Analysis of Algorithms

An algorithm is a step-by-step procedure for solving a problem in a finite amount of time.

Pseudocode (§1.1)
- High-level description of an algorithm
- More structured than English prose
- Less detailed than a program
- Preferred notation for describing algorithms
- Hides program design issues

Example: find max element of an array

```
Algorithm arrayMax(A, n)

Input A of n integers
Output maximum element of A

currentMax ← A[0]
for i ← 1 to n − 1 do
    if A[i] > currentMax then
        currentMax ← A[i]
return currentMax
```

Pseudocode Details
- Control flow
 - if ... then ... [else ...]
 - while ... do
 - repeat ... until ...
 - for ... do ...
 - Indention replaces braces
- Method declaration
  ```
  Algorithm method (arg [, arg ...])
  Input ...
  Output ...
  ```
- Method call
  ```
  var.method (arg [, arg ...])
  ```
- Return value
  ```
  return expression
  ```
- Expressions
 - Assignment (like in Java)
 - Equality testing (like in Java)
 - Superscripts and other mathematical formatting allowed

Primitive Operations
- Basic computations performed by an algorithm
- Identifiable in pseudocode
- Largely independent from the programming language

Examples:
- Evaluating an expression
- Assigning a value to a variable
- Indexing into an array
- Calling a method
- Returning from a method

Estimating performance
- Count Primitive Operations
  ```
  = time needed by RAM model
  ```
- Random Access Machine (RAM) Model has:
 - A CPU
 - An potentially unbounded bank of memory cells
 - Each cell can hold an arbitrary number or character
 - Memory cells are numbered
 - Accessing any cell takes unit time

Running Time (§1.1)
- The running time grows with the input size.
- Running time varies with different input
- Worst-case: look at input causing most operations
- Best-case: look at input causing least number of operations
- Average case: between best and worst-case.
Counting Primitive Operations (§1.1)

Worst-case primitive operations count, as a function of the input size

Algorithm *arrayMax*(A, n)

\[
\begin{align*}
\text{currentMax} & \leftarrow A[0] \\
\text{for } i & \leftarrow 1 \text{ to } n - 1 \text{ do} \\
\quad & \text{if } A[i] > \text{currentMax} \text{ then} \\
\quad & \quad \text{currentMax} \leftarrow A[i] \\
\quad & \{ \text{ increment counter } i \} \\
\text{return } \text{currentMax}
\end{align*}
\]

operations

\[
\begin{align*}
2 & \\
1 + n & \\
2(n - 1) & \\
2(n - 1) & \\
1 & \\
7n - 2 &
\end{align*}
\]

Best-case primitive operations count, as a function of the input size

Algorithm *arrayMax*(A, n)

\[
\begin{align*}
\text{currentMax} & \leftarrow A[0] \\
\text{for } i & \leftarrow 1 \text{ to } n - 1 \text{ do} \\
\quad & \text{if } A[i] > \text{currentMax} \text{ then} \\
\quad & \quad \text{currentMax} \leftarrow A[i] \\
\quad & \{ \text{ increment counter } i \} \\
\text{return } \text{currentMax}
\end{align*}
\]

operations

\[
\begin{align*}
2 & \\
1 + n & \\
2(n - 1) & \\
0 & \\
1 & \\
5n &
\end{align*}
\]

Defining Worst [W(n)], Best [B(N)], and Average [A(n)]

- Let In = set of all inputs of size n.
- Let t(i) = # of primitive ops by alg on input i.
- W(n) = maximum t(i) taken over all i in In.
- B(n) = minimum t(i) taken over all i in In.
- A(n) = \[\sum_{i \in I_n} p(i) t(i) \] , p(i) = prob. of i occurring.

We focus on the worst case
- Easier to analyze
- Usually want to know how bad can algorithm be
- Average-case requires knowing probability; often difficult to determine

Experimental Studies (§ 1.6)

- Implement your algorithm
- Run your implementation with inputs of varying size and composition
- Measure running time of your implementation (e.g., with System.currentTimeMillis())
- Plot the results

Limitations of Experiments

- Implement may be time-consuming and/or difficult
- Results may not be indicative of the running time on other inputs not included in the experiment.
- In order to compare two algorithms, the same hardware and software environments must be used
- Infeasible to test for correctness on all possible inputs.

Theoretical Analysis

- Uses a high-level description of the algorithm instead of an implementation
- Characterizes running time as a function of the input size, n.
- Takes into account all possible inputs
- Allows us to evaluate the speed of an algorithm independent of the hardware/software environment
- Can prove correctness
Growth Rate of Running Time

- Changing the hardware/software environment
 - Affects running time by a constant factor;
 - Does not alter its growth rate
- Example: linear growth rate of `arrayMax` is an intrinsic property of algorithm.

