Computing and Software Systems 343, Autumn 2004
Mathematical Principles of Computing II

Assignment 3. Version 1.0.

Due Tuesday, Oct 19, 4:15 PM.

1. Below is code for an iterative version of BinarySearch.

Algorithm BinarySearchIterative(A, n, x)

Input: Array A of n integers, sorted in increasing order. Integer x.

 Output: Index of location in A, where x is located, or –1 if x is not in A.
1.
low (0
2. high (n – 1
3. while (low (high) do
4.
 mid ((low + high) / 2
5.

if (A[mid] < x)
6.

 low (mid + 1
7.

else if (A[mid] > x)
8.

 high (mid – 1
9.

else
10.

return mid
11.
return -1
a. Write a loop invariant for the while loop. Your loop invariant must be useful for showing this algorithm is correct.

b. Explain why your loop invariant is useful for showing program correctness. (Keep your explanation short!)

2. In this problem we analyze the BottomUpHeap() algorithm from p.109

 Algorithm BottomUpHeap(S)

Input: A sequence S storing n = 2h – 1 keys.

 Output: A heap T, storing the keys in S.
1. if S is empty then

2. return an empty heap

3. Remove the first key, k, from S.

4. Split S in to two sequences, S1 and S2, each of size (n-1)/2

5. T1 (BottomUpHeap(S1)

6. T2 (BottomUpHeap(S2)

7. Create a binary tree T with root r storing k, left subtree T1, and right subtree T2
8. Perform a down-heap bubbling from the root r of T, if necessary.

9. return T
a. Let f(n) denote the worst-case number of key comparisons in BottomUpHeap(S), where n is the size of the input sequence. Write a recurrence equation for f(n) that computes the number of key comparisons exactly. (A key comparison is anytime you compare one of the items in initial input sequence with another one). You may assume that n is of the form 2h – 1 for some h. You should also assume that down-heap bubbling on a tree of size 2h – 1 takes exactly 2(h-1) key comparisons in the worst case (It is not necessary to further analyze down-heap). You must show your work. This must include showing the expression representing number of key comparisons in each line of code (lines 1 through 9).

b. Suppose sequence S is implemented with a linked list. What do you think is the asymptotic order of the worst-case number of primitive operations for BottomUpHeap(S) in terms of n, the size of the input sequence? (Give a big-Oh answer). Explain your answer. Your explanation does not have to be long, but must mention the step(s) on which BottomUpHeap executes the most primitive operations. Note that counting primitive operations is potentially different than counting the key comparisons from parts a & b.

3. Solve the following recurrence equation to get an exact closed form expression for g(n). You may assume n is always a power of 2. Closed-form means no summation signs, no "…", and no recursively defined functions in your final expression.

g(1) = 2

g(n) = 2 g(n/2) + 3n + 1 for all n >1.

4. Design a divide-and-conquer algorithm for problem #4 of homework #1. Algorithms that are not divide-and-conquer will get very few points. High-level pseudocode is enough for this problem; you just need to be clear about what your algorithm is doing. You may assume the input array dimensions are powers of 2 (for both length and width). The description of the problem is repeated here for clarity:

Given a 2D array of integers as input, find the two adjacent integers in the array that give the highest total sum out of all possible adjacent integers. Integers in the array are adjacent if they are immediately above, below, left, or right of each other. (Diagonally adjacent does not count as adjacent in this problem). Your method should return the total of the two integers that you found.

5. [Extra Credit]: Suppose you wanted to minimize the number of key comparisons in order to find both the minimum and maximum of a set of numbers. What is the best way of doing so? What is the minimum number of key comparisons necessary? Explore several options, including: 1) What is the best non-divide-and-conquer way of doing this, and what is its cost (in terms of key comparisons)? Try several divide and conquer approaches, including dividing the array into two versus dividing into three. Which is better? What are the costs (in key comparisons)?

