Computing and Software Systems 343, Autumn 2004
Mathematical Principles of Computing II

Assignment 1. Version 1.0.

Due Tuesday, October 5.

1. Design a method that solves the maximum contiguous subsequence sum problem, defined as follows: Given an array E of n integers (possibly negative), indexed from 0 to n-1, compute:

 max { x | x =
[image: image1.wmf]å

=

j

i

k

k

E

]

[

 for some i and j satisfying 0 (i (j (n-1}.

The method should return the maximum sum that you found.

Example: for input with n=5, and E = {–2, 11, -4, 13, -2}, the maximum subsequence sum is 20. (= 11 + -4 + 13), since it is bigger than all the other contiguous subsequence sums. Write your algorithm in detailed pseudocode.

2. Here is a program that finds duplicates in an array for you to analyze.

Algorithm HasDups(A, n)

Input: Array A of n numbers

Output: Prints any duplicates found to screen, or no duplicates found message.

DupFound (false

for i (0 to n-1 do

for j (i+1 to n-1 do

if A[i] = A[j]

Print "Duplicates found", A[i], i, j

DupFound (True

if DupFound = false

Print "No Duplicates".

a. Give the running time of HasDups by counting primitive operations using worst-case analysis. Show how you got your result.

b. Write a loop invariant for the loop on variable i. You should be able to use your loop invariant to help prove the correctness of your algorithm, although a proof is not necessary.

3. Write a recurrence equation to represent the worst-case number of primitive operations used for recArrayFindClose, listed below. Then solve the recurrence equation, getting a closed form solution. Assume that simple mathematical operations like minimum and absolute value take just one operation.

Algorithm recArrayFindClose(x, A, j):

Input: An element x, an array A with j (1 integers.

Output: The value |x-A[i]| that is minimized over all i satisfying 0 (i < j. (This how close x is to some element of A)

if j = 1 then

return |A[0]-x|

else if (A[j-1] = x)

return 0

else

dist1 (|A[j-1] – x|

dist2 (recArrayFindClose(x,A,j-1)

return min(dist1, dist2) // min computes minimum of dist1 and dist2

4. Programming: Write a method that does the following:

 Given a 2D array of integers as input, find the two adjacent integers in the array that give the highest total sum out of all possible adjacent integers. Integers in the array are adjacent if they are immediately above, below, left, or right of each other. (Diagonally adjacent does not count as adjacent in this problem). Your method should return the total of the two integers that you found.
 Then complete the given java program from the website so that it reads an input 2D array from a file and prints out the maximum adjacent integer sum. (File reading code is already provided for you). Example solutions are given along with the java program.

5. [Extra Credit]: What is the fastest algorithm you can come up with for finding duplicates (as in problem #2)? How fast is it? Write your algorithm in pseudocode, and analyze its worst-case run-time cost.

_1094887197.unknown

