An algorithm is a step-by-step procedure for solving a problem in a finite amount of time.

Pseudocode (§1.1)
- High-level description of an algorithm
- More structured than English prose
- Less detailed than a program
- Preferred notation for describing algorithms
- Hides program design issues

```plaintext
Algorithm arrayMax(A, n)
Input array A of n integers
Output maximum element of A

currentMax ← A[0]
for i ← 1 to n − 1 do
if A[i] > currentMax then
    currentMax ← A[i]
return currentMax
```

Pseudocode Details
- Control flow
 - if ... then ... [else ...]
 - while ... do
 - repeat ... until
 - for ... do ...
 - Indentation replaces braces
- Method declaration
 - Algorithm method (arg [, arg ...])
- Input ...
- Output ...
- Method call
 - var.method (arg [, arg ...])
- Return value
 - return expression
- Expressions
 - Assignment (like in Java)
 - Equality testing (like == in Java)
 - Superscripts and other mathematical formatting allowed

Primitive Operations
- Basic computations performed by an algorithm
- Identifiable in pseudocode
- Largely independent from the programming language
- Examples:
 - Evaluating an expression
 - Assigning a value to a variable
 - Indexing into an array
 - Calling a method
 - Returning from a method

Estimating performance
- Count Primitive Operations
- \(T = \text{time needed by RAM model} \)
- Random Access Machine (RAM) Model has:
 - A CPU
 - An potentially unbounded bank of memory cells
 - Each cell can hold an arbitrary number or character
 - Memory cells are numbered
 - Accessing any cell takes unit time

Running Time (§1.1)
- The running time grows with the input size.
- Running time varies with different input
- Worst-case: look at input causing most operations
- Best-case: look at input causing least number of operations
- Average case: between best and worst-case.
Counting Primitive Operations (§1.1)

Worst-case primitive operations count, as a function of the input size

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>ArrayMax(A, n)</th>
<th># operations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>currentMax ← A[0]</td>
<td>2</td>
</tr>
<tr>
<td>for i ← 1 to n − 1 do</td>
<td>1 + n</td>
<td></td>
</tr>
<tr>
<td>if A[i] > currentMax then</td>
<td>2(n − 1)</td>
<td></td>
</tr>
<tr>
<td>currentMax ← A[i]</td>
<td>2(n − 1)</td>
<td></td>
</tr>
<tr>
<td>{ increment counter i }</td>
<td>2(n − 1)</td>
<td></td>
</tr>
<tr>
<td>return currentMax</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>7n − 2</td>
<td></td>
</tr>
</tbody>
</table>

Counting Primitive Operations (§1.1)

Best-case primitive operations count, as a function of the input size

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>ArrayMax(A, n)</th>
<th># operations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>currentMax ← A[0]</td>
<td>2</td>
</tr>
<tr>
<td>for i ← 1 to n − 1 do</td>
<td>1 + n</td>
<td></td>
</tr>
<tr>
<td>if A[i] > currentMax then</td>
<td>2(n − 1)</td>
<td></td>
</tr>
<tr>
<td>currentMax ← A[i]</td>
<td>2(n − 1)</td>
<td></td>
</tr>
<tr>
<td>{ increment counter i }</td>
<td>2(n − 1)</td>
<td></td>
</tr>
<tr>
<td>return currentMax</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>5n</td>
<td></td>
</tr>
</tbody>
</table>

Defining Worst [W(n)], Best [B(N)], and Average [A(n)]

- Let I_n = set of all inputs of size n.
- Let t(i) = # of primitive ops by alg on input i.
- W(n) = maximum t(i) taken over all i in I_n
- B(n) = minimum t(i) taken over all i in I_n
- A(n) = \[\sum_{i \in I_n} p(i) t(i) \] , p(i) = prob. of i occurring.

- We focus on the worst case
 - Easier to analyze
 - Usually want to know how bad can algorithm be
 - Average-case requires knowing probability; often difficult to determine

Experimental Studies (§ 1.6)

- Implement your algorithm
- Run your implementation with inputs of varying size and composition
- Measure running time of your implementation (e.g., with System.currentTimeMillis())
- Plot the results

Limitations of Experiments

- Implement may be time-consuming and/or difficult
- Results may not be indicative of the running time on other inputs not included in the experiment.
- In order to compare two algorithms, the same hardware and software environments must be used
- Infeasible to test for correctness on all possible inputs.

