Computing and Software Systems 343, Autumn 2004
Mathematical Principles of Computing II

Assignment 2. Version 1.0.

Due Tuesday, Oct. 12.

1. In order to help you manage your time, you write a program TaskOrganizer to help manage your list of tasks to do (a “to do” list). This program lets you enter tasks, and assign each task a priority number. The program then tells you which tasks to do by telling you about the more important tasks first. Tasks with a lower priority number are considered more important. The program uses a priority queue to store the tasks, along with their priority. Most of the program is already implemented (check the website for the starting code). Your job is to finish the program and analyze the implementation.

a. Give the running time of the methods insertItem and removeMin for the SimplePQ implementation on a priority queue with n elements. Use asymptotic order (big-Oh) notation; no primitive operation count is necessary. Give a short one sentence statement explaining how you got each answer.

b. Give the asymptotic order of the running time for listing the tasks in the TaskOrganizer program. You must state what your variable represents (so if you say O(n2), then what does n represent?) Give a one sentence justification.

c. Programming: To finish the program, implement replaceKey() and remove() in SimplePQ. Goodrich's book explains what these methods should do. Then update the TaskOrganizer java file with the ability to remove tasks and the ability to change the priority of a task. Turn-in your code with the E-submit process. If you understand all the code in SimplePQ.removemin(), then finishing SimplePQ should be relatively simple. Note that the program uses Scanner.java for keyboard input; there is javadoc documentation for this, as well as pointers to some reference slides for Scanner.java on the website.

d. Is it possible to implement TaskOrganizer using a priority queue ADT that does not use locators? If so, what are the advantages or disadvantages of doing so? If not, why not?

2. R-1.16. Use the definition of big-Oh to prove this fact.

3. The path length of a tree T is the sum of the depths of all the nodes in T. Design a recursive algorithm for computing the path length of a tree T (which is not necessarily binary). High-level pseudocode is good enough for this problem.

Extra Credit Problems:

4. [Extra Credit]: Define the recurrence equation T(n) as:

T(1) = 10

T(n) = 2T(n-1) + n for n > 1.

Show one of the following statements (whichever one is true).

a. T(n) is O(3n)

b. T(n) is (3n).

5. [Extra Credit]: C-2.31.

