Dynamic Programming

Outline and Reading
- Matrix Chain-Product (§5.3.1)
- The General Technique (§5.3.2)
- 0-1 Knapsack Problem (§5.3.3)

Computing Fibonacci
- Dynamic Programming is a general algorithm design paradigm:
 - Iteratively solves small subproblems which are combined to solve overall problem.
- Fibonacci numbers defined:
 - $F_0 = 0$
 - $F_1 = 1$
 - $F_n = F_{n-1} + F_{n-2}$, for $n > 1$

- Recursive solution:
 - int fib(int x)
 if (x=0) return 0;
 else if (x=1) return 1;
 else return fib(x-1) + fib(x-2);

- Dynamic Programming Solution:
 - f[0]=0; f[1]=1;
 for i ← 2 to x do
 f[i] ← f[i-1] + f[i-2];
 return f[x];
Dynamic Programming revealed

- Break problem into subproblems
 - (Hardest part!)
 - subproblems are shared
 - optimal subproblem solution needs to help solve overall problem. (subproblem optimality)
- Compute solutions to small subproblems
- Store solutions in array A.
- Combine already computed solutions into solutions for larger subproblems
- Solutions Array A is iteratively filled
- (Optional: reduce space needed by reusing array)

Reducing Space for Computing Fibonacci

- Store only previous 2 values to compute next value
- int fib(x)
 - if (x=0) return 0;
 - else if (x=1) return 1;
 - else
 - int last ← 1; nextlast ← 0;
 - for i ← 2 to x do
 - temp ← last + nextlast;
 - nextlast ← last;
 - last ← temp;
 - return temp;

Matrix Chain-Products

- Review: Matrix Multiplication.
 - \(C = A \times B \)
 - \(A \) is \(d \times e \) and \(B \) is \(e \times f \)
 - \(C(i, j) = \sum_{k=0}^{e} A(i, k) \times B(k, j) \)
 - \(O(d^3) \) time (\(d^3 \) multiplications)
Matrix Chain-Products

Matrix Chain-Product:
- Compute $A = A_0 * A_1 * ... * A_{n-1}$
- A_i is $d_i \times d_{i+1}$
- Problem: How to parenthesize? [for minimizing ops]

Example
- B is 3×100
- C is 100×5
- D is 5×5
- $(B*C)*D$ takes $1500 + 75 = 1575$ ops
- $B*(C*D)$ takes $1500 + 2500 = 4000$ ops

An Enumeration Approach

Matrix Chain-Product Alg.:
- Try all possible ways to parenthesize $A=A_0 * A_1 * ... * A_{n-1}$
- Calculate number of ops for each one
- Pick the one that is best

Running time:
- The number of parenthesizations is equal to the number of binary trees with n nodes
- This is exponential!
- It is called the Catalan number, and it is almost 4^n.
- This is a terrible algorithm!

A Greedy Approach

Idea #1: repeatedly select the product that uses (up) the most operations.

Counter-example:
- A is 10×5
- B is 5×10
- C is 10×5
- D is 5×10
- Greedy idea #1 gives $(A*B)*(C*D)$, which takes $500+1000+500 = 2000$ ops
- $A^*((B*C)*D)$ takes $500+250+250 = 1000$ ops
Another Greedy Approach

- **Idea #2:** repeatedly select the product that uses the fewest operations.
- **Counter-example:**
 - A is 101 × 11
 - B is 11 × 9
 - C is 9 × 100
 - D is 100 × 99
 - Greedy idea #2 gives A*((B*C)*D)), which takes 109989 + 9900 + 108900 = 228789 ops
 - (A*B)*(C*D) takes 9999 + 89991 + 89100 = 189090 ops
- The greedy approach is not giving us the optimal value.

A “Recursive” Approach

- **Define subproblems:**
 - Find the best parenthesization of A,Ai+1,…*Ai
 - Let Nij denote the number of operations done by this subproblem.
 - The optimal solution for the whole problem is N0,n-1.
- **Subproblem optimality:** The optimal solution can be defined in terms of optimal subproblems
 - There has to be a final multiplication (root of the expression tree) for the optimal solution.
 - Say, the final multiply is at index i: (A0*…*Ai)*(Ai+1*…*An-1).
 - Then the optimal solution N0,n-1 is the sum of two optimal subproblems, N0,i and Ni+1,n-1 plus the time for the last multiply.
 - If subproblems were not optimal, neither is global solution.