Growth Rates

- Growth rates of functions:
 - Linear \(\approx n \)
 - Quadratic \(\approx n^2 \)
 - Cubic \(\approx n^3 \)
- In a log-log chart, the slope of the line corresponds to the growth rate of the function (for polynomials)

Constant Factors

- The growth rate is not affected by constant factors or lower-order terms
- Examples
 - \(10^n + 10^m \) is a linear function
 - \(10^n + 10^m \) is a quadratic function

Big-Oh and Growth Rate

- The big-Oh notation gives an upper bound on the growth rate of a function
- The statement "\(f(n) \) is \(O(g(n)) \)" means that the growth rate of \(f(n) \) is no more than the growth rate of \(g(n) \)
- We can use the big-Oh notation to rank functions according to their growth rate

Big-Oh Notation (§1.2)

- Given functions \(f(n) \) and \(g(n) \), we say that \(f(n) \) is \(O(g(n)) \) if there are positive constants \(c \) and \(n_0 \) such that \(f(n) \leq cg(n) \) for \(n \geq n_0 \)
- Example: \(2n + 10 \) is \(O(n) \)
 - \(2n + 10 \leq cn \)
 - \((c-2)n + 10 \)
 - \(n \geq 100(e-2) \)
 - Pick \(c = 3 \) and \(n_0 = 10 \)

Big-Oh Example

- Example: the function \(n^2 \) is not \(O(n) \)
 - \(n^2 \leq cn \)
 - \(n \leq c \)
 - The above inequality cannot be satisfied since \(c \) must be a constant
More Big-Oh Examples

- $7n-2$ is $O(n)$

 need $c > 0$ and $n_0 ≥ 1$ such that $7n-2 ≤ cn$ for $n ≥ n_0$

 this is true for $c = 7$ and $n_0 = 1$

- $3n^3 + 20n^2 + 5$ is $O(n^3)$

 need $c > 0$ and $n_0 ≥ 1$ such that $3n^3 + 20n^2 + 5 ≤ cn^3$ for $n ≥ n_0$

 this is true for $c = 4$ and $n_0 = 21$

- $3 \log n + \log \log n$ is $O(\log n)$

 need $c > 0$ and $n_0 ≥ 1$ such that $3 \log n + \log \log n ≤ cn\log n$ for $n ≥ n_0$

 this is true for $c = 4$ and $n_0 = 2$

Big-Oh Rules

- If $f(n)$ is a polynomial of degree d, then $f(n)$ is $O(n^d)$, i.e.,

 1. Drop lower-order terms
 2. Drop constant factors

- Use the smallest possible class of functions

 - Say “$2n$ is $O(n)$” instead of “$2n$ is $O(n^2)$”
 - Use the simplest expression of the class

Asymptotic Algorithm Analysis

- Asymptotic analysis = determining an algorithm’s running time in big-Oh notation

- Asymptotic analysis steps:

 1. We find the worst-case number of primitive operations executed as a function of the input size
 2. We express this function with big-Oh notation

- Example:

 We determine that algorithm `arrayMax` executes at most $7n-2$ primitive operations

 We say that algorithm `arrayMax` “runs in $O(n)$ time”

 Since constant factors and lower-order terms are eventually dropped, we can disregard them when counting primitive operations!

Intuition for Asymptotic Notation

- Big-Oh

 - $f(n)$ is $O(g(n))$ if $f(n)$ is asymptotically less than or equal to $g(n)$
 - big-Omega

 - $f(n)$ is $\Omega(g(n))$ if $f(n)$ is asymptotically greater than or equal to $g(n)$
 - big-Theta

 - $f(n)$ is $\Theta(g(n))$ if $f(n)$ is asymptotically equal to $g(n)$
 - little-o

 - $f(n)$ is $o(g(n))$ if $f(n)$ is asymptotically strictly less than $g(n)$
 - little-omega

 - $f(n)$ is $\omega(g(n))$ if $f(n)$ is asymptotically strictly greater than $g(n)$

Relatives of Big-Oh

- big-Omega

 - $f(n)$ is $\Omega(g(n))$ if there is a constant $c > 0$ and an integer constant $n_0 ≥ 1$ such that $f(n) ≥ cg(n)$ for $n ≥ n_0$

- big-Theta

 - $f(n)$ is $\Omega(g(n))$ if there are constants $c' > 0$ and $c'' > 0$ and an integer constant $n_0 ≥ 1$ such that $c'g(n) ≤ f(n) ≤ c''g(n)$ for $n ≥ n_0$

- little-o

 - $f(n)$ is $o(g(n))$ if, for any constant $c > 0$, there is an integer constant $n_0 ≥ 0$ such that $f(n) ≤ cg(n)$ for $n ≥ n_0$

- little-omega

 - $f(n)$ is $o(g(n))$ if, for any constant $c > 0$, there is an integer constant $n_0 ≥ 0$ such that $f(n) ≥ cg(n)$ for $n ≥ n_0$

Example Uses of the Relatives of Big-Oh

- $5n^2$ is $\Omega(n^2)$

 - $f(n)$ is $O(g(n))$ if there is a constant $c > 0$ and an integer constant $n_0 ≥ 1$ such that $f(n) ≤ cg(n)$ for $n ≥ n_0$

 - let $c = 5$ and $n_0 = 1$

- $5n^2$ is $\Omega(n)$

 - $f(n)$ is $O(g(n))$ if there is a constant $c > 0$ and an integer constant $n_0 ≥ 1$ such that $f(n) ≤ cg(n)$ for $n ≥ n_0$