Theoretical Analysis

- Uses a high-level description of the algorithm instead of an implementation
- Characterizes running time as a function of the input size, n
- Takes into account all possible inputs
- Allows us to evaluate the speed of an algorithm independent of the hardware/software environment
- Can prove correctness
Growth Rate of Running Time

- Changing the hardware/software environment
 - Affects running time by a constant factor;
 - Does not alter its growth rate
- Example: linear growth rate of `arrayMax` is an intrinsic property of the algorithm.

Growth Rates

- Growth rates of functions:
 - Linear $\approx n$
 - Quadratic $\approx n^2$
 - Cubic $\approx n^3$
- In a log-log chart, the slope of the line corresponds to the growth rate of the function (for polynomials)

Constant Factors

- The growth rate is not affected by constant factors or lower-order terms
- Examples
 - $10^3n + 10^5$ is a linear function
 - $10^5n^2 + 10^6$ is a quadratic function

Big-Oh and Growth Rate

- The big-Oh notation gives an upper bound on the growth rate of a function
- The statement "$f(n)$ is $O(g(n))$" means that the growth rate of $f(n)$ is no more than the growth rate of $g(n)$
- We can use the big-Oh notation to rank functions according to their growth rate

Big-Oh Notation ($\S1.2$)

- Given functions $f(n)$ and $g(n)$, we say that $f(n)$ is $O(g(n))$ if there are positive constants c and n_0 such that $f(n) \leq cg(n)$ for $n \geq n_0$
- Example: $2n + 10$ is $O(n)$
 - $2n + 10 \leq cn$
 - $(c - 2)n \geq 10$
 - $n \geq 10(c - 2)$
 - Pick $c = 3$ and $n_0 = 10$

Big-Oh Example

- Example: the function n^2 is not $O(n)$
 - $n^2 \leq cn$
 - $n \leq c$
 - The above inequality cannot be satisfied since c must be a constant
More Big-Oh Examples

- \(7n-2\)
 - \(7n-2\) is \(O(n)\)
 - need \(c > 0\) and \(n_0 \geq 1\) such that \(7n-2 \leq cn\) for \(n \geq n_0\)
 - this is true for \(c = 7\) and \(n_0 = 1\)

- \(3n^3 + 20n^2 + 5\)
 - \(3n^3 + 20n^2 + 5\) is \(O(n^3)\)
 - need \(c > 0\) and \(n_0 \geq 1\) such that \(3n^3 + 20n^2 + 5 \leq cn^3\) for \(n \geq n_0\)
 - this is true for \(c = 4\) and \(n_0 = 21\)

- \(3 \log n + \log \log n\)
 - \(3 \log n + \log \log n\) is \(O(\log n)\)
 - need \(c > 0\) and \(n_0 \geq 1\) such that \(3 \log n + \log \log n \leq c \log n\) for \(n \geq n_0\)
 - this is true for \(c = 4\) and \(n_0 = 2\)

Big-Oh Rules

- If \(f(n)\) a polynomial of degree \(d\), then \(f(n)\) is \(O(n^d)\), i.e.,
 1. Drop lower-order terms
 2. Drop constant factors
- Use the smallest possible class of functions
 - Say “\(2n\) is \(O(n)\)” instead of “\(2n\) is \(O(n^2)\)”
 - Use the simplest expression of the class
 - Say “\(3n + 5\) is \(O(n)\)” instead of “\(3n + 5\) is \(O(3n)\)”

Asymptotic Algorithm Analysis

- asymptotic analysis = determining an algorithms running time in big-Oh notation
- asymptotic analysis steps:
 1. We find the worst-case number of primitive operations executed as a function of the input size
 2. We express this function with big-Oh notation
- Example:
 - We determine that algorithm \(\text{arrayMax}\) executes at most \(7n-2\) primitive operations
 - We say that algorithm \(\text{arrayMax}\) "runs in \(O(n)\) time"
 - Since constant factors and lower-order terms are eventually dropped, we can disregard them when counting primitive operations!