A Characterizing Equation

- **Define global optimal in terms of optimal subproblems,** by checking all possible locations for final multiply.
 - Recall that A is a d1 × d2, dimensional matrix.
 - So, a characterizing equation for Nij is the following:
 \[
 N_{i,j} = \min_{1 \leq k < j} \left\{ N_{i,k} + N_{k+1,j} + d_i d_k d_{j+1} \right\}
 \]
- **Note that subproblems are not independent—the subproblems overlap** (are shared).
A Dynamic Programming Algorithm

- Construct optimal subproblems "bottom-up."
- \(N_{i,j} \)'s are easy, so start with them
- Then do length 2, 3, ..., subproblems, and so on.
- Array \(N_{i,j} \) stores solutions
- Running time: \(O(n^2) \)

Algorithm `matrixChain(S)`:

Input: sequence \(S \) of \(n \) matrices to be multiplied
Output: number of operations in an optimal parenthesization of \(S \)

for \(i \leftarrow 1 \) to \(n-1 \) do
 \(N_{i,i} \leftarrow 0 \)
for \(b \leftarrow 1 \) to \(n-1 \) do
 for \(i \leftarrow 0 \) to \(n-b-1 \) do
 \(j \leftarrow i+b \)
 \(N_{i,j} \leftarrow +\infty \)
 for \(k \leftarrow i \) to \(j-1 \) do
 \(N_{i,j} \leftarrow \min(N_{i,j}, N_{i,k} + N_{k+1,j} + d_{i,k+1}d_{k+1,j}) \)

Dynamic Programming version 1.2

A Dynamic Programming Algorithm Visualization

The bottom-up construction fills in the \(N \) array by diagonals
- \(N_{i,j} \) gets values from previous entries in \(i \)-th row and \(j \)-th column
- Filling in each entry in the \(N \) table takes \(O(n) \) time.
- Total run time: \(O(n^3) \)
- Getting actual parenthesization can be done by remembering "k" for each \(N \) entry

The General Dynamic Programming Technique

- Applies to a problem that at first seems to require a lot of time (possibly exponential), provided we have:
 - **Simple subproblems**: the subproblems can be defined in terms of a few variables, such as \(j, k, l, m \), and so on.
 - **Subproblem optimality**: the global optimum value can be defined in terms of optimal subproblems
 - **Subproblem overlap**: the subproblems are not independent, but instead they overlap (hence, should be constructed bottom-up).
The 0/1 Knapsack Problem

- Given: A set S of n items, with each item i having
 - b_i - a positive benefit
 - w_i - a positive weight
- Goal: Choose items with maximum total benefit but with weight at most W.
- If we are not allowed to take fractional amounts, then this is the 0/1 knapsack problem.
 - In this case, we let T denote the set of items we take
 - Objective: maximize $\sum_{i \in T} b_i$
 - Constraint: $\sum_{i \in T} w_i \leq W$

Example

- Given: A set S of n items, with each item i having
 - b_i - a positive benefit
 - w_i - a positive weight
- Goal: Choose items with maximum total benefit but with weight at most W.

<table>
<thead>
<tr>
<th>Items</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight</td>
<td>4 in</td>
<td>2 in</td>
<td>2 in</td>
<td>6 in</td>
<td>2 in</td>
</tr>
<tr>
<td>Benefit</td>
<td>$20</td>
<td>$3</td>
<td>$6</td>
<td>$25</td>
<td>$80</td>
</tr>
</tbody>
</table>

Solution:
- 5 (2 in)
- 3 (2 in)
- 1 (4 in)

A 0/1 Knapsack Algorithm, First Attempt

- S_k: Set of items numbered 1 to k.
- Define $B[k] = \text{best selection from } S_k$.
- Problem: does not have subproblem optimality:
 - Consider $S = \{(3,2),(5,4),(8,5),(4,3),(10,9)\}$ benefit-weight pairs

<table>
<thead>
<tr>
<th>S_5</th>
<th>S_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(3,2)$</td>
<td>$(5,4)$</td>
</tr>
<tr>
<td>$(8,5)$</td>
<td>$(4,3)$</td>
</tr>
<tr>
<td>$(10,9)$</td>
<td></td>
</tr>
</tbody>
</table>
A 0/1 Knapsack Algorithm, Second Attempt

- S_k: Set of items numbered 1 to k.
- Define $B[k, w]$ = best selection from S_k with weight exactly equal to w.
- Good news: this does have subproblem optimality:

$$B[k, w] = \begin{cases} B[k-1, w] & \text{if } w_j > w \\ \max \{B[k-1, w], B[k-1, w-w_j] + b_j\} & \text{else} \end{cases}$$

- I.e., best subset of S_k with weight exactly w is either the best subset of S_{k-1} with weight w or the best subset of S_{k-1} with weight $w-w_j$ plus item k.

The 0/1 Knapsack Algorithm

- Recall definition of $B[k, w]$:

$$B[k, w] = \begin{cases} B[k-1, w] & \text{if } w_j > w \\ \max \{B[k-1, w], B[k-1, w-w_j] + b_j\} & \text{else} \end{cases}$$

- Since $B[k, w]$ is defined in terms of $B[k-1, *]$, we can reuse the same array.
- Running time: $O(nW)$.
- Not a polynomial-time algorithm if W is large.
- This is a pseudo-polynomial time algorithm.