 - let $c = 1$ and $n_0 = 1$

- $5n^2$ is $\Omega(n^{\frac{3}{2}})$

 - $f(n)$ is $O(g(n))$ if, for any constant $c > 0$, there is an integer constant $n_0 ≥ 0$ such that $f(n) ≤ cg(n)$ for $n ≥ n_0$

 - need $5n^2 ≥ c5n$ for $n ≥ n_0$
Math you need to know

- Summations (Sec. 1.3.1)
- Logarithms and Exponents (Sec. 1.3.2)
- Properties of logarithms:
 - $\log_b(xy) = \log_b x + \log_b y$
 - $\log_b (x/y) = \log_b x - \log_b y$
 - $\log_b x^a = a \log_b x$
- Properties of exponentials:
 - $a^{b+c} = a^b a^c$
 - $a^{bc} = (a^b)^c$
 - $a^b / a^c = a^{b-c}$
- Proof techniques (Sec. 1.3.3)
- Basic probability (Sec. 1.3.4)

Proofs are
- a sequence of statements
- Each statement is true, based on
 - Definitions
 - Hypotheses
 - Well-known math principles
 - Previous statements
- Statements lead towards conclusion

Induction proof

- Method of proving statements for (infinitely) large values of n, (n is the induction variable).
- Math way of using a loop in a proof.

Example induction proof

- Prove: for all int x, for all int y, for all int n,
 - If n is positive, then $x^n - y^n$ is divisible by $x-y$.
 - Let S_n denote "for all x and y, $x^n - y^n$ is divisible by $x-y$"
- Proof with induction:
 - Base case: show S_1
 - Inductive Hypothesis (IH): for all $k \geq 1$, if S_k is true, then S_{k+1} is true.
 - OR
 - Inductive Hypothesis (IH): for all $k \geq 2$, if S_{k-1} is true, then S_k is true.
More math tools & proofs

- Correctness of computing average
- Loop invariants and induction
- Recurrence equations
- Strong induction
- Cost of recursive algorithms with recurrence equations.

Computing Prefix Averages

- Asymptotic analysis examples: two algorithms for prefix averages
- The i-th prefix average of an array X is average of the first $(i + 1)$ elements of X:
 \[A[i] = \frac{X[0] + X[1] + \ldots + X[i]}{i+1} \]
- Computing the array A of prefix averages of another array X has applications to financial analysis

Prefix Averages (Quadratic)

The following algorithm computes prefix averages in quadratic time by applying the definition

Algorithm `prefixAverages1(X, n)`

Input: array X of n integers
Output: array A of prefix averages of X

#operations

- $A \leftarrow$ new array of n integers
- $s \leftarrow X[0]$
- for $i \leftarrow 0$ to $n - 1$
 - $s \leftarrow s + X[i]$
 - $A[i] \leftarrow s / (i + 1)$
- return A

Prefix Averages (Linear, non-recursive)

The following algorithm computes prefix averages in linear time by keeping a running sum

Algorithm `prefixAverages2(X, n)`

Input: array X of n integers
Output: array A of prefix averages of X

#operations

- $A \leftarrow$ new array of n integers
- $s \leftarrow 0$
- for $i \leftarrow 0$ to $n - 1$
 - $s \leftarrow s + X[i]$
 - $A[i] \leftarrow s / (i + 1)$
- return A

Prefix Averages (Linear)

The following algorithm computes prefix averages in linear time by computing prefix sums (and averages)

Algorithm `recPrefixSumAndAverage(X, A, n)`

Input: array X of $n \geq 1$ integer. Empty array A. A is same size as X.
Output: array $A[0], A[1], \ldots, A[n]$ changed to hold prefix averages of X.

returns sum of $X[0], X[1], \ldots, X[n-1]$

- if $n = 1$
 - $A[0] \leftarrow X[0]$
 - return $A[0]$
- $tot \leftarrow recPrefixSumAndAverage(X, A, n-1)$
- $tot \leftarrow tot + X[n-1]$
- $tot \leftarrow tot \div n$
- $A[n-1] \leftarrow tot$
- return tot.
The following algorithm computes prefix averages in linear time by computing prefix sums (and averages).

```
Algorithm recPrefixSumAndAverage(X, A, n)
Input array X of n ≥ 1 integer.
Empty array A. A is same size as X.
Output array A[0],...A[n-1] changed to hold prefix averages of X.
returns sum of X[0], X[1],…,X[n-1] #operations
if n=1
    A[0] ← X[0] 1
    return A[0] 2
tot ← recPrefixSumAndAverage(X, A, n-1) 3+T(n-1)
A[n-1] ← tot / n 4
return tot; 1

T(n) operations
```

Prefix Averages, Linear

Recurrence equation
- \(T(1) = 6 \)
- \(T(n) = 13 + T(n-1) \) for \(n > 1 \).

Solution of recurrence is
- \(T(n) = 13(n-1) + 6 \)
- \(T(n) \) is \(O(n) \).