DFS on Directed Graphs

Outline and Reading (§6.4)

- Reachability (§6.4.1)
- Directed DFS
- Strong connectivity

\qquad
\qquad
\qquad
\qquad
(§6.4.4)
- Topological Sorting

Digraphs

\diamond A digraph is a graph whose edges are all directed

- Short for "directed graph"
- Applications
- one-way streets
- flights
- task scheduling

Digraph Application

Scheduling: edge (a, b) means task a must be completed before b can be started

Directed DFS

- DFS on digraphs traverses edges only along their proper direction
- In the directed DFS algorithm, we have four types of edges
- discovery edges
- back edges
- forward edges
- cross edges
- A directed DFS starting at a vertex s determines the
 vertices reachable from s

Directed DFS example

-DFS_Sweep starts at A, then B,...
$\stackrel{\text { tree, back, cross }}{\rightarrow}$

©

DAGs and Topological Ordering

- A directed acyclic graph (DAG) is a digraph that has no directed cycles
- A topological ordering of a digraph is a numbering
v_{1}, \ldots, v_{n}
of the vertices such that for every edge (v_{i}, v_{j}), we have $i<j$
- Example: in a task scheduling digraph, a topological ordering a task sequence that satisfies the precedence constraints
Theorem
A digraph admits a topological ordering if and only if it is a DAG

Topological Sorting

- Number vertices, so that (u, v) in E implies $u<v$

Algorithm for Topological Sorting

- Note: This algorithm is different than the one in Goodrich-Tamassia

Method TopologicalSort(\boldsymbol{G})
$H \leftarrow G \quad / /$ Temporary copy of \boldsymbol{G}
$\boldsymbol{n} \leftarrow$ G.numVertices()
while H is not empty do
Let v be a vertex with no outgoing edges
Label $\boldsymbol{v} \leftarrow \boldsymbol{n}$
$\boldsymbol{n} \leftarrow \boldsymbol{n}-\mathbf{1}$
Remove v from H
Running time: $\mathrm{O}(\mathrm{n}+\mathrm{m})$ [with smart implementation] How...?

Topological Sorting

Algorithm using DFS

- Simulate the algorithm by using depth-first search
Algorithm topoDFS_Sweep(G) Input dag G
Output topological ordering of G $n \leftarrow$ G.numVertices()
for all $u \in G$.vertices()
setLabel(u, UNEXPLORED)
for all $e \in$ G.edges 0
setLabel(e, UNEXPLORED)
for all $v \in G . v e r t i c e s()$
if $\operatorname{getLabel}(v)=$ UNEXPLORED topologicalDFS (G, v)
- $\mathrm{O}(\mathrm{n}+\mathrm{m})$ time.

Algorithm topologicalD FS(G, v)
Input graph \boldsymbol{G} and a start vertex \boldsymbol{v} of \boldsymbol{G}
Output a labeling of the vertices of G in the connected component of v in topological order setLabel(v, VISITED) for all $e \in$ G.outIncidentEdges(v) if $\operatorname{getLabel}(e)=U N E X P L O R E D$ $w \leftarrow$ opposite (v, e)
if $\operatorname{getLabel}(w)=U N E X P L O R E D$ setLabel(e, DISCOVERY)
topologicalDFS($G, w)$
$\{e$ is a forward or cross edge setLabel(e, VISITED) Label v with topological number n $n \leftarrow n-1$
Directed Graphs DFS 1.3

Topological Sorting Example

Directed Graphs DFS 1.3

Topological Sorting Example

Directed Graphs DFS 1.3

Topological Sorting Example

Directed Graphs DFS 1.3

Topological Sorting Example

Directed Graphs DFS 1.3

Topological Sorting Example

Directed Graphs DFS 1.3

Strong Connectivity

Each vertex can reach all other vertices

Strong Connectivity Algorithm

- Pick a vertex v in G.
- Perform a DFS from v in G.
- If there's a w not visited, print "no"
- Let G^{\prime} be G with edges reversed.
- Perform a DFS from v in G^{\prime}.
- If there's a w not visited, print "no".
- Else, print "yes".