Big-Oh

- \(f(n)\) is \(O(g(n))\) if \(f(n)\) is asymptotically less than or equal to \(g(n)\)
- \(f(n)\) is \(\Omega(g(n))\) if \(f(n)\) is asymptotically greater than or equal to \(g(n)\)
- \(f(n)\) is \(\Theta(g(n))\) if \(f(n)\) is asymptotically equal to \(g(n)\)
- \(f(n)\) is \(o(g(n))\) if \(f(n)\) is asymptotically strictly less than \(g(n)\)
- \(f(n)\) is \(\omega(g(n))\) if \(f(n)\) is asymptotically strictly greater than \(g(n)\)

Intuition for Asymptotic Notation

- Big-Oh
 - \(f(n)\) is \(O(g(n))\) if \(f(n)\) is asymptotically less than or equal to \(g(n)\)
 - big-Omega
 - \(f(n)\) is \(\Omega(g(n))\) if \(f(n)\) is asymptotically greater than or equal to \(g(n)\)
 - big-Theta
 - \(f(n)\) is \(\Theta(g(n))\) if \(f(n)\) is asymptotically equal to \(g(n)\)
 - little-o
 - \(f(n)\) is \(o(g(n))\) if \(f(n)\) is asymptotically strictly less than \(g(n)\)
 - little-omega
 - \(f(n)\) is \(\omega(g(n))\) if \(f(n)\) is asymptotically strictly greater than \(g(n)\)

Relative of Big-Oh

- \(f(n)\) is \(\Omega(g(n))\) if there is a constant \(c > 0\) and an integer constant \(n_0 \geq 1\) such that \(f(n) \geq cg(n)\) for \(n \geq n_0\)
- \(f(n)\) is \(\omega(g(n))\) if, for any constant \(c > 0\), there is an integer constant \(n_0 \geq 0\) such that \(f(n) \geq cg(n)\) for \(n \geq n_0\)
- \(f(n)\) is \(\Theta(g(n))\) if, for any constant \(c > 0\), there is an integer constant \(n_0 \geq 0\) such that \(c_g(n) \leq f(n) \leq cg(n)\) for \(n \geq n_0\)
- \(f(n)\) is \(O(g(n))\) if, for any constant \(c > 0\), there is an integer constant \(n_0 \geq 0\) such that \(f(n) \leq cg(n)\) for \(n \geq n_0\)
- \(f(n)\) is \(\omega(g(n))\) if, for any constant \(c > 0\), there is an integer constant \(n_0 \geq 0\) such that \(f(n) \geq cg(n)\) for \(n \geq n_0\)
- \(f(n)\) is \(o(g(n))\) if, for any constant \(c > 0\), there is an integer constant \(n_0 \geq 0\) such that \(f(n) \leq cg(n)\) for \(n \geq n_0\)

Example Uses of the Relatives of Big-Oh

- \(5n^2\) is \(\Omega(n^2)\)
 - \(f(n)\) is \(O(g(n))\) if there is a constant \(c > 0\) and an integer constant \(n_0 \geq 1\) such that \(f(n) \leq cg(n)\) for \(n \geq n_0\)
 - let \(c = 5\) and \(n_0 = 1\)
 - \(5n^2\) is \(\Omega(n)\)
 - \(f(n)\) is \(O(g(n))\) if there is a constant \(c > 0\) and an integer constant \(n_0 \geq 1\) such that \(f(n) \leq cg(n)\) for \(n \geq n_0\)
 - let \(c = 1\) and \(n_0 = 1\)
 - \(5n^2\) is \(\Omega(\log n)\)
 - \(f(n)\) is \(O(g(n))\) if there is a constant \(c > 0\) and an integer constant \(n_0 \geq 0\) such that \(f(n) \leq cg(n)\) for \(n \geq n_0\)
 - need \(5n^2 \geq cn\) \(\rightarrow\) given \(c\), the \(n_0\) that satisfies this is \(n_0 \geq c/5 \geq 0\)
Math you need to know

- Summations (Sec. 1.3.1)
- Logarithms and Exponents (Sec. 1.3.2)
- Properties of logarithms:
 \[\log_b(xy) = \log_b x + \log_b y \]
 \[\log_b \left(\frac{x}{y}\right) = \log_b x - \log_b y \]
 \[\log_b a^x = x \log_b a \]
- Properties of exponentials:
 \[a^{b+c} = a^b a^c \]
 \[(ab)^c = a^c b^c \]
 \[a^{b/c} = \left(a^b\right)^{1/c} \]
- Proof techniques (Sec. 1.3.3)
- Basic probability (Sec. 1.3.4)

Proofs are
- A sequence of statements
- Each statement is true, based on
 - Definitions
 - Hypotheses
 - Well-known math principles
 - Previous statements
- Statements lead towards conclusion

Induction proof

- Method of proving statements for (infinitely) large values of \(n \) (\(n \) is the induction variable).
- Math way of using a loop in a proof.

