) into its bucket B[k]
Phase 2: For i = 0, …, N − 1, move the items of 

bucket B[i] to the end of  sequence S
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Example
Key range [0, 9]

7, d 1, c 3, a 7, g 3, b 7, e

1, c 3, a 3, b 7, d 7, g 7, e

Phase 1

Phase 2
0 1 2 3 4 5 6 7 8 9

B

1, c 7, d 7, g3, b3, a 7, e

∅ ∅ ∅ ∅ ∅ ∅ ∅
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Bucket-Sort (§ 4.5.1)
Phase 1: Move items into 

buckets
Phase 2: Move buckets into 

sequence, in order.

Analysis:
Phase 1 takes O(n) time
Phase 2 takes O(n + N) time

Bucket-sort takes O(n + N)
time 
Correctness:

What are loop invariants for 
Phase 1 and 2? 

Algorithm bucketSort(S, N)
Input sequence S of (key, element)

items with keys in the range
[0, N − 1]

Output sequence S sorted by
increasing keys

B ← array of N empty sequences
while ¬S.isEmpty()

f ← S.first()
(k, o) ← S.remove(f)
B[k].insertLast((k, o))

for i ← 0 to N − 1
while ¬B[i].isEmpty()

f ← B[i].first()
(k, o) ← B[i].remove(f)
S.insertLast((k, o))
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Bucket-Sort Properties

Keys have a fixed range of values. 
Keys are NOT compared.
bucketSort is a stable sort.
Stable Sort Property:

Any two items with the same key will be in 
the same relative order after sorting. 
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Lexicographic Order
A d-tuple is a sequence of d keys (k1, k2, …, kd), where 
key ki is said to be the i-th dimension of the tuple
Example:

The Cartesian coordinates of a point in space are a 3-tuple

The lexicographic order of two d-tuples is recursively 
defined as follows

(x1, x2, …, xd) < (y1, y2, …, yd)
⇔

x1 < y1  ∨ x1 = y1 ∧ (x2, …, xd) < (y2, …, yd)

I.e., the tuples are compared by the first dimension, 
then by the second dimension, etc.
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Radix-Sort (§ 4.5.2)
Radix-sort uses 
bucket-sort to sort 
each dimension in a 
stable manner. 
Radix-sort is 
applicable to tuples 
where the keys in 
each dimension i 
are integers in the 
range [0, N − 1]
Radix-sort runs in 
time O(d( n + N))

Algorithm radixSort(S, N)
Input sequence S of  d-tuples such

that (0, …, 0) ≤ (x1, …, xd) and
(x1, …, xd) ≤ (N − 1, …, N − 1)
for each tuple (x1, …, xd) in S

Output sequence S sorted in
lexicographic order

for i ← d downto 1
bucketSort(S, N, i) 
(bucketSorts S on dimension i)

Example:
(7,4,6) (5,1,5) (2,4,6) (2, 1, 4) (3, 2, 4)
(2, 1, 4) (3, 2, 4) (5,1,5) (7,4,6) (2,4,6)
(2, 1, 4) (5,1,5) (3, 2, 4) (7,4,6) (2,4,6)
(2, 1, 4) (2,4,6) (3, 2, 4) (5,1,5) (7,4,6)
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Radix-Sort for 
Base 10 Numbers

Consider a sequence of n
d-digit integers 

x = xd − 1 … x1x0
We represent each element 
as a d-tuple of integers in 
the range [0, 9] and apply 
bucket-sort with N = 10
This application of the 
radix-sort algorithm runs in 
O(dn) time 
For example, we can sort a 
sequence of 10-digit 
integers in linear time

Algorithm base10RadixSort(S)
Input sequence S of d-digit

integers 
Output sequence S sorted
replace each element x

of S with the item (0, x)
for i ← 0 to d − 1

replace the key k of 
each item (k, x) of S
with digit xi of x

bucketSort(S, 10)
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Example
Sorting a sequence of 4-digit integers

1001

4329

6457

0839

7436

1001

7436

6457

4329

0839

1001

4329

7436

0839

6457

1001

4329

7436

6457

0839

0839

1001

4329

6457

7436