Running time: $\mathrm{O}(\mathrm{n}+\mathrm{m})$.

22

Strongly Connected Components

- Maximal subgraphs such that each vertex can reach all other vertices in the subgraph
- Can be computed in O(n+m) time using DFS

SCC algorithm

- Using DFS_Sweep for directed graphs, construct list L of reverse finish order of the vertices in the traversal.
- Node is finished when traversal leaves it permanently.
- Do another DFS_Sweep on G^{R}, (G with edges reversed), with the following modification: in DFS_Sweep outer loop, start DFS calls on vertices according to the order in list L.
Each spanning tree produced by DFS_Sweep on GR will contain all nodes from exactly one SCC of G
\qquad

Strongly Connected Components

Strongly Connected Components

Directed Graphs DFS 1.3

SCC Algorithm, more detail

- // Phase 1

Run DFS_Sweep on G, returning a list L of nodes in reverse finish order. Done by adding vertex v to the front of L after traversal on v is finished in DFS_Sweep.

- // Phase 2a

Construct G^{R} from G by copying the vertices, and then adding the reverse of every edge from G to G^{R}. \qquad

- // Phase 2b

Do a modified DFS_Sweep traversal on G^{R}, where list L is used to order the DFS calls. Each DFS call labels vertices traversed with a different SCC number.

- // Final Phase:

Label vertices and edges of G.

DFS Phase 1

- Construct list L
- Similar to topological sort

Algorithm SCCIDFS_Sweep (G)
Input dag G
Output list L of vertices of G in reverse finish order.
$L \leftarrow$ empty list
for all $u \in G$.vertices()
setLabel(u, UNEXPLORED)
for all $e \in G . e d g e s()$
setLabel(e, UNEXPLORED)
for all $v \in G . v e r t i c e s()$
if $\operatorname{getLabel}(v)=$ UNEXPLORED SCCIDFS(G, v)
($\mathrm{n}+\mathrm{m}$) time.

Algorithm SCCIDFS (G, v)
Input graph \boldsymbol{G} and a start vertex \boldsymbol{v} of \boldsymbol{G} Output vertices of \boldsymbol{G} in the connected component of v added to L, according to reverse finish order setLabel(v, VISITED) for all $e \in$ G.outIncidentEdges(v) if $\operatorname{getLabel}(e)=$ UNEXPLORED $w \leftarrow$ opposite (v, e) if $\operatorname{getLabel}(w)=$ UNEXPLORED setLabel(e, DISCOVERY) $\operatorname{SCCIDFS}(G, w)$ else
$\{e$ is a forward or cross edge $\}$
L. insertFirst(()

DFS Phase 2b

- Similar to Connected Components
Algorithm SCC2bDFS_Sweep $\left(G^{R}, L\right)$
Input dag G^{R}, list L
Output Labeling of vertices in G^{R} by scc component number
$\operatorname{sccNum} \leftarrow 1$
for all $u \in G$.vertices()
setLabel(u, UNEXPLORED)
for all $e \in$ G.edges()
setLabel(e, UNEXPLORED)
for all $v \in L$, \{traverse L in order\}
if $\operatorname{getLabel}(v)=$ UNEXPLORED
$\operatorname{SCC2bDFS}(G, v, \operatorname{sccNum})$
sccNum++
O(n+m) time.

Correctness of SCC algorithm

Lemma 1: In terms of vertices, SCC's of G are the same as the SCC's of G^{R}.

- Lemma 2: For graph G, let F be a forest generated by DFS_Sweep on G. Let S be a tree of F. Then S contains one or more complete SCC's of G. (No partial SCC's).
- Lemma 3a: Let F be the forest generated by SCC phase $2 b$, and S be a spanning tree in F. Let x be the root of S, and v be a descendent of x. Then there is a path from v to x in G^{R}.
- Lemma 3b: Let S be as in Lemma 3a. S combined with other edges in G^{R} form a strongly connected subgraph of G^{R}.