Example induction proof

- Prove: for all \(x \), for all \(y \), for all \(n \), if \(n \) is positive, then \(x^n - y^n \) is divisible by \(x - y \).
- Let \(S_n \) denote "for all \(x \) and \(y \), \(x^n - y^n \) is divisible by \(x - y \)".
- Proof with induction:
 - Base case: show \(S_1 \)
 - Inductive Hypothesis (IH): for all \(k \geq 1 \), if \(S_k \) is true, then \(S_{k+1} \) is true.
 - Proof with induction:
More math tools & proofs

- Correctness of computing average
- Loop invariants and induction
- Recurrence equations
- Strong induction
- Cost of recursive algorithms with recurrence equations.

Computing Prefix Averages

- Asymptotic analysis examples: two algorithms for prefix averages
- The i-th prefix average of an array X is average of the first $(i+1)$ elements of X:
 \[A[i] = \frac{X[0] + X[1] + \ldots + X[i]}{i+1} \]
- Computing the array A of prefix averages of another array X has applications to financial analysis.

Prefix Averages (Quadratic)

- The following algorithm computes prefix averages in quadratic time by applying the definition

 \[
 \text{Algorithm } \text{prefixAverages1}(X, n) \\
 \text{Input: array } X \text{ of } n \text{ integers} \\
 \text{Output: array } A \text{ of prefix averages of } X \\
 A \leftarrow \text{new array of } n \text{ integers} \\
 \text{for } i \leftarrow 0 \text{ to } n-1 \text{ do} \\
 \text{else} \\
 s \leftarrow X[0] \\
 \text{for } j \leftarrow 1 \text{ to } i \text{ do} \\
 s \leftarrow s + X[j] \\
 A[j] \leftarrow s / (i+1) \\
 \text{return } A
 \]

Prefix Averages (Linear)

- The following algorithm computes prefix averages in linear time by computing prefix sums (and averages)

 \[
 \text{Algorithm } \text{prefixAverages2}(X, n) \\
 \text{Input: array } X \text{ of } n \geq 1 \text{ integer}.
 \text{Empty array } A; \ A \text{ is same size as } X
 \text{Output: array } A[0..n-1] \text{ changed to hold prefix averages of } X
 \text{returns sum of } X[0], X[1], \ldots, X[n-1] \\
 \text{if } n=1 \\
 A[0] \leftarrow X[0] \\
 \text{return } A[0] \\
 \text{else} \\
 \text{tot} \leftarrow \text{prefixSumAndAverage}(X, A, n-1) \\
 \text{tot} \leftarrow \text{tot} + X[n-1] \\
 A[n-1] \leftarrow \text{tot} / n \\
 \text{return tot}.
 \]

Arithmetic Progression

- The running time of \text{prefixAverages1} is $O(1 + 2 + \ldots + n)$
- The sum of the first n integers is $n(n + 1)/2$
- There is a simple visual proof of this fact
- Thus, algorithm \text{prefixAverages1} runs in $O(n^2)$ time

Prefix Averages (Linear)

- The following algorithm computes prefix averages in linear time by computing prefix sums (and averages)

 \[
 \text{Algorithm } \text{prefixAverages2}(X, n) \\
 \text{Input: array } X \text{ of } n \geq 1 \text{ integer}.
 \text{Empty array } A; \ A \text{ is same size as } X
 \text{Output: array } A[0..n-1] \text{ changed to hold prefix averages of } X
 \text{returns sum of } X[0], X[1], \ldots, X[n-1] \\
 \text{if } n=1 \\
 A[0] \leftarrow X[0] \\
 \text{return } A[0] \\
 \text{else} \\
 \text{tot} \leftarrow \text{prefixSumAndAverage}(X, A, n-1) \\
 \text{tot} \leftarrow \text{tot} + X[n-1] \\
 A[n-1] \leftarrow \text{tot} / n \\
 \text{return tot}.
 \]
Prefix Averages, Linear

- Recurrence equation
 - $T(1) = 6$
 - $T(n) = 13 + T(n-1)$ for $n>1$.
- Solution of recurrence is
 - $T(n) = 13(n-1) + 6$
 - $T(n)$ is $O(n)$.