Dynamic Programming revealed

- Break problem into subproblems that are
 - shared
 - have subproblem optimality (optimal subproblem solution helps solve overall problem)
 - subproblem optimality means can write recursive relationship between subproblems!
- Compute solutions to small subproblems.
- Store solutions in array A.
- Combine already computed solutions into solutions for larger subproblems.
- Solutions Array A is iteratively filled.
- (Optional: reduce space needed by reusing array.)
The 0/1 Knapsack Problem

- Given: A set S of n items, with each item i having
 - b_i - a positive benefit
 - w_i - a positive weight
- Goal: Choose items with maximum total benefit but with weight at most W.
- If we are not allowed to take fractional amounts, then this is the 0/1 knapsack problem.
 - In this case, we let T denote the set of items we take
- Objective: maximize $\sum_{i \in T} b_i$
- Constraint: $\sum_{i \in T} w_i \leq W$

Towards the 0/1 Knapsack Algorithm

S_k: Set of items numbered 1 to $k = \{(b_1, w_1), (b_2, w_2), \ldots, (b_k, w_k)\}$

Define $B[k][j]$ = maximum benefit of optimal subset from S_k with total weight at most j

Recursive definition of $B[k][j]$:

$$B(k, j) = \begin{cases}
0 & \text{if } k = 0 \\
B(k-1, j) & \text{if } w_k > j \\
\max\{B(k-1, j), B(k-1, j - w_k) + b_k\} & \text{otherwise}
\end{cases}$$

Towards the 0/1 Knapsack Algorithm

$B[k][j] = \max\{B(k-1, j), B(k-1, j - w_k) + b_k\}$

- $B[k][j]$ = maximum benefit of optimal subset from S_k with total weight at most j
- Recursive version of algorithm based on recursive subproblem relationship.
- Not a dynamic programming version.

Algorithm $rec01Knap(S, W)$:

- Input: set S of k items $\{b_1, b_2, \ldots, b_k\}$ with benefits b_1, b_2, \ldots, b_k and max. weight W
- Output: benefit of best subset with weight at most W

if $k = 0$ then (S = emptyset) return 0
remove item k (benefit-weight (b_k, w_k)) from S
if $w_k > W$ then (item k does not fit) return $rec01Knap(S, W)$
return $\max\{B(k, W), B(k-1, W-w_k) + b_k\}$
Towards the 0/1 Knapsack Algorithm

Modified recursive version that stores subproblem solutions:
- First allocate global array B of size n+1 by W
- Then initialize all entries of B[i,j] to -1
- B stores results of recursive calls
- Entries in B are computed when necessary

This is considered a dynamic programming version.

Algorithm `rec01Knap(S, W)`

Input: set S of k items w/ benefit $b_1, b_2, ..., b_k$, weights $w_1, w_2, ..., w_k$, and max. weight W

Output: benefit of best subset with weight at most W if k = 0 then return 0

remove item k (benefit-weight (b_k, w_k)) from S

if $B[k-1, W] = -1$ then

if $w_k > W$ then

return $B[k-1, W]

if $B[k-1, W - w_k] = -1$ then

return $max(B[k-1, W], B[k-1, W - w_k] + b_k)$

Algorithm `01Knapsack(S, W)`

Input: set S of n items w/ benefit b_i and weight w_i; max. weight W

Output: benefit of best subset with weight at most W

for $w ← 0$ to W do {

base case

} $B[0, w] ← 0$

for $k ← 1$ to n do

for $j ← W$ downto 1 do

if $w_k > j$ then

$B[k, j] ← B[k-1, j]

else

$B[k, j] ← max(B[k-1, j], B[k-1, j-w_k] + b_k)$

The 0/1 Knapsack Algorithm- Iterative

Recursive computation not necessary

Compute iteratively, bottom-up

All $B[k-1,*]$ must be computed before $B[k,*]$ because of subproblem dependencies

This is also dynamic programming.

The 0/1 Knapsack Algorithm- Iterative

Not necessary to use all the space

Keep track of one row at a time

Overwrite results from previous row as new values computed

Must compute right to left (W downto 1) so that the next row ($B[k-1,*]$) uses results from the previous row ($B[k-1,*]$)

Simplify this to get version in book.
The 0/1 Knapsack Algorithm - Iterative

\[B[k, j] = \begin{cases} 0 & \text{if } k = 0 \\ B[k-1, j] & \text{if } w_k > j \\ \max(B[k-1, j], B[k-1, j - w_k] + b_k) & \text{otherwise} \end{cases} \]

- Not necessary to use all the space
- Keep track of one row at a time
- Overwrite results from previous row as new values computed
- Must compute right to left (W \text{downto 1}) so that the next row (B[k-1,*]) uses results from the previous row (B[k-1,*]).
- Simplify this to get version in book.

Dynamic Programming version 1.2

The 0/1 Knapsack Algorithm

\[B[w] = \begin{cases} B[k-1, w] & \text{if } w_k > w \\ \max(B[k-1, w], B[k-1, w - w_k] + b_k) & \text{else} \end{cases} \]

- The book version:
 - When value does not change from one row to the next, then no need to assign same value.
- Running time: O(nW).
- Not a polynomial-time algorithm if W is large
- This is a pseudo-polynomial time algorithm

Dynamic Programming version 1.2