Outline and Reading

Breadth-first search (§6.3.3)

- Algorithm
- Example
- Properties
- Analysis
- Applications
- DFS vs. BFS (§6.3.3)
- Comparison of applications
- Comparison of edge labels

Breadth-First Search

Breadth-first search (BFS) is

- general graph traversal technique
- Visits all the vertices and edges
- with \boldsymbol{n} vertices and \boldsymbol{m} edges takes $\boldsymbol{O}(\boldsymbol{n}+\boldsymbol{m})$ time
- Like searching a binary tree level by level

A BFS can

- Determine whether G is connected
- Compute the connected components of G
- Compute a spanning forest of G
- Find and report a path with the minimum number of edges between two given vertices
- Find a simple cycle, if there is one \qquad

Example

Example (cont.)

Example (cont.)

BFS Algorithm

- The algorithm uses a queue to keep track of vertices

Algorithm BFS_Sweep (G)
Input graph G
Output labeling of the edges and the vertices of \boldsymbol{G}
for all $u \in G$.vertices()
setLabel(u, UNEXPLORED)
for all $e \in$ G.edges()
setLabel(e, UNEXPLORED)
for all $v \in G$.vertices()
if $\operatorname{getLabel}(v)=$ UNEXPLORED $B F S(G, v)$

Algorithm $\operatorname{BFS}(G, s)$
$Q \leftarrow$ new empty queue
Q.enqueue(s)
setLabel(s, VISITED)
while \neg Q.isEmpty ()
$\nu \leftarrow$ Q.dequeие ()
for all $e \in$ G.incidentEdges(v)
if $\operatorname{getLabel}(e)=$ UNEXPLORED
$w \leftarrow$ opposite (v, e)
if $\operatorname{getLabel}(w)=$ UNEXPLORED
setLabel(e, DISCOVERY)
setLabel(w, VISITED)
Q.enqueue(w) else
setLabel(e, CROSS)
setLabel(e, cross)

$$
1
$$

Properties

Notation
\boldsymbol{G}_{s} : connected component of s L_{i} : nodes at depth i in BFS tree. Property 1
$\boldsymbol{B F S}(\boldsymbol{G}, \boldsymbol{s})$ visits all the vertices and edges of \boldsymbol{G}_{s}

Property 2
The discovery edges labeled by $B F S(G, s)$ form a spanning tree T_{s} of $G_{s} ; T_{s}$ called BFS tree
Property 3
For each vertex v in \boldsymbol{L}_{i}

- The path of T_{s} from s to v has i edges
- Every path from s to v in G_{s} has at least i edges Directed Graphs DFS 1.3

Analysis

- Setting/getting a vertex/edge label takes $\boldsymbol{O}(1)$ time \qquad
- Each vertex is labeled twice
- once as UNEXPLORED
- once as VISITED \qquad
Each edge is labeled twice
- once as UNEXPLORED
- once as DISCOVERY or CROSS
\qquad
Each vertex is inserted once into \boldsymbol{Q}
- Inner loop of BFS runs in $\mathrm{O}(\operatorname{deg}(v))$ time

BFS runs in $\boldsymbol{O}(\boldsymbol{n}+\boldsymbol{m})$ time provided the graph is represented by the adjacency list structure
\qquad

- Recall that $\Sigma_{v} \operatorname{deg}(\boldsymbol{v})=2 \boldsymbol{m}$

Applications

Can specialize the BFS traversal of a graph \boldsymbol{G} to solve the following problems in $\boldsymbol{O}(\boldsymbol{n}+\boldsymbol{m})$ time

- Compute the connected components of \boldsymbol{G}
- Compute a spanning forest of G
- Find a simple cycle in \boldsymbol{G}, or report that \boldsymbol{G} is a forest
- Given two vertices of \boldsymbol{G}, find a minimum length path in G (if it exists)

DFS vs. BFS

DFS vs. BFS (cont.)

\qquad

